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1.  Introduction

In many situations a medium dielectric permittivity tensor 
diagonal and non-diagonal elements vary with the time. So 
far primary attention has been focused on systems with time 
dependent refractive index (see, for example [1, 2] and refer-
ences therein). However, in many situations the non-diagonal 
dielectric permittivity term (g) can also vary with time, origi-
nating time-dependent Faraday rotation (TDFR) [3]. This jus-
tifies the study of both diagonal and non-diagonal elements 
for describing TDFR. Recently TDFR has been used, based 
on a left (right) circularly polarized pump–probe technique, 
for investigation of spin relaxation processes of a system 
using a continuous laser field [4] or laser pulse [5], or to study 
the effect of electron phonon coupling in metals undergoing 
thermal transport [6]. In this technique a pump pulse is used 
to excite the sample, changing the optical properties while a 
second time-delayed probe pulse measures the change.

The main question that is addressed in this manuscript is 
whether or not the TDFR angle follows the time dependence 
of the dielectric permittivity non-diagonal or diagonal term. 
To answer this question it is useful to first establish a relation 
between Faraday rotation and the time dependent dielectric 
permittivity non-diagonal term. To the best of our knowl-
edge, no such calculations have been previously reported. 
The purpose of the present work goes in this direction in 

the sense that we provide analytical expressions for TDFR 
in the presence of pump–probe pulses and continuous laser 
field. Once the desired relation is obtained, one can analyze 
the rotational angle dependence on the characteristic param
eters of the incident (probe) light. Finally, for completeness, 
we also consider TDFR dependence of the dielectric permit
tivitys diagonal term. In this article we will restrict ourselves 
to a discussion of the slowly varying function of the time-
dependent dielectric permittivity in a Gaussian pulse com-
pared to the oscillations of a light-probe in the case where 
Ω/ω � 1, with Ω being the frequency of oscillation of the 
gyration vector, and ω the frequency of light undergoing 
TDFR.

2.  Initial relations

To start, let us look at Maxwell’s equations without any exter-
nal sources

rotE = −1
c
∂B
∂t

, rotH =
1
c
∂D
∂t

� (1)

where E and B are electric and magnetic fields, respectively. 
D is the electric displacement vector, and H is the magnetic 
displacement vector. In a medium these equations should be 
completed with the material equations. For weak field case the 
connection between E and D remains linear
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Di(r, t) =
∫ t

−∞
εij(t, t − t′)Ej(r, t′)dt′

Ei(r, t) =
∫ t

−∞
ε−1

ij (t, t − t′)Dj(r, t′)dt′
�

(2)

where εij and ε−1
ij  are the time-dependent dielectric and 

inverse dielectric permittivity tensors of the considered mat
erial. Going to the Fourier transforms

Di(r, t) =
∫

dω
2π

εij(t,ω)Ej(r,ω)eiωt� (3)

and assuming that for a non-dispersive medium 
ε(t,ω) ≈ ε(t), one has Di(r, t) ≈ εij(t)Ej(r, t). In an analo-

gous manner Ei(t) ≈ ε−1
ij (t)Dj(t).

We are going to consider situations when there are two time 
scales in the problem. The fast time scale is associated with 
the probe wave and the slow time scale is related to the exter-
nal (magnetic, electric) fields. We take into account the slow 
time variable adiabatically assuming that the corresponding 
frequency is much smaller than the probe wave frequency. 
Some specific physical realizations are presented below.

Using these relations and assuming that magnetic perme-
ability mij = δij  for a non-magnetic medium we get

∆Di(r, t)−
εij(t)

c2

∂2Dj(t)
∂t2 = 0.� (4)

As for the dielectric permittivity tensor, it is assumed to have 
a form εij(t) = ε(t)δij + ieijlgl(t), where eijl is the antisymmet-
ric tensor and g is the gyration vector (see for example [7]). 
Suppose that the gyration vector is directed in the wave propa-
gation z direction. Then the wave equation acquires the form

∆Di(r, t)− ε(t)
c2

∂2Di(r, t)
∂t2 − ieijz

g(t)
c2

∂2Dj(r, t)
∂t2 = 0� (5)

which is valid for a continuous material with an arbitrary 
shape of the time-dependent dielectric permittivity. Next, 
by introducing circular electric displacement components 
D± = Dx ± iDy, the above equation becomes

∆D±(r, t)− ε±(t)
c2

∂2D±(r, t)
∂t2 = 0� (6)

where ε±(t) = ε(t)± g(t). Finally, assuming that the solution 
for complex D± is known, the time dependent Faraday rota-
tion angle can be defined by

tan θ(L, t) = −i
D+(L, t)− D−(L, t)
D+(L, t) + D−(L, t)� (7)

where L is the distance that light has propagated in the system.

3.  Rotation angle

After these preliminaries we are ready for the evaluation of 
time-dependent Faraday angle θ(L, t), equation (7), in several 
different cases.

The first case that should be examined is the static one when 
ε(t) = ε ≡ constant and g(t) ≡ g = constant. In this case, the 
solution of the wave equation (6) for electric displacement has 

the form of a monochromatic plane wave with the frequency 
ω propagating along the z-axis (D0 is the initial magnitude of 
the electric displacement)

D0
±(z, t) = D0eik±z−iωt,� (8)

where k± = ω
√
ε± g/c represent forward propagating waves 

and  ±  indicates right-handed and left-handed circularly 
polarized modes, respectively. Substituting equation (8) into 
equation (7), we are now able to reflect the case for bulk and 
isotropic materials where one-way light propagation is impor-
tant in order to retrieve the standard expression for the angle 
of rotation of the polarization light.

θ =
L(k+ − k−)

2
=

ωL(
√
ε+ g −

√
ε− g)

2c
.� (9)

Note that θ is positive for all normal (right-handed) materials.
The next case that we consider is the relevant dynamic case, 

where on top of the static case, discussed previously, the off-
diagonal elements of dielectric permittivity tensor will have 
changed in time. This can be done most straightforwardly by 
applying an ac external magnetic field (see, for example [8, 9]) 
or use left (right) circularly polarized pump–probe technique 
without any externally applied magnetic field (see for example, 
[5]). In the former cases the ac external magnetic field in the 
range of 20–40 G rms was used for determining Verdet constant. 
In the latter cases [4, 5] the polarized pump pulses were used for 
tracking the changes to the polarized carrier populations in time.

To simplify matters, we will consider a simplified model of 
a pump pulses or ac external magnetic field, assuming that the 
time-dependent dielectric permittivity in a Gaussian pulse is a 
slowly varying function of time compared to the oscillations 
of light-probe, i.e. Ω/ω � 1.

To proceed further, we seek solutions to the Maxwell’s 
equations (6), which include the slow variation in time of the 
ε±(t), in the form of a time-dependent Gaussian wave packet

D±(z, t) = D0eik±z−iωt−t2/2T2
F±(Ωt),� (10)

where T is the duration of pulse width, ω is the carrier fre-

quency and k± = ω
c

√
ε±(t = 0). F describes the influence 

of the slow varying portion of a laser pump pulse. We assume 
that F(t = 0) = 1 to be able to recover the Faraday angle in the 
absence of modulation, such as the case of equation (9) where 
the light propagates through a uniform medium with a constant 
dielectric permittivity. Substituting above ansatz, equation (10), 
into wave equation  equation (6) and neglecting the second 
derivative of F with respect to the time, one can easily solve 
the remaining first order differential equation. Ignoring the sec-
ond derivative of F is justified because here we are interested in 
slow modulation of the non-diagonal elements of the permit
tivity tensor compared to the oscillations of light (Ω/ω � 1).

The exact solution of the first order equation when inte-
grated from the initial time 0 to some instant of time t leads to

lnF±(τ) =

∫ τ

0

ω2ε±(0)dτ
2ε±(τ)(iωΩ+ τ/T2)

+
iωτ
2Ω

+
τ 2

4Ω2T2

−1
4
ln

(
1 +

(
τ

ωΩT2

)2)
+

i
2
arctan

τ

ωΩT2 ,

� (11)
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where τ = Ωt is the dimensionless time variable. It turns out, 
that only the contribution of the first term in equation (11) is 
relevant in time-dependent Faraday rotation (see the definition 
of Faraday angle, equation (7)). Hence, in our further discus-
sion other terms will be ignored and we focus on the expla-
nation behind the asymptotic behavior of the mentioned first 
term. However, it is clear, that the contributions of ignored 
terms become important if someone is interested in charac-
terizing the dynamics of waves in a non-stationary complex 
dielectric permittivity medium (see, for example [2]). To pro-
ceed further, let us consider two limiting cases: (i) T → 0 and 
(ii) T → ∞. The first case corresponds to the ultrashort pulse 
and the second one to the continuous laser field. While the 
second case is by far the most important, we will also briefly 
discuss the pulses of very short duration, similar to that used 
in experiment [5]. It follows from equation  (10) that in the 
ultrashort impulse case only the times t → 0 play significant 
role. Substituting in equation  (11) ε(τ) ≈ ε(0) we find that 
F+(τ) = F−(τ) and hence, Faraday rotation angle is deter-
mined by the static case expression equation  (9) where ε 
must be replaced by ε(t = 0) and g by g(t = 0). If the pulse 
is centered not at t = 0, but rather at t = t0, then the rotation 
angle will be determined by the same static expression equa-
tion (9) where now ε must be replaced by ε(t = t0) and g by 
g(t = t0). Now let us consider the continuous laser field case, 
that is T → ∞. Using equation (11), one finds

F±(τ) = exp

[
−i

ωε±(0)
2Ω

∫ τ

0

dτ
ε±(τ)

]
.� (12)

Substituting equations (12) and (10) into equation (7), for the 
time dependent Faraday rotation angle we obtain

θ(L, t) =
ωL
2c

(
√
ε+ g −

√
ε− g) +

ω

4Ω

∫ τ

0
dτ

[
ε−(0)
ε−(τ)

− ε+(0)
ε+(τ)

]
.

�
(13)

The first term in equation  (13) represents the static contrib
ution and the second term represents time-dependent contrib
ution to Faraday rotation. To proceed further one needs the 
explicit form of ε±(τ). We will consider three situations: two 
related to time-dependent non-diagonal terms of the dielectric 
permittivity tensor, and one related to the time-dependent 
diagonal terms of the dielectric permittivity tensor.

For the non-diagonal elements, one case is associated 
with spin-relaxation processes in different systems [4, 5] 
g = g0e−t/τr, where τr  is some relaxation time and ω � 1

τr
. 

Second case is caused by the modulated low frequency exter-
nal magnetic field g = g0 cosΩt . In both cases the effect of a 
weak external magnetic field on the diagonal term is of order 
O(H2) and hence can be neglected. Starting from the assump-
tion that g � ε and replacing Ω by 1/τr  in equation (13), we 
may find an expression (without the static portion) for the 
time-dependent Faraday rotation angle for an arbitrary g(t).

θt(t) =
ωτr

2ε

∫ τ

0
dτg(τ)− ωg0t

2ε
.� (14)

It is easy to see that for large time scales the last term in equa-
tion (14) is dominated and the final sign of θt(t) is negative and 
varies almost linearly. Particularly, for a g = g0e−t/τr (τr  is a 

relaxation time that depends on the details of the experiment) 
the above equation reads:

θt(t) =
ωg0

2ε

(
τr − τre−t/τr − t

)
.� (15)

Similar linearity of θt(t) versus time is observed in experi-
ment [4], where the spin dynamics in EuO thin films based 
on the time-resolved Faraday rotation trace was investigated. 
As it was demonstrated in [4], the time trace of Faraday rota-
tion includes two dynamic magnetization processes; one is an 
enhancement of magnetization (θ(t) > 0) having two decay 
components, the other is a subsequent demagnetization at 
larger time delays 400 ps–1.1 ns where θ(t) < 0.

Now we implement an analogous procedure for the calcul
ations of θt(t), equation  (13), assuming that g = g0 cosΩt . 
Using above mentioned equation and calculating the integrals 
[10], assuming ε = const, for the time-dependent part of 
Faraday rotation angle one finds the following expression in 
the given time interval [−π/2 + nπ � Ωt � π/2 + nπ], where 
n = 0, 1, 2, · · ·,

θn(t) =
ω

2Ω
√

ε2 − g2
0

[
θ0(t)− g0πn

]
,� (16)

where

θ0(t) = ε arctan
g0 sinΩt√
ε2 − g2

0

− g0 arctan
ε tanΩt√
ε2 − g2

0

.� (17)

Equation (16) with equation  (14) represents the central 
results of this paper.

As shown in figure 1 the angle of Faraday rotation is con-
stantly increasing (negatively) with a periodic change in slope 
which is illustrated by when the graph of θn(t) crosses the 

line ωg0t
2
√

ε2−g2
 every Ωt = nπ  with its oscillations following 

the general trend. The gyration vector, g, is at its local max-

imum, g0, every Ωt = 2nπ  (where the derivative of θn , dθn
dt , 

becomes zero). An increase of Ω will decrease period of oscil-
lations, in contrast to increasing ω which will only increase 

Figure 1.  Schematic plot of time-dependent gyration vector 
Faraday rotation angle θn(t) (16) versus t. The parameters are: 

g0 = 0.01, ε = 10, ω1 = 1015, ω2 = 2 × 1015 and Ω = 1012. The 

line ωg0t
2
√

ε2−g2
0

 is also plotted with θn(t).
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the magnitude of amplitude of oscillations. We show this 
schematically by choosing two different parameters of ω in 
all time dependent figures. A similar periodic behavior has 
also been shown with Faraday rotation in films considering 
the length dependent case with multiple reflections (see, e.g. 
[12, 13]). In both the length dependent and time dependent 
gyration vector cases, the end result has increasing Faraday 
rotation angle with periodic oscillations as correspondingly 
positive (the length dependent case with reflections) or nega-

tive (the time dependent gyration vector case)
If the value of g is restricted by the condition g � ε (which 

is true in most materials), then θn(t) reads

θn=0(t) =
ωg0

2ε

(
sinΩt
Ω

− t
)

.� (18)

As seen from equation (18), on the scale set by Ωt > 1, the 
main role is played by the second term that increases linearly 
with time t. It is opposite to the static terms sign (see equa-
tion (13)) and after some time can exceed it, thus changing the 
overall sign of the Faraday rotation angle.

To avoid misunderstanding note that the formulae equa-
tions  (18) and (15) are not applicable at very large times 
t � 1/Ω, τr . In this case the neglection of second derivative 
of F(τ) is not justified, see equation (11).

Also, if one considers the limit ε → g0, then the limiting 
value of θo(t) is

lim
ε→g0

θ0(t) = − ω

2Ω
tan

Ωt
2

.� (19)

The latter case can be realized in metamaterials , where, in 
order to reduce the diagonal elements of the permittivity ten-
sor, one can introduce metal wires in the magneto-optical host 
medium (see, e.g. [11]).

Finally, for completeness, let us discuss the case where ε 
also depends on time. To make the issue more clear we con-
sider a simplified model following the case of [2] where the 
time-dependent parity-time symmetric optical potentials are 
discussed, and assume that ε(t) = ε0 + ε1 cos

2(Ωt) (ε0 is the 
non-time dependent dielectric properties of the system and ε1 

is the amplitude of the variation with time). By using the same 
integral definition of Faraday angle, equation (13), and calculat-
ing the integrals (g is constant), we obtain the following result

θεn(t) =
ω

4Ω

[
A arctan(A cot(Ωt))

−B arctan(B cot(Ωt)) + π

(
n +

1
2

)
(B − A)

]�

(20)

where A =
√
ε0+ε1+g√
ε0+g , B =

√
ε0+ε1−g√
ε0−g , and n = 0, 1, 2, · · ·.  

The time interval for which the expression (20) is valid 
[nπ � Ωt � (1 + n)π].

The resulting graph is plotted in figure  2. This result is 
very similar to the time dependent case of the gyration vector 
increasing along the line (B − A)t  and crossing the line every 
Ωt = nπ

2 , with the primary difference being that the increasing 
angle is always positive rather than negative. In both cases the 
time dependent diagonal or non-diagonal elements have a line 
that the Faraday rotation angle oscillates about and crosses 
multiple times, attributing a periodic and constantly increas-
ing rotation angle as time passes.

4.  Summary

What we have shown, with the assumption of a slow modula-
tion of the non-diagonal elements of the permittivity tensor 
when compared to the oscillations of light within a system 
where (Ω/ω � 1.) and similar to that of perovskite semicon-
ductor thin films [5], is that it is possible to calculate the time-
dependent Faraday angle θ(L, t), equation (7), for two different 
cases using the time-dependent non-diagonal and diagonal 
terms of the dielectric permittivity tensor. One case is caused 
by the modulated low frequency external magnetic field H 
that leads to the slow time-dependent variation of the gyra-
tion vector g = g0 cosΩt . The second case is associated with 
ultrafast magneto-optical experiments in ferromagnets where 
the dynamics of the electrons spin degree of freedom were 
investigated (see, e.g. [1] and references therein). In the latter 
case for the gyration vector we took the form, g = g0e−t/τr (τr  
is some relaxation time). In both cases, the time trace of θ(t) 
clearly indicates a change in sign as measured in [4].

We have also calculated the time dependence of the diago-
nal term of the dielectric tensor on the Faraday rotation angle, 
equation  (20), where the diagonal element ε is defined as 
ε(t) = εo + ε1 cos

2 Ωt  and g = const. These calculations of 
the Faraday rotation angle are varying between 0 and 2π, but 
the representation that we show represents a constant increase 
in magnitude, positive for the diagonal element and negative 
for the non-diagonal element. This constant increase repre-
sents a continuous laser fields effects.
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Figure 2.  Schematic plot of time-dependent portion of Faraday 
rotation angle θεn  based on equation (20). The parameters are: 
go = 0.01, εo = 10, ε1 = 0.5, ω1 = 1015, ω2 = 2 × 1015, and 
Ω = 1012. The line ω4Ω (B − A)t is also plotted to schematically show 
the increase in Faraday rotation angle.
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