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Capsize of polarization in dilute 
photonic crystals
Zhyrair Gevorkian1,2, Arsen Hakhoumian2, Vladimir Gasparian3 & Emilio Cuevas4

We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic 
crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of 
waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed 
in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights 
into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, 
based on Maxwell’s equations with a spatially dependent two dimensional inhomogeneous dielectric 
permittivity. We show that the polarization’s rotation can be explained by an optical splitting 
parameter appearing naturally in Maxwell’s equations for magnetic or electric fields components. This 
parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum 
waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the 
dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to 
capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

The problem of the polarization rotation (PR) of an incident electromagnetic wave is one of the most interesting 
in photonic crystals (PC)1. The investigations in this field are stimulated by the possibility of creation of polariza-
tion controlling devices, where the polarization of the propagating light could be precisely manipulated and con-
trolled2–4. One of the mechanism that can account for this PR can be associated with the geometrical anisotropy 
of photonic crystal (PC)5. The anisotropy, imposing asymmetry into a periodic two dimensional (2d) structure 
in xy–plane, leads to a different speed in the x–and y–axes resulting in a phase delay between Hx (Ex) and Hy (Ey) 
components. Another mechanism that can lead to the PR of propagating light is due to dielectric permittivity 
inhomogeneity of medium. This phenomenon known long ago6–10 and accepted view of the physics behind the 
effect is that the rotation is controlled by the parameter λ/Λ0 (λ is the wave length and Λ0 is the typical length 
scale of the system’s inhomogeneity). In the geometrical optics approximation when wavelength is much smaller 
than inhomogeneity characteristic scale, rotation angle is negligible11. However, in the opposite limit, the rotation 
of polarization due to dielectric permittivity inhomogeneity, is quite significant. Particularly, such effects are 
observed both in dielectric (see ref.12 and references therein) and metallic13 PCs.

In this paper we investigate, experimentally and theoretically, the PR effects in a dilute photonic crystals 
(DPC) with transverse permittivity inhomogeneity perpendicular to the z–traveling direction of waves. Interest 
to DPC is largely motivated by a peculiar behavior of the transmission coefficient, recently studied in ref.14. Using 
parabolic (forward) scattering approximation to investigate electromagnetic wave propagation in inhomogeneous 
media15–17, in ref.14 was found an independence of the transmission coefficient of the central diffracted wave from 
the incident wavelength in a dilute perforated metal system. As we will see below, it turns out that the DPC along 
with the interesting transport properties lead to unusual polarization effects as well.

Our direct measurements indicate that under certain conditions the initial polarization changes its direction 
by π/4 in 1d DPCs in the frequency range of 10 ÷ 140 GHz (see below). The main experimental finding consists of 
not typical shift of distribution’s minimum and maximum regions in the spectra of the transmitted intensity (see 
below). To understand and explain the rotating mechanism of the DPC, we have developed a theoretical model, 
based on Maxwell’s equations with a spatially dependent two dimensional dielectric permittivity ε(x, y). Using the 
same parabolic approximation, mentioned above, we show that the polarization’s rotation in 1d and 2d DPCs can 
be explained by an optical splitting parameter appearing naturally in Maxwell’s equations for magnetic or electric 
fields components. This term is an optical analogous of Rashba type spin-orbit interaction parameter, introduces 
a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between 
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the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. A 
photonic analog of Rashba type term in homogeneous chiral medium was considered in18.

Note that one should differ polarization rotation due to inhomogeneity and chirality or magnetoactivity of the 
medium. In the last two cases the dielectric permittivity tensor has non-diagonal terms in contrary to the former 
case. Non-diagonal terms lead to different velocities of left hand and right hand circular polarized waves in a 
chiral or magnetoactive medium. In PC situation is different. Here two waves polarized in orthogonal directions 
have different velocities. This difference leads to polarization rotation because every linearly polarized wave can 
be presented as a superposition of waves in two orthogonal directions. The possibility of large polarization rota-
tion by PC was noticed in19.

Experiment
To study capsize effect in 1d PC system, we have performed an experiment where electromagnetic waves prop-
agate through the dilute structure. The schematic setup of the experiment is shown in Fig. 1. It consists of trans-
mitter and receiver antennas, an anechoic chamber with photonic crystal, scalar network analyzer and recorder. 
One-dimensional photonic crystal is formed from 7 alumina ceramic plates with permittivity ε = 10, thickness 
b = 0.5 mm and sizes 60 × 96 mm2. They are parallel substituted along the x–axis at the distance a = 10 mm from 
each other. The structure is supported by the low loss and low dielectric permittivity ε = 1.07 foam layers, see 
Fig. 2.

The measurements were carried out in the frequency range 10 ÷ 140 GHz (wavenumber k0 = 0.21 ÷ 2.93 mm−1) 
using set of scalar network analyzers. Open end rectangular waveguides of corresponding frequency range are 
used as a transmitting and receiving antennas. Such a choice of antennas allow high level cross-polarization 

Figure 1.  Schematic of the experimental setup. Waves propagate through the dilute PC structure. The 
arrangement is used to detect the frequency dependence of the normalized intensity I.

Figure 2.  One dimensional photonic crystal. Photograph of the 1d PC used in the experiment. It is formed 
from 7 alumina ceramic plates with ε = 10, thickness b = 0.5 mm, sizes 60 × 96 mm2 and a = 10 mm distance 
from each other.
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isolation smaller than 10−3 in their mutual orthogonal location. The PC and the receiving antenna can be rotated 
in the xy–plane, where the electric field vector E(H) is located. We remind that the wave incidence direction is z–
axis and plates are located in the yz-plane. The PC and the antennas were placed in an anechoic chamber to avoid 
the influence of unwanted external signals. The distances between them were chosen large enough that far field 
approximation is applicable. The frequency dependence of transmission coefficient was displayed on the recorder. 
The results of experiment with one dimensional photonic crystal are presented in Fig. 3. In the upper panel (black 
line) the frequency dependence of transmission coefficient I (normalized intensity) is shown provided that wave’s 
incidence direction (x–axis) is perpendicular to the plates. Due to the periodicity in x–direction we expect to 
have frequency bands over which the propagation of the waves is forbidden, that is the transmission coefficient 
becomes zero. The panel indicates that at wave numbers above 0.48 mm−1 the forbidden band begins to form. In 
the middle and lower panels (red and blue lines, respectively) the wave incidence direction is z–axis, as discussed 
below. However, the plots differ from each other by the direction of receiving antenna: in the middle panel it is 
orthogonal to transmitter antenna (y–axis) and in the lower panel it is parallel to transmitter, that is directed in 
x–axis. The maxima in the middle panel corresponds to the resonance wavelengths v1dL = π/2 + πn (see theory 
below) for which polarization change the direction from π/4 (initial linear polarization angle) to π/2. In the lower 
panel (blue line) for the same wavelengths one has minimums instead of maximums. This shift of the intensity 
distribution is due to the change of receiver’s direction: the latter now is pointed out on x–direction, that is parallel 
to the transmitter polarization. To verify the preceding discussion on the PR in 1d PC around resonance wave-
lengths v1dL = π/2 + πn, one needs to evaluate v1d. Using equation (22) we have calculated v1d(k0) for the resonant 
wavelength k0 = 0.49 mm−1 and for cos v1d(k0 = 0.49)L we get −0.008 (L = 96 mm) which is very close to 0, as was 
predicted. Note the logarithmic scale used in the experimental plot Fig. 3. This means that the capsize phenomena 
takes place with very high accuracy 10−3.

Figure 3.  Measured intensity for different wave’s incidences. The upper panel (black line) shows intensity when 
the wave normally falls on the parallel plates that make one-dimensional photonic crystal. It indicates that at 
wave numbers above 0.48 mm−1 the forbidden band begins to form in the frequencies range of interest. In the 
middle and lower panels (red and blue lines, respectively) the wavevector is parallel to the plates. However, the 
receiver is pointed out in y–direction (red line) and in x–direction (blue line). The incident wavevector is on z–
axis and the photonic crystal is rotated on π/4 in the xy–plane -therefore initial polarization is at π/4.
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As we mentioned above, at θ0 = π/4 and for resonant frequencies v1dL = π/2 + πn, the transmitted wave is 
linearly polarized but directed on y–axis. This means that the theoretical imaginary part of rotation angle that 
describes the ellipticity (ratio of ellipse axes) should become infinite. However, in general, for arbitrary θ0 there 
is a finite ellipticity and the imaginary portion Imθ(L) is also finite. In Fig. 4 we compare experimentally meas-
ured ellipticity at resonance wavenumber k0 = 0.49 mm−1 (red line) with the theoretical ellipticity (blue line) (see 
below, equation (24)).

Theory
In achieving a better understanding of the experimentally observed capsize effect, discussed in the previous sec-
tion, we develop an analytical approach that predicts the capsize of polarization in 1d and 2d DPCs.

Let us consider a dielectric medium with periodic array of two dimensional holes. The inhomogeneity of the 
medium in xy–plain will be taken into account through a spatially dependent two dimensional dielectric per-
mittivity ε(x, y). Suppose a plane wave enters the medium from the z < 0 half-space at normal incidence. Using 
Maxwell equations one can obtain a wave equation for H in the form

x y z k x y x y z
x y x y z

H H

H

( , , ) ( , ) ( , , )
( , ) ( , , ) 0,
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2
0
2ε

ε
ε

∇ +
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where k0 = ω/c is the wave number corresponding to the angular frequency ω of the incident wave. The last term 
in l.h.s. of equation (1) accounts for the contribution of the dielectric permittivity inhomogeneity and, as we will 
see below, introduces a correction to the band structure of the two-dimensional Bloch states. This correction 
creates the dynamical phase shift between the waves propagating in the orthogonal directions in the xy–plain and 
finally leads to capsizing of the initial polarization of H.

Before proceeding further, we would like to mention that similarly to equation (1) for H, one can write a wave 
equation for the electric field E. However, the wave equation for E will contain en extra term ε ε∇ ∇E ( / ) that does 
not affect the initial polarization. For this reason and for simplicity in what follows, we study only the peculiar 
rotation of the H in xy–plain caused for the dielectric permittivity inhomogeneity.

Following refs14–17, we seek the solution for the propagation in the system wave as a product of a fast and a 
slowly varying, H x y z( , , )∼ , function on a wave incident z–direction

x y z e x y zH H( , , ) ( , , ) (2)ik z0= .
∼

Substituting equation (2) into equation (1) and neglecting the second derivative of ∼H  with respect to z one gets in 
the parabolic equation approximation
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 is a spinor and = +H H V0
ˆ ˆ ˆ  is a 2 × 2 matrix.

The explicit form of Ĥ0 is

Figure 4.  Ellipticity. This plot shows the ellipticity dependence on initial linear polarization angle: direct 
comparison betweeen experimentally measured ellipticity at resonance wavenumber k0 = 0.49 mm−1 (red 
symbols) with the theoretical ellipticity (blue symbols) given by equation (24).
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Let us stress that ignoring the second derivative of H∼ with respect to z in equation (3) is justified by the fact that 
in a dilute system with a small fraction of dielectric (or metal) the light propagates in z–direction mostly for-
wardly, without back scattering.

So the problem of propagation of electromagnetic waves in a dilute dielectric medium with periodic array of 
two dimensional holes is reduced to a quantum motion of a particle with mass k0 in a 2d periodic potential 

ε= −V x y x y( , ) (1 ( , ))k
2

0  with inhomogeneity term V̂ , where spatial coordinate z plays the role of time in a 
Schrödinger-like equation. In this approach, if the initial parameters at z = 0 are known (for example the incom-
ing wave front), then one can find them at z > 0. Such a mapping has been performed previously14,17 and made it 
possible to study the propagation of light through a semi-infinite medium with transverse disorder17 and through 
a dilute metal with two-dimensional hole arrays14.

It can furthermore be shown that if one associates ∼Hx y,  components with spin components then the term V̂  
reminds Rashba spin-orbit interaction (see for a review ref.20, for photon spin-orbit interaction21 and the 
review22). The remarkable similarity between V̂ , equation (5), and a Rashba spin-orbital interaction term allow us 
to stress that both are closely related phenomena. The term V̂  will introduce a correction to the band structure of 
the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the x– and 
y–directions and finally leads to rotation of the initial polarization. Hence, the calculation of the spectrum of 
Hamiltonian H x y H V( , ) 0

ˆ ˆ ˆ= +  could provide a sensitive means to analyze polarization effects in dilute photonic 
crystal and may be used as a starting point to evaluate the wave transmission coefficient at z–direction.

To find the band structure let us represent the solution of equation (3) through the eigenfunctions of the 
Hamiltonian equations (4) and (5),

∑=
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Finally, substitution of equation (6) into equation (2) yields the solution of Maxwell equation
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which can serve as a basis for qualitative understanding of spectral properties of dilute systems. Such an approach 
allows one to pinpoint the specific details and provide information about the energy band structure.

To close this section let us note that if the dielectric permittivity ε(x, y) is a periodical function, then the spec-
trum of the Hamiltonian (4) consists of allowed and forbidden energy bands, if the term V̂  is zero. If ≠V 0ˆ  then 
the electronic energy bands are split by V̂  and as a consequence the polarization of the propagated light is rotated.

Spectrum of photonic crystal
Before discussing the physics induced by V̂  coupling let us consider V 0=ˆ . For this case the quantum-mechanical 
problem is reduced to the well-known Kronig-Penney (KP) model due to the fact that the periodic ε(x, y) spec-
trum of Hamiltonian consists of energy bands separated by gaps and wave functions described by Bloch states. In 
this section we will investigate band structure for symmetric KP model in one and two dimensional systems for 
quasimomentum q = 0, that is at the center of Brillouin zone. Note that only these states give contribution to the 
transmitted light intensity in the normal direction14.

We first discuss a two-dimensional symmetric KP model where the dielectric function has the form
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The Bloch state wave function u x y u x y( , ) ( , )q 0≡ =  obeys the Schrödinger equation



www.nature.com/scientificreports/

6ScIentIfIc REPOrtS | 7: 16593  | DOI:10.1038/s41598-017-16847-8





− ∇ +





 =⊥k

V x y u x y E u x y1
2

( , ) ( , ) ( , ),
(10)0

2
0

and energy E0 ≡ E (q = 0) (for q = 0 state) is determined from the similar to the one dimensional Kronig-Penney 
dispersion relation
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Putting all of this information together one can, at least numerically, evaluate not only the energy E0, using equa-
tion (11), but also calculate the intensity of central diffracted wave in 2d system in terms of dielectric (metal) 
fraction.

As for the 1d PC case (dielectric permittivity ε(x) periodically depends only one coordinate) it can be obtained 
from above formulas by the following substitutions (assuming that ≡y 0): β = k E2 0 0 and k V E2 ( )d0 0α = + . 
We have presented the photonic band structure of transversal motion for the 1d crystal used in our experiment in 
Fig. 5.

The border value ≡ = = . <E E q k( 0) 0 4010 0 is the transversal wavenumber. The incident wavenumber k0 
lies in the forbidden band. After a brief sketch of the steps of calculating of spectrum of periodic PC in 1d and 2d 
systems we start a detailed discussion of the interaction V̂  role in a PR. We will see below that in some cases the 
interaction term V̂  plays a central role of the capsizing of initial polarization.

Polarization rotation
Two dimensional photonic crystal.  As mentioned above the interaction V̂  splits E0 into two energy levels. 
To find energy splitting in the mean field approximation in a 2d case, we substitute the operator V̂  by its expecta-
tion value and diagonalize 2 × 2 matrix Hamiltonian
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Note that for the symmetrical Kronig-Penney model all the integrals in V̂  are equal to v2d. Direct calculation of the 
integral (13) yields

v A
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where A2, as was mentioned, is the normalization parameter with dimensionality a−1 (a is the period of the 
system).

For the magnetic field of central diffracted wave we get

ε

Figure 5.  Transversal photonic band structure. The vertical axis is the dispersion equation right side Eq. (11) 
calculated for the 1d crystal used in our experiment Fig. 2 at the resonance wavenumber k0 = 0.49 mm−1, Fig. 3. 
The shaded parts are the forbidden bands.
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One can interpret this result as an PR due to the interaction term V̂  or Rashba splitting parameter v. The latter, 
imposing asymmetry into a periodic 2d structure in xy–plane, leads to a different speed in the x and y axes result-
ing in a phase delay between Hx and Hy components.

Introducing parameter c = c1/c2, the PR angle at z = L can be written in the form
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provided that an initial polarization angle θ0 at L = 0 is given by

c
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tan 1
1 (17)0θ =

−
+

.

By applying equation (17) and calculating the real part of rotation angle θ from equation (16) one obtain 
(E E v2 d1 2 2− ≡ )

L v LRe ( ) 1
2

arccot(cot2 cos2 ), (18)d0 2θ θ=

where the principal interval of the arccotangent function is chosen 0 ≤ arccot x < π to avoid discontinuity at x = 0.
The above expression Reθ(L) is a general expression for PR angle and valid for dilute photonic crystal with 

inhomogeneity in the plane perpendicular to the propagation direction. The value of Reθ(L) strongly depends on 
the frequency of the electromagnetic wave, traveling distance L and on the initial polarization angle θ0.

Some obvious results that follow from equation (18) above. It is clear, that for the particular values v2dL = πn 
(n = 0, 1, …) the Reθ(L) = θ0. In the limit v L2 1d2  the Re θ(L) ≈ θ0 and completely independent of a particular 
value of θ0. Next, if the initial angle θ0 → π/4 (c 1 - maximum difference between two orthogonally polarized 
eigenmodes of polarization) the Reθ(L) → π/4 for all L. This means that the initial wave polarization at π/4 does 
not change when crossing the medium and becomes independent of the traveling distance.

However, a significant rotation of Reθ(L) from the initial value θ0 occurs when cos 2vL being positive changes 
the sign. In fact, if cot 2θ0 → ∞, then the Reθ(L) asymptotically tends to zero, if cos 2v2dL > 0 and tends to π/2 if 
cos 2v2dL < 0. Hence, for the particular value of θ0 = 0 (or c = 1), the jump from 0 to π/2 of the Reθ(L) occurs at 
v2dL = π/4. This quite drastic change of the initial polarization can be completely controlled having the appropriate 
parameters L and frequency-dependent v (see Fig. 2). In a special case of cos 2v2dL = −1 the θ(L) = π/2 − θ(L = 0) 
and we recover the result of ref.12.

Note that capsize effect takes place for all values of 2vL in the range [π/2, 3π/2] including the value 2vL = π, 
considered in ref.12. When vL = π/4, as we mentioned, Reθ(L) = π/4 and independent of the initial polarization, 
beside θ0 = 0.

As another manifestation of the drastic change of the polarization, one can study the behavior of the imagi-
nary portion of the θ(L = 0) (the ellipticity or the ratio of ellipse axes) at resonant frequencies cos 2v2d(k0)L = 0. 
The latter can be written in the compact form, based on Eqs (16) and (17)

LIm ( ) 1
2

ln tan (19)0θ θ= .

Figure 6.  Splitting parameter. The wavenumber dependence of the splitting parameter v for one and two 
dimensional crystals. In order to make a direct comparison v2d has been multiplied by a factor 20.
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This expression provides useful information about the ratio of ellipse axes (within the sign accuracy) near the 
particular angle θ0 ≈ 0. Exactly at θ0 = 0 the imaginary portion, Imθ(L), tends to infinity. This means that light 
remains linearly polarized after traveling distance L while the polarization direction rotates by π/2.

One dimensional photonic crystal.  Knowing the explicit form of the inhomogeneity term (5) it is not 
difficult to calculate the splitting interaction V̂  in the 1d case
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The splitting parameter v1d reads
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where ε(x) = 1 + (ε − 1) Θ (x − (a − b)) is the 1d periodic dielectric constant in a unit cell [0, a]. Evaluating this 
integral, we find

v A
k

b( 1)
2

tan
2

,
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1

1
2

0

α ε
ε

α
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−

where A1d is the normalization parameter with dimensionality a−1/2. Comparing splitting parameters in 2d, equa-
tion (14), and 1d, equation (22), one can see that the 2d splitting parameter consists of an additional b a/ 1 
multiplier. As a consequence, the small v2d in dilute photonic crystals leads to a large optical path difference 
between the two polarizations and make difficult to observe experimentally a capsize in 2d dilute crystals. This 
statement was supported by our numerical calculations of the splitting parameters v1d and v2d versus k0 using the 
structural parameters of the photonic crystal, used in experimental purposes. Indeed, as seen from Fig. 6, for 
b = 0.5 mm, a = 10 mm, and ε = 10 there is a large factor in between v1d and v2d parameters. As we will see below, 
due to the small value of v2d in the frequencies range of our set up, we were not able clearly see the capsize in 2d 
case. However, in 1d case the capsize takes place precisely at the resonance frequencies, predicted by theory.

In a similar fashion, demonstrated in the previous section, while calculating the real part of rotation angle 
Reθ(L) (see equation 18), one can find PR angle for 1d case

θ
θ

= .L
v L

Re ( ) 1
2

arccot cot2
cos (23)d

0

1

The only difference between the two equations (18) and (23) (without taking into account the factor 2) is that 
the cos v1dL in 1d case appears in the denominator. A direct consequence of this flip is that the drastic change 
of the polarization now takes place at v1dL = π/2 + πn, n = 0, ±1, …. In this case Reθ(L) = 0 if 0 < θ0 < π/4 and 
Reθ(L) = π/2 if π/4 < θ0 < π/2. So for the resonant frequencies cos v1d(k0)L = 0, Reθ(L) acquires only two values 0 
and π/2 depending on initial polarization angle θ0. Capsize takes place exactly at θ0 = π/4.

As for the imaginary part of rotation angle that describes the ellipticity of transmitted wave at resonance fre-
quencies cos v1d(k0)L = 0 one can write

LIm ( ) 1
2

ln 2 tan( /4 ) (24)0θ π θ= − .

The infinity value of imaginary part at θ0 = π/4 is an clear evidence of a linear polarization and a change of an 
initial polarization to π/2.

Conclusions
We have carried out an experimental and theoretical investigation on the PR effects in dilute photonic crystals 
with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. For 1d DPC the 
reported experimental data show that at θ0 = π/4 occurs capsize of an initial direction in the frequency range 
10 ÷ 140 GHz. At the resonant frequencies v1d(k0)L = π/2 + πn the initial direction rotates by π/4 and coincides 
with π/2, in full agreement with the theoretical result (see equation (23)). In order to understand the capsize effect 
in 1d and 2d DPC a theoretical model, based on Maxwell’s equations with a spatially dependent 2d inhomogene-
ous dielectric permittivity ε(x, y), have been developed.

For one and two dimensional dilute photonic crystals we have calculated the real and imaginary parts of 
rotation angle. According to our calculations a capsize of initial polarization take place at resonance frequencies 
v1dL = π/2 + πn and v2dL = π/4 + πn, in 1d and 2d, respectively. In the 1d case the jump of real part of rotation 
angle to π/2 occurs at θ0 = π/4 (in full agreement to our experimental data, see Fig. 3), while in 2d crystals it hap-
pens at θ0 = 0. In order to give a more complete analysis of the capsize effect in these systems, we have also demon-
strated that at the mentioned resonance frequencies and initial angles, the imaginary parts of the rotation angle 
tends to infinity. This reflect the fact that in both cases waves remains linearly polarized after traveling distance L 
while the polarization direction rotates by π/2 and π/4 in 2d and 1d cases, respectively. The main contribution to 
the transmission coefficient of central diffracted wave is connected with 2d extended states that are close to the 
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center q = 0 of the 2d Brillouin zone. This means that in order to observe the above mentioned peculiarities in 
periodical systems, it is enough that the system exhibits long or quasi-long-range structural order in xy–plain14.

We have considered polarization rotation effects in dielectric DPC. However the same effects take place in 
metallic DPC. The only difference is the specific form of splitting parameter v which should be calculated using 
Bloch wave functions for metallic case14. Note that optical activity in the form of circular dichroism was earlier 
considered in the 2D array of metallic spheres23.
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