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In this work, we propose an approach to the solution of finite volume three-body problem by considering 
asymptotic forms and periodicity property of wave function in configuration space. The asymptotic forms 
of wave function define on-shell physical transition amplitudes that are related to distinct dynamics, 
therefore, secular equations of finite volume problem in this approach require only physical transition 
amplitudes. For diffractive spherical part of wave function, it is convenient to map a three-body problem 
into a higher dimensional two-body problem, thus, spherical part of solutions in finite volume resembles 
higher spatial dimensional two-body Lüscher’s formula. The idea is demonstrated by an example of two 
light spinless particles and one heavy particle scattering in one spatial dimension.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Three-body interaction plays an important role in many aspects 
of nuclear, hadron and condensed matter physics. In nuclear and 
astrophysics for example, the precise knowledge of nucleon inter-
action is the key to understand nucleon structure and dynamics of 
nuclei, and it is also the fundamental information to explore the 
origin of universe. In hadron physics, three-body dynamics could 
be crucial in many physical processes, such as extraction of light 
quark mass difference from isospin violating decay of η → 3π
[1–9]. Three-body effect also have attracted a lot of interest in 
condense matter physics, for examples, the fractional quantum 
Hall states [10,11] and cold polar molecules [12]. Traditionally, 
three-body dynamics has been studied based on many different 
approaches, such as Bethe–Salpeter equations [13–15], Faddeev’s 
equation [16–19], and dispersive approach [20–27].

Unlike the traditional three-body dynamics in free space, the 
finite volume three-body problem is still in a developing phase, 
though some progresses from different approaches have been 
made in recent years, such as quantum field theory based diagram-
matic approach and Faddeev equation based methods [28–35], and 
the approach by considering periodic wave function in configura-
tion space [36]. In contrast, the finite volume two-body problem 
has been well-developed [37–49] based on a pioneer work by 
Lüscher [50], which is usually referred to Lüscher’s formula. In 
fact, no matter what kind of boundary conditions are considered 
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accordingly due to relativistic effect, moving frame, etc., two-body 
Lüscher’s formula is the result of periodicity properties of asymp-
totic forms of wave function: (1) asymptotic form of wave function 
defines the physical transition amplitude and its general proper-
ties, such as unitarity relation, without consideration of specific 
form of interaction; (2) the periodicity of wave function yields the 
secular equation that relates the scattering amplitudes to periodic 
lattice structure and produces discrete energy spectra. As will be 
made clear later on, this feature of finite volume dynamics is also 
true in multiple-body dynamics, though because extra degrees of 
freedom and new types of interactions are introduced, the asymp-
totic form of multiple-body wave function appears more complex 
than two-body wave function. In general, the three-body problems 
are quite complex even in free space, the dynamics are usually de-
scribed by off-shell unphysical amplitudes that are the solutions of 
Faddeev-type integral equations in momentum space. Finding the 
solutions of momentum space off-shell amplitudes in free space 
is already a uneasy task. Even in 1D space, only a few problems 
can be solved exactly, such as, McGuire’s model in [36,51]. On the 
other hand, the asymptotic form of wave function in configuration 
space is completely determined by physical transition amplitudes 
[52,53]. Therefore, it seems natural to seek the solutions of finite 
volume three-body problems by considering asymptotic forms and 
periodicity of wave function in configuration space. The on-shell 
unitarity relation of physical amplitudes can be easily implemented 
by normalization of wave function in this way. The wave func-
tion approach has been proven valid and effective in finite volume 
two-body problems [48,49], and it has also been successfully em-
ployed to a solvable 1D three-body problem in [36]. Unfortunately, 
McGuire’s model solved in [36] yields no diffraction effect, no 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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new momenta are generated, and wave function is simply given 
by sum of plane waves. This letter tends to show that the wave 
function approach is originated from general features of multiple-
body wave function, such as, asymptotic behaviors and periodicity, 
therefore it must be valid for finite volume multiple-body prob-
lems. Moreover, from mathematical perspective, the extra degrees 
of freedom in particle numbers is equivalent to the two-body scat-
tering in higher spatial dimensions with extra types of interaction. 
It hence may be convenient to map the finite volume multiple-
body problem to higher spatial dimensions two-body problem. For 
a clear demonstration of wave function approach, we consider a 
one spatial dimensional three-body scattering of two spinless light 
particles and one infinite heavy particle, the interactions among 
three particles are given by two types: (1) the pair-wise interaction 
between one light and one heavy particle, denoted as V -potential; 
(2) a “true” three-body interaction that all particles are involved in 
scattering, referred as U -potential. This 1D three-body problem is 
then mapped into a 2D two-body scattering problem, pair-wise po-
tential is associated to disconnected and rescattering contributions 
and yields plane waves type asymptotic behavior of wave function, 
and “true” three-body potential results in a diffractive spherical 2D 
scattered wave. The quantization of three-body problem in finite 
volume is thus derived by taking into account of both asymptotic 
form and periodicity of wave function in a 2D space. In order to 
keep a clean and simple form in presentation, we have assumed 
that the pair-wise interaction between two light particles is absent, 
thus the disconnected contribution with heavy particle as a spec-
tator and rescattering contributions between light-light pair and 
heavy-light pair vanish. The consideration of these contributions 
will only add some extra plane waves in asymptotic form of wave 
function, so neglect of these contributions won’t affect the method 
that we tend to present, the discussion with pair-wise interaction 
in all pairs will be given elsewhere. In addition, we will also ignore 
relativistic effects and work only in the center of mass frame of 
three-particle. As mentioned earlier, these effects will only yield a 
lattice with a distorted shape and make a twist on periodic bound-
ary condition, so that ignorance of these effects won’t have much 
impact on our presentation as well.

2. Three-body scattering in free space

Considering scattering of two light and one infinite heavy spin-
less particles in a 1D space, the heavy particle is labeled as third 
particle, two distinguishable light particles are labeled as particle-1 
and -2 with equal mass m. The relative coordinates and momenta 
between light and heavy particles are denoted by r1,2 and q1,2 re-
spectively. The center of mass frame three-particle wave function 
satisfies Schrödinger equation,[

σ 2 + ∇2
r1

+ ∇2
r2

2m
−

2∑
i=1

V (ri) − U (r)

]
ψ(r;q) = 0, (1)

where σ 2 = 2mE = q2
1 +q2

2 is associated to the total center of mass 
energy, and short hand notation r = (r1, r2) and q = (q1, q2) are 
adopted throughout the presentation. Potential V (r1,2) represents 
a pair-wise interaction between one light and the heavy particle, 
and potential U (r) stands for a “true” three-body interaction with 
all three particles involved in scattering. Mathematically, the 1D 
three-body scattering problem given by Eq. (1) is equivalent to a 
two-body scattering problem in a 2D space. The three-body wave 
function is given by sum of multiple components, each component 
displays a distinct asymptotic form of scattered wave. As an exam-
ple, for repulsive interactions, two distinct types of scattered waves 
are (i) linear superposition of plane waves with no new momenta 
created and describe scattering contribution due to pair-wise in-
teractions; (ii) the diffractive wave that resembles a spherical wave 
in 2D two-body scattering. Hence, the technique in 2D two-body 
scattering can be applied in 1D three-body scattering.

For an incoming wave, eiq·r , the solution of three-body wave 
function is given by Lippmann–Schwinger equation,

ψ(r;q) = φq1(r1)φq2(r2)

+
∫

dr′G(12)(r, r′;σ 2)2mU (r′)ψ(r′;q), (2)

where φqi (ri) stands for the wave function of two-body scat-
tering between i-th (i = 1, 2) and third particle, and it satisfies 
Schrödinger equation 

(
q2

i + ∇2
ri

− 2mV (ri)
)
φqi (ri) = 0, and Green’s 

function G(12) satisfies equation[
σ 2 + ∇2

r1
+ ∇2

r2
− 2mV (r1) − 2mV (r2)

]
G(12)(r, r′;σ 2)

= (2π)δ(r1 − r′
1)(2π)δ(r2 − r′

2). (3)

Asymptotically, the solution for two-body wave function is [36,
49], φqi (ri) → eiqiri + it( |qi |ri|ri | , qi)ei|qiri | , where the on-shell two-
body scattering amplitude can be expanded in terms of parity 
eigenstates [36,49], t(q′

i, qi) = ∑
Pi=±

YPi (ri)tPi (|qi |)YPi (qi), where 

Y+(x) = 1 and Y−(x) = x
|x| .

The first term on the right hand side of Eq. (2) is composed 
of (1) an incoming wave, (2) the disconnected scattering contri-
bution with only one of light particles involved in scattering and 
another acting as a spectator, and (3) on-shell three-body rescatter-
ing contribution when U -potential is completely turned off, thus 
the three-body interaction is realized by rescattering effect with 
alternate scattering of one of two light particles off third particle. 
Rescattering effects are generated purely by pair-wise interactions 
and persist even when U -potential is zero. The second term on 
the right hand side of Eq. (2) represents a “true” three-body inter-
action. Let’s define a scattering T -amplitude that is associated to 
U -potential by

− T(12)(k;q)

σ 2 − k2

=
∫

drdr′e−ik·rG(12)(r, r′;σ 2)2mU (r′)ψ(r′;q), (4)

where k2 = k2
1 + k2

2. Hence, we can rewrite Eq. (1) to

ψ(r;q) = φq1(r1)φq2(r2) −
∫

dk

(2π)2
eik·r T(12)(k;q)

σ 2 − k2
. (5)

It can be easily show that [52,53]

T(12)(k;q) = −
∫

dr′φ−k1(r
′
1)φ−k2(r

′
2)2mU (r′)ψ(r′;q). (6)

For repulsive interactions, because of the absence of two-body 
bound states, T(12) displays no primary singularities [16,17], and 
describes the “true” three-to-three particles scattering process, 
which will be denoted by T0,0 from now on. The asymptotic form 
of wave function thus is given by,

ψ(r;q) → φq1(r1)φq2(r2) + iei(σ r− π
4 )

2
√

2πσ r
T0,0(

σ r

r
;q), (7)

where r =
√

r2
1 + r2

2 . The T0,0-amplitude is constrained by unitarity 
relation,
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∑
k1,2=±|q1,2|

[
s†

V (k;q)T0,0(k;q′) − T †
0,0(k;q)sV (k;q′)

]

= i

2

2π∫
0

dθk

2π
T †

0,0(k;q)T0,0(k;q′), (8)

where the reduced two-body S-matrix, sV , is

sV (q′;q) = δq′
1,q1

δq′
2,q2

+ δq′
1,q1

it(q′
2,q2) + δq′

2,q2
it(q′

1,q1)

+ it(q′
1,q1)it(q′

2,q2), (9)

the Kronecker delta δq′
i ,qi

is equal to one if q′
i and qi have the same 

sign, and zero otherwise, and∑
k1,2=±|q1,2|

s†
V (k;q)sV (k;q′) = δq′

1,q1
δq′

2,q2
. (10)

In this letter, the three-body problem with only repulsive inter-
actions will be considered. The treatment and formalism for at-
tractive potentials will be presented in [54]. The first term in, 
φq1(r1)φq2 (r2), appears as the product of two two-body wave func-
tions, hence in finite volume, it can be handled rather easily with 
technique that have been developed for two-body scattering, see 
[36,48,49]. However, the diffractive wave, the “true” three-body 
scattering contribution, behaves as a 2D spherical wave and thus 
has to be treated differently. Taking advantage of resemblance of 
diffractive wave of 1D three-body scattering and spherical wave of 
2D two-body scattering, the diffractive term of 1D three-body scat-
tering will be treated just as a 2D two-body scattering problem 
mathematically. Therefore, similar to partial wave expansion in 2D 
two-body scattering, see Appendix, a “partial wave expansion” of 
on-shell T0,0 amplitude is introduced by,

T0,0(
σ r

r
;q) = 4

∞∑
J ′=−∞

ei J ′θr T J ′(q), tan θr = r2

r1
,

T J ′(q) =
∞∑

J=−∞
T J ′, J (σ )e−i Jθq , tan θq = q2

q1
. (11)

The three-body wave function for repulsive interactions is thus 
given by

ψ(r;q) = φq1(r1)φq2(r2) +
∞∑

J=−∞
i J ei Jθr H (1)

J (σ r)iT J (q). (12)

3. Three-body scattering in finite volume

For three-particle interaction in a periodic box with size, L, 
the three-particle wave function in finite volume, ψ(L) , must sat-
isfy periodic boundary condition, ψ(L)(r + nL; q) = ψ(L)(r; q), and 
ψ(L) can be constructed by free space three-body wave function, 
ψ(L)(r; q) = ∑

n∈Z
ψ(r + nL; q), thus

ψ(L)(r;q) = φ
(L)
q1 (r1)φ

(L)
q2 (r2)

+ i

4

∫
dr′dk

(2π)2

∑
n∈Z

H (1)
0 (σ |r + nL − r′|)eik·r′

T0,0(k;q), (13)

where the finite volume two-body wave function is given analyti-
cally [36,48,49] by

φ
(L)
qi

(ri) =
∑
ni∈Z

φqi (ri + ni L) = it(q′
i,qi)ei|qiri |

+
∑
Pi=±

itPi (|qi |)eiqiri + (−1)Pi e−iqiri

e−i|qi |L − 1
. (14)
The infinite sum in second term is carried out by using Eq. (26), 
also with the help of “partial wave expansion” of T0,0 in Eq. (11), 
we obtain

ψ(L)(r;q) = φ
(L)
q1 (r1)φ

(L)
q2 (r2)

+
∞∑

J , J ′=−∞
ei Jθr

[
δ J , J ′ iN J (σ r) + g J ′− J (σ ) J J (σ r)

]
i J ′ iT J ′(q).

(15)

The quantization condition of three-body scattering is obtained 
by matching ψ(L) to free space three-body wave function given in 
Eq. (12), ψ(L)(r; q) = ψ(r; q). After the “partial wave” projection, 
the matching condition has non-trivial solutions for an arbitrary r
only when

det

{
δ J , J ′

⎛
⎝e−i Jθq + iT J (q) +

∞∑
j=−∞

i j− J g j− J (σ )iT j(q)

⎞
⎠

+
∑

P1,P2=±
M(P1,P2)

J , J ′ (σ , θq)

}
= 0, (16)

where T L ’s are associated to the diffractive wave contribution and 
describes the “true” three-body scattering, and M(P1,P2)

J , J ′ is asso-
ciated to the disconnected and rescattering contributions that are 
determined solely by pair-wise two-body interactions,

M(P1,P2)

J , J ′ (σ , θq) = −δ J , J ′
2itP1(|q1|)
e−i|q1|L − 1

2itP2(|q2|)
e−i|q2|L − 1

×
1+(−1)P1+P2+ J

2 e−i Jθq + (−1)P2 +(−1)P1+ J

2 ei Jθq

2

+ itP1(|q1|)
(

1 − 2itP2(|q2|)
e−i|q2|L − 1

)
A(P1,P2)

J , J ′ (θq)

+ itP2(|q2|)
(

1 − 2itP1(|q1|)
e−i|q1|L − 1

)
B(P1,P2)

J , J ′ (θq), (17)

and “partial wave expansion” coefficients, A(P1,P2)

J , J ′ and B(P1,P2)

J , J ′ , 
are defined by relations,

YP1(r1)YP1(q1)ei|q1r1| eiq2r2 + (−1)P2 e−iq2r2

2

=
∞∑

J , J ′=−∞
i J ei Jθr A(P1,P2)

J , J ′ (θq) J J ′(σ r), (18)

YP2(r2)YP2(q2)ei|q2r2| eiq1r1 + (−1)P1 e−iq1r1

2

=
∞∑

J , J ′=−∞
i J ei Jθr B(P1,P2)

J , J ′ (θq) J J ′(σ r). (19)

4. Discussion and conclusion

As already been discussed in [36,48,49], Lüscher’s formula in 
two-body scattering is the consequence of general feature of pe-
riodicity and asymptotic form of wave function, which doesn’t 
depend on a specific form of interaction. This feature is in fact 
still valid for finite volume three-body scattering, however, due 
to extra degrees of freedom, the asymptotic form of three-body 
wave function display more complex structures. Fortunately, from 
mathematics point of view, these extra degrees of freedom in par-
ticle numbers can be dealt equivalently as two-body scattering in 
higher dimensions. Although, from physical perspective, interaction 
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among three particles are usually more sophisticated than the in-
teraction considered in two-body scattering, the difference in the 
form of interactions results in the distinct asymptotic form of wave 
functions that correspond to different physical processes.

For a more explicit demonstration, let’s consider two extreme 
limits of our three-body model:

(1) U = 0: The solution of wave function is given by φq1 (r1) ×
φq2(r2). In addition to a free incoming wave, the three-body wave 
function consists of two types of contribution, one is disconnected 
contributions with one of two light particles acting as a specta-
tor, it(q′

1, q1)ei|q1r1|eiq2r2 and it(q′
2, q2)ei|q2r2|eiq1r1 . The second type 

is three-body rescattering contribution with alternate scattering of 
one light particle off third one, so all three particles are involved in 
scattering by iterations, it(q′

1, q1)it(q′
2, q2)ei|q1r1|ei|q2r2| . As the con-

sequence of no direct interaction between two light particles, no 
new momenta are created after collision, rearrangement of mo-
menta between two light particles are not allowed, and diffraction 
effects vanish in this particular case. The determinant condition in 
Eq. (16) reduce to 1D Lüscher’s formula like quantization condition 
[36,49], e−i|q1,2|L = 1 + 2it±(|q1,2|), and the momentum of each 
light particle appears discrete, so is total energy of three-particle.

(2) V = 0: As the result of no pair-wise interactions at all, 
all the two-body scattering t(q′

i, qi)-amplitude vanish, so that 
both disconnected and rescattering contribution are gone, and 
φq1(r1)φq2(r2) = eiq·r . In this case, the 1D three-body wave func-
tion in Eq. (12) indeed resembles two-body wave function in 
2D space presented in Appendix. Mathematically, the problem of 
three-body scattering in finite volume thus can be solved as a 
problem of two-body scattering in a 2D space. The matching condi-
tion in Eq. (16) thus reduces to a form that resembles to matching 
condition in 2D scattering,

det

⎛
⎝δ J , J ′ + iT J , J ′(σ ) −

∞∑
j=−∞

i j− J g j− J (σ )iT j, J ′(σ )

⎞
⎠ = 0.

(20)

If U -potential is spherical, U (r) = U (r), hence, T J , J ′ = δ J , J ′ T J ′ , 
and above 1D three-body quantization condition is thus equivalent 
to Eq. (29), and the unitarity relation for partial wave scatter-
ing T J -matrix is given also in a simple form, ImT J = T ∗

J T J and 
T J = 1

cot δ J −i .

In general, when V -and U -potential are both non-zero, find-
ing solutions of the quantization condition Eq. (16) is not a easy 
task, even though the model that is considered in present work is 
already quite simple. Nevertheless, the generalization of this sim-
ple model to 3D and also including spin of particles may still be 
a good physical description for certain processes of three-body in-
teraction, such as, the Y (4260) production in J/	ππ three-body 
state, in which the Y (4260) may be described by a U -type three-
body interaction, interactions between J/	 and one of π ’s can be 
modeled by V -type two-body interaction that is responsible for 
the production of Zc(3900) state in J/	π sub-channel. As a good 
approximation, see Fig. 2 in [55], ππ interaction can be ignored 
in Y (4260) → J/	ππ process. We leave the further discussion 
of the strategies of finding solutions of the quantization condi-
tion Eq. (16) to [54]. Until then, let’s consider a special situation 
so we may get a sense of what we may expect in general. As-
suming that rescattering effect is teated as perturbation for weak 
V -potential, and with further assumption of the spherical symmet-
ric U -potential for scattering of three bosons, thus, the dominant 
contributions are from diagonal terms in Eq. (16). Therefore, we 
end up with a expression,
det

{ ∞∑
j=−∞

[
δ j, J + δ j, J iT j(σ ) + i j− J g j− J (σ )iT j(σ )

]
cos jθq

+M(σ , θq) cos Jθq

}
= 0. (21)

where

M(σ , θq) = − 2it+(|q1|)
e−i|q1|L − 1

2it+(|q2|)
e−i|q2|L − 1

+ it+(|q1|)
(

1 − 2it+(|q2|)
e−i|q2|L − 1

)

+ it+(|q2|)
(

1 − 2it+(|q1|)
e−i|q1|L − 1

)
. (22)

Eqs. (21)–(22) provide a rough idea how the solution of U -potential 
may be shifted by weak two-body interaction of V -type potential 
in perturbation. As we can see clearly from Eq. (21), the solu-
tions in previously discussed two extreme limits of either U = 0
or V = 0 do not satisfy quantization conditions in general. The 
assumption of weak potentials and perturbation expansion may 
be justified by physical processes in condensed matter, such as, 
photonic crystals with Rashba-like spin-orbit interaction term [56,
57]. Even when the interaction is weak, it still introduces a small 
correction to the band structure of the two-dimensional Bloch 
states (splitting of spin bands) or creates the dynamical phase 
shift between the waves propagating in the orthogonal directions. 
The investigations in these physical processes are stimulated by 
the possibility of creation of spin/polarization controlling devices, 
where the electron’s spin/polarization of the propagating light 
could be precisely manipulated and controlled.

In summary, we propose the wave function approach to the so-
lutions of finite volume three-body problem, this approach is based 
on general properties of wave function in configuration space, such 
as, asymptotic forms and periodicity that are related to on-shell 
physical transition amplitudes and periodic lattice structure re-
spectively. From mathematical perspective, multiple-body problem 
is equivalent to a two-body problem in higher dimension, so it 
is convenient to map a three-body problem into a higher dimen-
sional two-body problem. The solutions of finite volume three-
body problem derived by wave function approach require only 
on-shell physical amplitudes and resemble two-body Lüscher’s for-
mula in higher dimensions. The idea is demonstrated by using a 
simple 1D three-body problem with interaction of two light spin-
less particles and one heavy particle as a example.
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Appendix A. Finite volume two-body scattering in two spatial 
dimensions

Let’s consider two spinless particles scattering in a 2D space, 
the interaction between two particles is described by spherical 
U -potential. The two-body wave function in center of mass frame 
satisfies

ψ(r;q) = eiq·r −
∫

dk

(2π)2

eik·r

σ 2 − k2
T (k;q), (23)

where r and q refer to the relative coordinate and momenta of two 
particles respectively, and σ 2 = 2mE = q2. The two-body scattering 
amplitude is defined by T (k; q) = − 

∫
dre−ik·r2mU (r)ψ(r; q). The 

partial wave expansion of two-body wave function in 2D reads
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ψ(r;q) =
∞∑

J=−∞
i J ei Jθr

[
J J (σ r) + iT J (σ )H (1)

J (σ r)
]

e−i Jθq , (24)

where T J -amplitude can be parameterized by phase shifts, T J =
e2iδ J −1

2i , and is related to T -amplitude by T (q′; q) = 4 
∞∑

J=−∞
ei Jθq′ ×

T J (σ )e−i Jθq .
When the particles are placed in a 2D periodic box of size, 

L, the finite volume two-particle wave function, ψ(L)(r; q), thus 
satisfies periodic boundary condition, ψ(L)(r + nL; q) = ψ(L)(r; q)

(n ∈ Z). The finite volume two-body wave function can be con-
structed from free space wave function, ψ(L)(r; q) = ∑

n∈Z
ψ(r +

nL; q), thus

ψ(L)(r;q) = i

4

∫
dr′ ∑

n∈Z
H (1)

0 (σ |r + nL − r′|)

×
∫

dk

(2π)2
eik·r′

T (k;q). (25)

The infinite sum is carried out by partial wave expansion as in 3D 
[48,50],

4i

L2

n∈Z∑
k= 2π

L n

eik·(r−r′)

σ 2 − k2
=

∑
n∈Z

H (1)
0 (σ |r + nL − r′|)

=
∞∑

J , J ′=−∞
ei Jθr

[
δ J , J ′ iN J (σ r) + g J ′− J (σ ) J J (σ r)

]

× J J ′(σ r′)e−i J ′θr′ , (26)

where the expansion coefficient, g J , is given by

g J (σ ) = 4i

L2

n∈Z∑
k= 2π

L n

i J (
√

k2

σ ) J e−i Jθk

σ 2 − k2
− δ J ,0iN0(σ r)|r→0. (27)

Therefore, we obtain the partial wave expansion of finite volume 
two-body wave function in 2D,

ψ(L)(r;q) =
∞∑

J , J ′=−∞
ei Jθr

[
δ J , J ′ iN J (σ r) + g J ′− J (σ ) J J (σ r)

]

× i J ′ iT J ′(σ )e−i J ′θq . (28)

The secular equation is obtained by matching ψ(L)(r; q) to 
ψ(r; q) at an arbitrary r, thus we get

det
[
δ J , J ′ cot δ J (σ ) − ig J ′− J (σ )

] = 0. (29)

Eq. (29) is a 2D version of Lüscher’s formula like quantization con-
dition for two spinless particles scattering.
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