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Bloch states in light transport through a perforated metal
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Abstract – Light transport in a metal with two-dimensional hole arrays is considered. Analytical
expressions for a transmission coefficient in periodic, isolated and disordered cases are derived,
assuming the existence of waveguide modes transverse tunneling in a two-dimensional plane per-
pendicular to the traveling direction of light. The one-dimensional case of periodic holes, due
to its simplicity, is investigated in detail. In the dilute metal regime, when metal fraction is
small, our numerical study of the transmission coefficient of the central diffracted wave indicates
the existence of a minimum which is completely independent of an incident wavelength. Further
increasing of the metal fraction leads to the unusual monotonic increasing of the central-diffracted-
wave transmission. The role of the surface plasmons is discussed.
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Introduction. – Since its discovery [1] the extraor-
dinary optical transmittance (EOT) has attracted great
interest. This interest is largely motivated by a recent
progress in nanotechnology which allows to get for EOT
a possible applications in different optical devices. Many
experimental and theoretical papers have been devoted to
the study of the EOT (for a review, see ref. [2]). The phe-
nomenon of EOT seemed to be well understood [3,4] with
the involving of the surface plasmons and Bloch states.
The former appeared on the interface between metal and
dielectric, while the Bloch states originated by the period-
icity of hole arrays. So far, in theoretical understanding
of EOT much attention was paid to the plasmon aspect of
the problem [5,6] and less attention to the Bloch states and
periodicity (see, e.g., ref. [7] and references therein). The
Bloch states of plasmons on the periodically perforated
metal surface were studied in ref. [8], taking into account
the mechanism of plasmons’ vertical tunneling from one
metal surface to another one. This parallel to the travel-
ing direction of the light mechanism eventually converts
coupled surface plasmons on the two surfaces of the film
to free photon states that contribute to the EOT phe-
nomenon. Another type of tunneling mechanism, in ad-
dition to the vertical tunneling, that can coexist in such
systems, is the transverse tunneling on a two-dimensional

surface, perpendicular to the traveling direction of light.
The latter mechanism, due to the interference and diffrac-
tion of the surface waves excited by light incident on the
perforated metal surface, may affect the electromagnetic
waves transport and play an important role in causing
large transmission (see, e.g. refs. [9–11]).

In the present paper, without pretending to present a
complete mathematical description of the theory of EOT,
we develop a different approach to study the behavior of
electromagnetic waves in a periodically performed metal
system taking into account the existence of waveguide
modes transverse tunneling on a two-dimensional surface
perpendicular to the traveling direction of light. We have
concentrated our attention on the role of the Bloch states
and show that this mechanism with a transverse waveg-
uide modes tunneling leads to peculiarities in light trans-
port. Particularly, in the dilute case when metal fraction is
small, we have found an independence of the transmission
coefficient of the central diffracted wave from the incident
wavelength and its unusual increase with the increase of
the metal fraction. We explicitly derived an analytical ex-
pression for the transmission coefficient in the disordered
hole arrays case. We found that without Bloch states the
disordered hole arrays lead to the broadening of the spec-
tral shape in accordance with refs. [12,13].
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Fig. 1: Geometry of the problem.

Formulation of the problem. – Let us consider a
metallic film with periodic array of two-dimensional holes
(see fig. 1).

Suppose a plane wave enters the metal film from the
z < 0 half-space at normal incidence. In order to find the
transmission amplitude, we start from a scalar Helmholtz
wave equation,

∇2Φ(x, y, z) + k2
0ε(x, y)Φ(x, y, z) = 0, (1)

where k0 = ω/c is the wave number corresponding to the
angular frequency ω of an incident photon and ε(x, y) is
the two-dimensional periodic dielectric permittivity of the
system. Equation (1) is valid for s and p-polarized waves
and the scalar function Φ describes the transverse compo-
nents of an electric or a magnetic fields, respectively.

Mainly following refs. [14–16], we seek the solution of the
wave propagating in the system as a product of a fast and
a slowly varying, φ(x, y, z), function on a wave incident z-
direction, implying that the metal fraction of our system
is small,

Φ(x, y, z) = eik0zφ(x, y, z). (2)

Note that this situation differs from the most of EOT con-
siderations where usually the opposite case is considered.

Substituting eq. (2) into eq. (1) and neglecting the
second derivative of φ with respect to z (|d2φ/dz2| �
2k0|dφ/dz|), one gets

i
dφ

dz
= Ĥ(x, y)φ, (3)

where

Ĥ(x, y) = − 1
2k0

∇2
t +

k0

2
(1 − ε(x, y)) (4)

and ∇2
t ≡ (∂2/∂x2 + ∂2/∂y2).

Note that despite the presence of a surface charge on
an interface metal-dielectric, the parabolic approximation,
that is |d2φ/dz2| � 2k0|dφ/dz| is justified. The reason is
that the surface charge causes a discontinuity in the per-
pendicular component of the electric field. In the geome-
try (see fig. 1) discussed above, the electric field normal to
the surface component is absent and the wave function in
eq. (1) is the transverse component of the electric field that
is continuous on the surface. The criterion of smallness of
its second derivative is presented below.

The obvious similarity of eq. (3) (the spatial coordi-
nate z plays the role of the time) and the time-dependent
Schrödinger equation for a particle with mass k0, moving

in the two-dimensional potential V (x, y) = k0
2 (1 − ε(x, y))

may be used as a starting point to evaluate the wave trans-
mission coefficient at z.

The solution of eq. (3) can be represented through the
eigenfunctions of the Hamiltonian equation (4),

φ(x, y, z) =
∑

n

cne−iEnzφn(x, y) (5)

and
Ĥφn(x, y) = Enφn(x, y). (6)

Finally, the substitution of eq. (5) into eq. (2) yields the
solution of the Maxwell equation

Φ(x, y, z) = eik0z
∑

n

cne−iEnzφn(x, y). (7)

It follows from eq. (7) that the local transmission ampli-
tude of a central diffracted wave can be defined as

t(x, y) =
∑

En<k0

cne−iEnLφn(x, y), (8)

where L is the system size in the z-direction.
Before entering into a more detailed analysis of the

local transmission amplitude, let us note that if we ignore
the losses and take into account that the metal dielectric
constant in the optical region is a real large negative
number, then i) the potential energy term V (x, y) =
k0
2 (1 − ε(x, y)) in the Hamiltonian equation (4) is posi-
tive everywhere; ii) correspondingly, all En are also real
and non-negative En ≥ 0 and iii) exploiting |d2φ/dz2| �
2k0|dφ/dz| leads to the condition En � 2k0.

The central-diffracted-wave transmission coefficient
that is measured in the experiment can be estimated by
using the following expression:

T =
1
S

∫
dxdy |t(x, y)|2 , (9)

where S is the area of the system. Substituting eq. (8)
into eq. (9), one has

T =
1
S

∑
En<k0

|cn|2. (10)

In order to find the coefficients cn, let us consider eq. (7)
for z = 0,

Φ(x, y, z = 0) =
∑

n

cnφn(x, y). (11)

Next, we assume that the wave impinging to the system
has an amplitude 1 (the region z < 0). From the con-
tinuity at z = 0, one has Φ(x, y, z = 0) = 1 + r(x, y),
where r(x, y) is a local reflection coefficient which for the
metal without holes is approximately −1. Clearly, the ex-
istence of the holes will change the value of r. However,
this change will not affect the further calculations, and for

64003-p2



Bloch states in light transport through a perforated metal

this reason in our further calculations, for the reflection
coefficient we assumed some average value r close to zero
provided that the metallic fraction is small. Within this
approach, multiplying both sides of eq. (11) by φ∗

n(x, y)
and integrating over the surface, one has

cn = (1 + r)
∫

dxdyφ∗
n(x, y). (12)

Substituting eq. (12) into eq. (10), we arrive at the final
result for the transmission coefficient

T =
|1 + r|2

S

∑
En<k0

∫
d�ρd�ρ ′ φ∗

n(�ρ )φn(�ρ ′ ), (13)

where �ρ ≡ (x, y) is a two-dimensional vector on the xy
plane.

This is our main general result. In the following sections
we analyze its limits for different models.

To close this section let us note that if the dielectric
permittivity ε(x, y) is a periodical function, then the spec-
trum of the Hamiltonian equation (4) consists of allowed
and forbidden energy bands. As for the transmission co-
efficient, it depends on the position of the incident wave
number in the transverse energy spectrum.

Bloch states. – As follows from eq. (13), the transmis-
sion coefficient equals zero provided that k0 < Eb, where
Eb is the bottom value of the first energy band. When k0

lies in the zone, using the Bloch states transmission coeffi-
cient can be rewritten in terms of a quasi-momentum �q as

T = |1 + r|2I, (14)

where

I =
1
S

∫
E(�q )<k0

d�q

(2π)2

∫
d�ρd�ρ ′ φ∗

�q(�ρ )φ�q(�ρ ′). (15)

Here the integration over the quasi-momentum �q is car-
ried out over the first Brilloin zone −π/a ≤ qx ≤ π/a,
−π/b ≤ qy ≤ π/b and a, b are periods of ε(x, y) in the
x and y directions, respectively. According to the Bloch
theorem the eigenstate φ�q in a periodical potential can be
represented in the form

φ�q(�ρ ) = ei�q�ρu�q(�ρ ), (16)

where u�q(�ρ ) is a periodical function satisfying the
equation

[
− 1

2k0
(i�q + �∇)2 + V (�ρ )

]
u�q(�ρ ) = E(�q )u�q(�ρ ). (17)

For simplicity and as an illustration of the approach,
we will carry out a further consideration in the one-
dimensional case. We hope that the results, obtained in
this particular case will enable us to understand, at least
at the qualitative level, the transmission of an electromag-
netic wave in a three-dimensional system in the presence
of a transverse waveguide modes tunneling.

Kronig-Penney model. Suppose that slits are period-
ically placed on the x-axis, which is transverse to the di-
rection of propagation. A cross-section of the potential
in the x-direction can be presented as an array of square
potential wells. A metal part will serve as a barrier and
characterized by width b and period a. A width of a slit is
a−b, correspondingly. The metallic dielectric constant de-
scribed by the Drude model εm = 1−ω2

p/ω2 and the height
of a barrier is defined as Vm = k2

p/2k0 (kp = ωp/c and ωp

is the plasma frequency of a metal). The vacuum part di-
electric is described by ε = 1 and with a potential energy
V = 0. For a metal in the optical region usually Vm > k0.
Because only the energies En < k0 give a contribution to
the transmission coefficient T , we will consider the case
E < Vm when finding the spectrum of the Hamiltonian
equation (4). The quantum-mechanical problem, eq. (4),
is reduced to the well-known Kronig-Penney model [17].
Let us write I, defined by eq. (15), for the one-dimensional
case,

I =
1
L

∫
E(q)<k0

dq

2π

∫
dxdx′φ∗

q(x)φq(x′). (18)

Using the Bloch theorem φq(x) = eiqxuq(x), with uq(x)-
periodical function, one obtains

I =
1
L

∫
E(q)<k0

dq

2π

∑
nm

∫ na

(n−1)a

dxe−iqxu∗
q(x)

×
∫ ma

(m−1)a

dxeiqxuq(x). (19)

Changing the variables one finds

I =
1

Lx

∫
E(q)<k0

dq

2π

∑
n

e−iqan×
∑
m

eiqam

∫ a

0

dxe−iqxu∗
q(x)

×
∫ a

0

dxeiqxuq(x), (20)

where the wave function in the unit cell and in the different
regions is found from eq. (17),

uq1(x) = (A cos βx + B sinβx)e−iqx, 0 < x < a − b,

uq2(x) = (A cosh αx + D sin hαx)e−iqx, a − b < x < a

(21)

with β =
√

2k0E and α =
√

2k0(Vm − E).
Substituting

∑
n e−inqa = 2πδ(qa) into eq. (21), one

obtains

I =
1
a

[∫ a

0

u(x)dx

]2

, (22)

where u(x) ≡ uq=0(x) is determined by eq. (21). The
constants B,C,D can be expressed by A using boundary
conditions. A itself can be found from the normalization
condition

∫ a

0
|u(x)|2dx = 1/N , where N = Lx/a is the

number of unit cells. Using the continuity at x = 0, one
gets C = A. From the continuity of du/dx at x = 0, one
has Bβ = Dα. Finally from the continuity of u(x) and
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du/dx at x = a − b and periodicity du1(x)/dx|x=a−b =
du2/dx|x=−b, one has

A [cos β(a − b) − cosh αb]

+B

[
sin β(a − b) +

β

α
sinh αb

]
= 0,

A [α sinh αb − β sinβ(a − b)]
+B [β cos β(a − b) − β cosh αb] = 0. (23)

Equalizing the determinant of a 2× 2 homogeneous equa-
tion to 0 one gets the dispersion relation for q = 0,

1 =
α2 − β2

2αβ
sinhαb sin β(a − b) + cosh αb cos β(a − b).

(24)
Expressing now coefficient B through A according to

eq. (23) and taking elementary integrals we finally arrive
at the expression for I:

I =
8

αβa

[
α tan

β(a − b)
2

+ β tanh (αb/2) cosh αa

]2

×
[
2α tan

β(a − b)
2

+ 2β tanh
αb

2
cosh 2αa

+ aαβ + αβ tan2 β(a − b)
2

(
a − b − β2bα2

)]−1

. (25)

Note that the above expression has been derived using
the first relation of eqs. (23). However, using the dis-
persion relation (24), one can easily show that the sec-
ond relation leads the same result. In fig. 2 we present
the function I vs. b/a for kp = 4.6 × 10−2 nm−1 (sil-
ver Ag) and kp = 1.84 × 10−2 nm−1 (potassium K) (in
both cases the wave number of an incident photon is
k0 = 10−2 nm−1). We have checked that the presented
curves are unaffected by the change of k0 in the visible
region 0.62 × 10−2 < k0 < 1.57 × 10−2 nm−1. This means
that for a given period a and kp, all the curves can be
scaled into a single curve. The physical reason of the k0

independent of the results is in the structure of the disper-
sion relation (24). The latter, in the frame of the adopted
approach, can be described by a mean of the unique com-
bination k0E.

We now turn to the numerical calculations of the
I-dependence on b/a for some typical values of a =
100–500 nm and b = 10–500 nm in the visible region
0.62×10−2 < k0 < 1.57×10−2 nm−1. The results are plot-
ted in fig. 2. As follows from fig. 2, even a small amount of
metal is enough to essentially reduce I from its maximal
value 1 to almost 0 around the origin. This jump occurs
on a short scale (b/a ≈ 0.01), where three curves reached
their minima. The minimum can be explained by diffrac-
tion, which spreads and reduces the initial light intensity
randomly across the entire system. For silver (circle and
diamond symbols), I increases very slowly with increasing
fraction of metal at the beginning and remains almost flat
with further increasing b/a. However, for potassium with

Fig. 2: Plot of the function I(b/a) on a metal fraction for two
values of kp (silver and potassium). The wave number of an
incident photon is k0 = 10−2 nm−1.

relatively small metal barrier height and with large tunnel-
ing rate across a barrier, the central-diffracted-wave trans-
mission coefficient (square symbol) increases with the fur-
ther increase of the metal fraction (see fig. 2). This leads
to some focusing effect in a central diffraction direction.

Note that the transmission coefficient T , eq. (14), in-
cludes also the multiplier |1 + r|2 which, in contrast to
I, decreases with increasing b/a. However, the rate of
the decrease of |1 + r|2 is much slower than the rate of
the increase of I, and, as a result, the central-diffracted-
wave transmission coefficient is increasing with b/a. Such
an unusual behavior is caused by periodicity and Bloch
states. It is easy to get convinced that in the case of
isolated slits, where the wave functions overlap is negligi-
ble and where Bloch states cannot exit, T behaves totally
differently.

Isolated slits. – For large plasmonic wave number kp,
the band width becomes very narrow. The reason for this
is that kp determines the barriers height and large kp sup-
presses tunneling through the barrier. In this case the
transversal wave functions become less and less extended
in space and more localized within a hole with negligible
overlap. In this limiting case one can use the infinite po-
tential well approximation to evaluate the transmission co-
efficient (13). Writing the wave functions in the form [18]

φn(x) =

√
2

a − b
sin

nπx

a − b
(26)

and substituting eq. (26) into eq. (13), we find

Tis =
8|1 + r|2

π2

a − b

a
. (27)

We arrived at the above expression summing over all the
independent slit contributions and restricted ourselves by
terms n = 1 while calculating the sum in eq. (13). The
contributions of terms with n > 1 become irrelevant be-
cause k0 < En and, therefore, only the first band gives a
contribution to the transmission.

Comparing eq. (27) with the maximal value, one has
Tis/Tmax ∼ a−b

a . As expected, for isolated holes the
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transmission coefficient becomes size dependent, that is
Tis/Tmax is proportional to the fraction of the vacuum
part in the system. In this sense, the isolated holes system
reveals a usual dependence of the transmission coefficient
on the metal fraction. We expect to find the same ratio
be valid also in the case of a two-dimensional hole array.

Disordered hole arrays. – In this case it is conve-
nient to represent the transmission coefficient, eq. (13), in
the form

T =
|1 + r|2

S

∫ k0

0

dE
〈∑

n

δ(E − En)|φn(0)|2
〉
, (28)

where 〈. . .〉 means averaging over the random positions of
holes and φn(�q ) is the Fourier transform of φn(�r ) satisfy-
ing the Schrödinger equation with random potential[

− 1
2k0

∇2
t + V (�r )

]
φn(�r ) = Enφn(�r ), (29)

where V (�r ) is assumed to be a Gaussian distributed ran-
dom function with a correlator B,

〈(V (�r ) − V )(V (�r ′) − V )〉 = B(|�r − �r ′|), (30)

where V = 1
S

∫
d�r V (�r ) = k0(1 − εm)(1 − fv)/2 and fv is

the fraction of the vacuum part (in the 1D periodic system,
as discussed in the previous section 1 − fv = b/a).

We now turn to the calculation of the transmission co-
efficient, eq. (28). In order to carry out averaging over the
randomness, it is convenient to express the latter quantity
through the average Green’s function,

T = |1 + r|2
∫ k0

0

dE

π
〈−ImGE(q = 0)〉 (31)

with GE = [E − H + iδ]−1.
The averaged Green’s function can be represented in the

form [19]

〈GE(�q )〉 =
1

E + V − Σ
, (32)

where Σ =
∑

n≥2 Σn is the self-energy constituting con-
tributions of irreducible parts of different order. Further-
more, we will restrict ourselves to the first term in the
sum,

Σ2(�q ) =
∫

d�k

(2π)2
B(|�q − �k|)G0(k), (33)

where G0(q) = [E − q2/2k0 + iδ]−1 is the bare Green’s
function.

The explicit form of correlation function B(q) is
needed to obtain a closed analytical expression for
T , eq. (31). Particularly, in the limit of very small
size h → 0 holes, B(q) can be substituted by
B(q = 0) = B0 ∼ fvk

2
0h

2(1 − εm)2. Evaluating the inte-
grals in eqs. (31) and (33) we find

Td =
|1 + r|2

π

[
arctan

2(k0 + V )
k0B0

− arctan
2V

k0B0

]
. (34)

When obtaining eq. (34) we neglect ReΣ relative to V .
Expanding arctan functions in the limit B0 → 0, for the
transmission coefficient in the disordered case, we finally
obtain

Td =
|1 + r|2

2π

k2
0B0

V (k0 + V )
. (35)

The comparison of eqs. (27) and (35) shows important
differences between the two cases, in spite of the formal
factor |1 + r(ω)|2 (see ref. [13]). In the disordered case,
eq. (35), contrary to the periodical case, r(ω) has no pe-
culiarities and is a smooth function of ω. This means that
the randomness destroys the resonant spectral shape and
leads to its broadening [12,13], assuming that the second
multiplier in eq. (35) is a smoothly varying function of
the frequency. This is true for almost all accepted metal-
lic models and can be seen using the explicit form of the
dielectric constant 1 − εm = ω2

p/ω2, B0 and V .
By comparing with the isolated case contribution,

eq. (27), and assuming that V 
 k0 and B0 → 0, one
finds

Td

Tis
∼ k2

0h
2. (36)

It follows from eq. (36) that in the disordered case the
transmission coefficient Td much smaller than Tis provided
that k0h � 1. Two coefficients become of the same order
when k0h ∼ 1.

Conclusion and discussion. – We have discussed the
problem of light transport through a perforated metal,
taking into account the transverse waveguide modes tun-
neling in a two-dimensional plane perpendicular to the
traveling direction of light. Periodic, isolated and dis-
ordered holes systems are analyzed in detail. Analytical
expressions are derived for all different regimes. The one-
dimensional case of periodic holes, due to its simplicity, is
investigated in detail. In the dilute metal regime, when
the metal fraction is small, our numerical study of the
transmission coefficient of the central diffracted wave in-
dicates the existence of a minimum which is completely
independent of an incident wavelength. The transmission
coefficient of the central diffracted wave increases when
the metal fraction of the system is increasing. The main
contribution to the transmission coefficient is connected
with extended states that are close to the center q = 0 of
the Brillouin zone. This means that in order to observe the
above-mentioned peculiarities in perforated systems, it is
enough that the system exhibits long-range or quasi–long-
range structural order in the xoy plane (see also ref. [20]).

In our discussion we take into account the influence of a
transverse tunneling between different holes on the trans-
mission coefficient T . As a result, T does not depend
on the system thickness in the z-direction (we ignore the
imaginary part of ε). Obviously, the exponential decaying
of T with thickness will arise if one takes into account the
losses.

In our consideration we substitute a local reflection co-
efficient by an average value. This assumption seems more
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relevant in the random hole arrays case. However, even in
the periodical case one can imagine r(ω) as a quantity that
correctly takes into account periodical hole arrays similar
to periodical gratings [21]. Note that all plasmonic effects
are included into r(ω). Particularly on impinging of p-
polarized light a plasmon is generated on the perforated
surface. The reflection coefficient close to the plasmonic
resonance becomes minimal [21] leading to the maximal
value of the transmission coefficient. Plasmonic resonance
takes place when the plasmon wave number coincides with
one of the photonic crystal reciprocal lattice periods, see,
for example, [22]. Note that r(ω) depends on the geometry
of the perforated surface and can detect resonance effects
associated with the geometry of holes [23].
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