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Abstract

Absorption of a photon by an electron moving parallel to a rough surface is studied. In the
weak scattering regime we have evaluated the absorption probability of absorption of a single
photon of energy w. It is shown that the absorption probability with diffusional contribution
becomes large by a /;, /I >> 1 factor compared to the analogous result with the single scattering
contribution. The maximum of probability takes place for the infrared wavelengths and
strongly depends on the particle energy. We also discuss the case of two-dimensional
periodical surface profile and indicate optimal conditions for maximal absorption probability.
The results can be used in electron energy gain spectroscopy and in laser-driven acceleration.

1. Introduction

It is well known that a charged particle moving in the vacuum
cannot emit or absorb photons due to the energy—momentum
conservation laws. On the other hand, emission or absorption
is possible when a particle moves in a medium or close to
an interface. Cherenkov, transition and Smith—Purcell radiations
are examples of the above mentioned emission (see, for
example, [1]). In recent years the inverse counterparts of the
mentioned radiations have been observed [2-5]. Earlier the
inverse Smith—Purcell effect for periodical metallic gratings
was theoretically analysed in the sub-millimeter wavelength
region [6]. Interest in these effects is largely motivated by a
possibility of the laser-driven acceleration of charged particles.
Besides, the inverse Smith—Purcell effect can be used in
electron energy gain spectroscopy [7].

In the present paper we investigate the inverse Smith—
Purcell effect, namely the absorption of a photon by an electron
which moves parallel to a rough surface. To the best of
our knowledge, no such calculations have been previously
reported. The main difficulties with rough surfaces arise
because it is more difficult to perform analytical calculations
when we deal with an arbitrary shaped profile of the grating
for understandable reasons: there is no general algorithm
to calculate the radiating part in the reflected waves. At
present, most numerical simulations are available as one of
the effective tools to analyse and to observe a variety of
physical quantities such as electromagnetic fields as functions
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of time and space, power outflow, radiated intensity as a
function of the radiating angle, etc (see, e.g., [8] and references
therein). Therefore any study of the inverse Smith—Purcell
radiation from rough surfaces should be quite important and
analytical results are highly desirable. The purpose of the
present work goes in this direction, in the sense that we provide
an analytical expression for the absorption probability of a
photon by an electron moving parallel to a rough surface.
In the diffusion regime we were able to obtain a closed
analytic expression for the absorption probability, taking into
account the diffusion contribution. We show that the diffusion
contribution is dominant compared to the single scattering
probability.

The radiation from a charged particle moving parallel
to rough surfaces has been considered recently by one of
the authors (Gevorkian) [10, 11]. The averaged radiation
intensity for a quite general surface random profile was directly
calculated and it is shown that the main contribution to the
radiation intensity is determined by the multiple scattering
of polaritons induced by a charge on the surface. We will
develop an approach, following closely [10, 11], which allows
us to investigate periodical as well as random surface profiles,
different materials from sub-millimeters to optics. We indicate
the necessary conditions for absorption to take place.

This work is organized as follows. In section 2 we briefly
formulate the problem and introduce the basic equation for
the absorption probability of a single photon of energy w.
In section 3 we carry out an exhaustive description of our
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Figure 1. Geometry of the problem. The electron moves parallel to
the rough surface at the plane xy which is illuminated by an external
laser field.

two-dimensional rough surface and the analytical approach
used in absorption probability calculations. In section 4
we calculate the absorption probabilities with single and
multiple scattering contributions. It is shown that the diffusion
contribution to the absorption probability is the dominant one.
In section 5 we discuss the utilization of the inverse Smith—
Purcell effect for particle acceleration. Finally, we summarize
our results in section 4.

2. Initial relations

Suppose that a fast electron moves on the positive x direction
parallel to a rough surface xy at the distance Z from it.
Simultaneously a laser field of frequency w falls down on
the surface, see figure 1.

The electron wave function can be described as

1 ipgr

d7F) = — w
(r) mw(Z,Y)e ; ey
where L, is the system size in the Ox direction, ¢(Z,Y)
is the wave function in the zy plane, p; is the electron
momentum along the direction of motion. After absorbing a
photon electron momentum and energy become p; = p; + hq
and Ef = E; + hqv, respectively (v is the velocity of
the electron and a non-recoil approximation hg < p; is
assumed). For a fast electron one can assume that the wave
function ¢(Z,Y) remains unchanged during the interaction
with the photon. We will discuss the applicability conditions
of this assumption below. Treating the electron and photon as
quantum mechanical subjects, the absorption probability of a
single photon of energy w can be represented by the form [7]

2
P(w) = (i)z /dex(x, Y, Z)e 5| . )
hw
E.(x,Y,Z) is the electric field component along the electron
motion direction that includes incident to as well as scattered
from the surface fields and Y, Z are the electron constant

coordinates in the perpendicular to motion plane. If the incident
field is a plane wave then it is easy to convince oneself that the
incident part does not contribute to the integral. Therefore, for
analytical evaluation of the integral, equation (2), the field E,
will be substituted by the scattered one. This will be carried out
in the next sections, separately for the situations when single
and multiple scattering contributions are taken into account,
while calculating the appropriate absorption probability.

3. Scattered field

Dielectric constant of the system is described as () =
0(z — h(x,y)) + e(w)(h(x,y) — z), where 0 is the step
function and &(w) is the dielectric constant of the isotropic
medium, 4 (x, y) is the random profile of the surface. Assuming
that /& is small and expanding the &(7) in powers of 4 and
keeping linear terms we get (i) = &9(z) + &,(F), where
& (r) = (¢ — 1)h(x, y)8(z). The function gy(z) = 1 atz > 0
and &9(z) = ¢(w) at z < 0 describes the flat surface between
vacuum and medium. Under this assumption, the scattered
electric field can be represented as follows:

2
E,(P) = —%(s - 1)/ d7G,, (7, 7, w)h(§)8(Z)EX (7, w).
3)

ES (¥, w) is the solution of the Maxwell equation with the flat
interface and because of the translational symmetry in the xy
plane it can be represented as follows: E(¥) = M7E%(z),
where EH and /p are two-dimensional vectors in the xy plane.
Green’s function in equation (3) obeys the inhomogeneous
Maxwell equation:

w? 92 ) w?
|:80(Z)C—25m — m + 6, V" + 8,(7)55)#}

X Gy (F 7, ) = 8,,8(F— 7). “)

It is worth noticing that the presence of the §-function in the
expression of &, will lead to different values of any physical
quantity at z = 0, while evaluating the integral over z. To avoid
the problem with discontinuous physical quantities at z = 0
in our further calculations we will take their value at z = 0,
see also, [12]. Such determination of integrals over §-functions
give correct answers in the limit |¢| — oco. Hence, substituting
equations (4) and (3) into equation (2), one has

e \2 2a)4 P
P(w) = (%) (e —1) c—4/dxdx g, dg
GXU(xv Y,Z, ﬁlao+)G* (527 0+,.x/,Y,Z)

nx

X h(P)R(P)EL (51, OT)ES (52, 0F) e v 7). )

This is a general expression, independent of the model
considered and can be applied for both, periodical and random
grating cases. Below, we will analyse these cases separately
(hereafter the sign + is omitted). In the periodical grating
case (photonic crystal), the surface profile is a periodical
function i(5) = § cos K5, where K = (27t /b, 27t /d) is a two-
dimensional vector and b, d are the grating periods in the x and
y directions, respectively. In the rough surface case, h(0) is a
Gaussian distributed random function. First let us consider the
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photonic crystal case. It is convenient first to present Green’s
function in the form:
dp

G (7.1 = [ Gtz e o)

where G, (plz, Z') is the Fourier transform in the xy plane. In
the second step, let us assume that the plane of incidence
of external light is xz. Then the background electric field
in equation (5) that includes incident and reflected parts,
takes the form: E, (9, 0+) = e**E,, where k, = wcosf/c
and 0 is the angle between the external photon momentum
and electron velocity directions. Substituting expressions for
Green’s function, electric field and 4(0) into equation (5), one

finds
gL, w 21 . w 27
P = Gol|l—,—IZ,0)G ——,——10,Z
(@) =" x(v 4! )“(v 4!
2T w
S|\ky+———|EES, 7
x ( + b v) " ™

where g, = (e/ha))z‘f—: (e —1)282, L, is the system size in the x
direction and § (k, = 0) was substituted by L, /2. In the weak
scattering regime (¢ — 1)26%2/A% « 1, Green’s functions in
equation (7) can be substituted by the bare Green’s functions.
The latter quantities are the solutions of equation (4) with
&, = 0 and were found in [12]. The existence of the §-function
in equation (7) sets the relation between the external light
wavelength, incident angle, electron velocity and the grating
period. Interestingly, they are related to each other in the same
way as in the direct Smith—Purcell effect

k:b(%—cos@), ®)

with 8 = v/c. Note that the dispersion relation depends only
on the grating period in the electron velocity direction. As
shown in [12] G, = G,, = 0 which for our problem means
that a photon polarized in the perpendicular to incidence
plane (s-polarization) cannot be absorbed by the electron.
Therefore we will consider the case when the incident photon is
p-polarized. To simplify the problem consider the limit |g| > 1.
In this case the main contribution to equation (7) comes from
the term containing G,,. The explicit expression of the bare
Green’s function is (see [12])

: igz
Gl 0) = =G (10, 2) = B HIE

where ¢ = k2 —pr if k2 > p? and i/p? — k2 if k2 < p?
and k; = —(e(w)k> — p?)\/%. Substituting equation (9) into
equation (7), one comes after some algebraic manipulations to
the following expression for P(w)

Ngle
P(w) = —
2p2
Cle@)? (v + 55 ) IELS (2 - 2 — k)
X

po| (s = 1= 5) e fy 2+ 5
exp (—471Z [+ ﬁ)
[(8*(60)/32 -2 i)y *;'32} ’

(10)

X

with y = (1—8%)~1/2. The amplitude of electric field includes
both incident and reflected parts, E, = (1 + r(a)))EZ‘, where
EZ' is the amplitude of incident field and r(w) is the reflection
amplitude that goes to unity in the limit || — oco. Because of
the exponential function absorption takes place for the electron
distances from the surface satisfying the condition:

1/2
For the distances, defined by equation (11), the electron
transverse wave function ¢ (Z, Y) remains unchanged during
the interaction with the photon. We need this assumption
for derivation of absorption probability equation (2). The
essential absorption probability is achieved in the case when
the imaginary part of €(w) is small compared to the real part.
Such a situation occurs, for example, for noble metals Au, Ag,
Cu, etc at the infrared wavelengths [9]. As an example, we
note that for gold at photon energy iw = 1 eV, Ree = —70
and Ime = 6.27. Assuming ¢(w) is real, for the distances,
equation (11), one obtains

ﬂgle
P(w) = >
2p2
?e () (V‘2 + 55 ) E*8 (2 - F — k)
X

pra? [8(@);32 — 1= 4+ &2(0) (V‘2 + AZ’?)].

12)
Since the absorption probability is positive one gets a condition
on the particle velocity

v? (e+1)
2 < 22(e+1) (13)
e

The maximum of P(w) is achieved provided that the equality
in equation (13) holds. It follows from equation (13) that the
wavelength A > d is suppressed. Taking the limit d — oo
one returns, as it should be expected, to the Smith—Purcell
geometry with periodicity only in the direction of particle
motion. In this geometry and for metallic gratings (¢ < —1),
the quantity c+/(¢ + 1)/e represents the velocity of induced
polariton on the surface. Hence, the condition, equation (13),
means that the maximum of absorption is reached if the particle
velocity equals the polariton velocity.

4. Rough surface

The above consideration can be generalized to a case when
a charged particle travels over a rough surface, by applying a
recently developed approach to study the spectrum of radiation
from a surface roughness [10, 11]. It can be shown that in
this case absorption probability consists of two parts, each of
them has a different origin and must be evaluated separately.
One is caused by the single scattering of polaritons, another is
caused by their diffusion, i.e., by the multiple scattering effect.
Using equation (5), for the single scattering contribution to the
absorption probability, one obtains

Pr(o) =g / e dv 51 2G5, Y. Z, 51, 0)
x Gy, (P2, 0", x,Y,2)

(=)

xW(lpy — pDE, (P)E, (Pr)e™"

(14)
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Figure 2. Absorption probability dependence on the particle energy.

where 8°W(|p, — pb|) = (h(p)h(p2)) is the correlation
function of the rough surface profile. We assume that the
surface profile fluctuations are uncorrelated. This allows us
to substitute the correlation function W by the §-function
except the cases when finite correlation length is needed for
divergence reasons, i.e. to avoid the divergences in integral
calculations. Such an approximation is justified provided that
A > o, where o is the correlation length of random surface
profile fluctuations. Next, we evaluate the integral equation
(15), by assuming W(p) = mwo2e 7" /4 Then, taking the
Fourier transforms, substituting equation (9) into equation (15)
in the limit Z — 0 (more precisely Z <« BAy /2m), we obtain
the desired result for the absorption probability with single
scattering contribution

wLig(1+ 1) (1 +r)|E|*c

Pl(w) = S F(e, B) s)
where
&2 wnoef
F(e, B) = 1 . (16
e F) <82—1>[ +26\/(1+8)(1+87/_2):| 1o

Note that in equations (15), (16), like before, we assume that
the imaginary part of ¢ is small and neglect it compared
to the real part. For the positive ¢ (dielectrics), as follows
from F (e, B), the expression under the square root is always
positive. As for negative ¢ (metals), it can be easily checked,
whether it leads to serious restriction on the energy of particle,
ie. y2 < —e. Maximum absorption is achieved when the
equality holds, i.e., y2 = —¢&(w), see figure 2. For the
negative &, a plasmon-polariton is formed on the surface,
see for example [13]. The pole at p> = gk?/(¢ + 1) in the
Green’s function equation (9) is manifestation of the plasmon-
polariton. It is scattered on the inhomogeneities and gives
contribution to the scattered electric field in equation (2) and
hence to the absorption probability P(w). The expression (15)
is the plasmon—polariton single scattering contribution. To
make further analytical progress in the study of P(w) we will
assume that the following inequality is met: A < [ < I, L,
where [, I;, are elastic and inelastic mean free paths of the
polariton on the surface. In other words, we will assume
that the condition of multiple or diffusional scattering of the

polariton are realized in the surface. In our calculations of
the diffusional contribution to the absorption probability we
follow closely [10, 11]. Further manipulations are completely
analogous to those outlined in [10, 11] for the case of the
radiation problem. Hence, here we present the final result
without derivation by noting that the diffusion contribution
to the absorption probability is the dominant one

325,
37 P (w).
Indeed, as seen from equation (17), the quantity PP (w) is
proportional to P"(w), with prefactor [i, /{, which is the average
number of polariton scatterings in the system. In the diffusion
regime the ratio is a large number, i.e. [;,/l > 1, see also
[14], justifying that the diffusion contribution is dominant. It
is important to notice that one of the advantages of the random
surface profile is that the external light incident angle can be
arbitrary instead of a certain one in the periodical case.

For completeness, we also compare the absorption
probability with the probability of emission of a photon by a
charge particle moving under the same conditions, see figure 1.
The probability of emission of a photon of energy w by an
electron moving over a rough surface can be estimated as
(following [10, 11])

PP (w) = (17)

2 Ll (@)
2 oy @)
30625 7 ()

where go = (¢ — 1)%k*8%02 and Z <« ABy /2 is the distance
from the plane z = 0. Using equations (15)—(18) the ratio of
probabilities can be estimated as

PP (w) N 16Z3|E)*(1 +r)(1 + r%)

T P(w) hat

Now let us estimate numerically R. Before doing so, first
we verify numerically the applicability of the diffusion
approximation. Note, that in the weak scattering regime,
average mean free paths are described by the following
expressions: | = 4|Ree|/kgy and I, = (Ree)?/kIme
[10, 11]. For Au at the photon energy hw = 1 eV Ree = —70
and Ime = 6.27 , r = r* ~ 1. Taking for the roughness
parameters § = 10 nm and o = 100 nm one gets go ~ 3.13
and [ ~ 14X and [;, ~ 124A. This means that the conditions
A K | < [ of the diffusion of polaritons are realized
in the system. Now taking electron energy £ = 3.5 Mey,
Z ~ ABy /2w, laser power |E.|>c ~ 10" Wm~2 one finds
from equation (19) that R ~ 18.

Note that in contrast to the radiation case [11], where the
maximum is achieved for short wavelengths (blue part of the
visible region), here the probability maximum takes place for
infrared wavelengths. An interesting and different feature of
the absorption probability, compared to the radiation case is
its strong dependence on the particle energy, figure 2. This
dependence can be quantitatively measured and can be used
for investigation of metal dielectric constant ¢ (w) in the optical
region.

Concluding this section let us note that the ratio R can
be made essentially larger via increasing the laser power. This
point is topical for the laser-driven acceleration application of
the inverse Smith—Purcell effect.

Pf(w) ~ (18)

F(e ). (19)
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5. Laser-driven acceleration

We now want to discuss utilization of the inverse Smith—
Purcell effect for particle acceleration. Metal surfaces with
rough or one-dimensional periodic gratings cannot be used
for acceleration purposes because of the restriction on the
particle’s energy (see equation (13)). However, there is an
important exception, when the strength of the electric field,
which determines the absorption probability and was scattered
from a metal surface, can be resonantly large. To illustrate
this, we consider the two-dimensional periodical grating case.
The absorption probability, equation (12), is straightforwardly
applicable in this case. Rewriting the restriction condition on
the energy, equation (13), in the form

) 2—2 (e+1)—e¢
S =
I+ %@E+1)
it is easy to see that the most favourable situation happens
when the photon energy satisfies the resonant condition, i.e.
the denominator of equation (20) becomes zero

21c\?
1+ <—) (e(w)+1)=0.
wd

Note that we have in mind optical frequencies for which
&(w) is a large negative number. In this case the energy of
the accelerated particle can be very large. The absorption
probability, equation (12), at the resonance photon energy will
be large too.

The largeness of the absorption probability is caused
by the resonance enhancement of the scattered field due to
the surface plasmon—polaritons. The growth of probability is
limited only by the losses in the optical region. In dielectrics,
the restriction on energy is absent and they can be used for
acceleration purposes, see, for example, [15].

(20)

2y

6. Summary

In conclusion, we have investigated the absorption of a
photon by an electron moving over a rough surface. Optimal
conditions that include polarization of incident light, electron

energy, material and grating types are indicated. In particular, it
is shown that only the p-polarized photon can be absorbed. For
metallic surfaces and for relativistic particles two-dimensional
periodical grating is preferable because of the restriction on
the energy of the particle. For dielectrics, the restriction on the
energy is absent.
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