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We have provided a complete description of the electron localization length (LL) in quasi-one
dimensional (Q1D) disordered quantum wire with hard wall and periodic boundary conditions.
Presented analytical expressions for LL are in excellent agreement with numerical calculations, exact
up to order W2 (W being the disorder strength), and valid for an arbitrary number of propagating and

between various lengths and show that it basically differs from 1D case.
& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A quasi-one dimensional (Q1D) geometry, as a model for a
disordered wire, is of great interest in condensed matter theory.
The electronic transport problem in weakly disordered Q1D
systems can be solved analytically within some approximations
(see, e.g., [1,2] for details). The Dorokhov–Mello–Pereyra–Kumar
(DMPK) equation [3,4] and random matrix theory for the transfer
matrix (see, e.g., Refs. [2,5]) are the two successful approaches
which are generally applied to describe the behavior of conduc-
tance in a disordered wire. These two approaches give very similar
solutions for the probability distribution of conductance in Q1D
and can explain some universal properties of electron transmis-
sion. The DMPK theory predicts that the localization length (LL) is
ξM≈½βðM−1Þ þ 2�l, where M is the number of the propagating
channels and l is the phenomenological mean free path, which
measures the strength of the disorder. β¼ 1;2 and 4 for the
orthogonal, unitary and symplectic systems, respectively. How-
ever, the DMPK theory contains only one parameter, the mean free
path l, which is viewed as a fixed parameter. Hence, the question
how LL explicitly depends not only on energy E, but also on the
coupling constants and the type of boundary conditions in Q1D
disordered systems is left out in these analyses. What we are
trying to point out is that in spite of the progress which has been
made towards a characterization of the localization in Q1D
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systems, microscopic analytic studies of LL as a quantum para-
meter of fundamental importance have still not been achieved.

This long-standing problem has been approached from differ-
ent points of view [6–8,11–13]. The first step in this direction was
done by Dorokhov in Ref. [6], who calculated the LL of M random
tight-binding (TB) chains with random site-energies. The LL in a
weak disordered regime was obtained by the author for a Q1D
wire with M channels and was found to be independent of the
number of channels M. This result was questioned by Heinrichs
[7], where it was shown that for weak disorder and for coupled
two- and three-chain systems ðM ¼ 2;3Þ the inverse LL is propor-
tional to M, in contrast to the result of Ref. [6]. However, this
approach, adopted in [7] and based on a scattering matrix
treatment of conductance, does not allow the author to extend
his studies of LL to Q1D systems with larger numbers of scattering
channels M. Recently, progress has been made in taking into
account an arbitrary number of channels in the calculation of LL.
Römer and Schulz-Baldes [8], using a perturbative formula for the
lowest Lyapunov exponent (the inverse LL) for the Q1D TB
Anderson strip model, obtained LL's dependence on energy E,
propagating modes M (M is even) and disorder strength W (see
Eq. (7) of [8]). This rigorous perturbative formula for the smallest
Lyapunov exponent is valid for a numerical study only and for a
periodic boundary (PB) conditions. To get an approximate analy-
tical expression for LL, see Eq. (13), the authors of Ref. [8] in Eq. (7)
replaced so-called Birkhoff averages by M−2 (for more details see
[8]). Note also that the weak disorder expansion of the Lyapunov
exponents of a product of random matrices and the sum of the
first p Lyapunov exponents were calculated in some specific cases
in Refs. [9,10]. A non-perturbative analytical approach, based on
Green's function formalism to solve the Dyson equation exactly in
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Q1D and two-dimensional (2D) disordered systems without any
restriction on the numbers of impurities and modes, was devel-
oped in Refs. [11–13]. For a tight-binding (TB) Hamiltonian with
several modes and on-site disorder the electron's scattering matrix
elements Tnm were analytically calculated exactly for an arbitrary
impurity profile without using any perturbative theory and with-
out actually determining the eigenfunctions. Later on in the weak
disordered regime the wire conductance G¼∑nmTnmT

n

nm (in units
of e2=h) was calculated [11–13]. In these papers only hard wall
(HW) conditions were discussed, which correspond to arranging
the parallel equidistant chains on a plane.

The main objective of our paper is, based on the careful
numerical analysis, to derive the explicit expressions for LL in a
Q1D systemwith HW and PB conditions for an arbitrary number of
channels M (even and odd), and to verify that they are in excellent
agreement with numerical data. In our numerical simulations we
used Kubo's formula for computing conductivity. This formalism is
quite reliable because it is based on direct calculations of the
conductance and provides trustworthy results, no matter how
small the range of the considered quantity is (see [14,15] for
details). The numerical results were compared with the existing
analytical expressions of LL, calculated in Refs. [6–8,11–13].
Surprisingly, our numerical calculations show that none of these
expressions for LL can be obtained numerically. Particularly, LLs
calculated in Refs. [6,7,11,12] result in an incorrect dependence
on M, because of their definition of the inverse localization
length was missing a M−1 normalization factor. LLs calculated in
Refs. [8,13] correctly predicted the M dependence, but failed to
provide the exact magnitude of LL.

The origin of the disagreement between the present numerical
data and the theoretical results of Refs. [8,13], as we will see later
on, is due to two main factors: (i) Since it is not easy to calculate
the right-hand term of Eq. (7), theoretical calculations assume that
in the weak disordered regime the length 〈ln G〉 can be replaced by
length ln〈G〉 (or ln 〈1=G〉) and by expanding to the lowest order of
the powers of the disorder and, after averaging over realizations,
one can get a closed analytical expression for LL in the Q1D system
(〈⋯〉 denotes averaging over disorder realizations). However,
because of not self-averaging the conductance G, these lengths
do not agree with each other and thus lead to a different answer
for LL. Note that the same type of problem exists also in 1D
disordered systems where, in the weak disordered limit, LLs,
obtained numerically and analytically, differ by a factor of 2 (see
e.g., [16–19]). (ii) As follows from the numerical analysis of the
relationship between the different LLs in Q1D systems (see
Eq. (4)), the right hand-side term is not zero. This is an essential
piece of information, which allows us later on to justify the
disagreement between the results of numerical simulations and
theory and introduce new LLs for different boundary conditions in
the transverse direction, which fit the numerical data very well.

It is worth noting that while in 1D the relationships between the
various lengths are well known (e.g., 〈ln G〉¼ 4 ln〈G〉¼ − 1

2 ln〈1=G〉
or 2〈ln ρ〉¼ ln〈ρ〉, where ρ is the Landauer resistance), in Q1D, to the
best of our knowledge, no such calculations have been previously
reported. Our first goal consists in checking numerically what
relationship exists for different lengths in the Q1D case. Once this
is established, motivated by our doubts about the correctness of LLs
results of Refs. [6–8,11–13] and to overcome the difficulty of the
discrepancy, we have reconsidered the calculation of LL for the Q1D
TB anisotropic Anderson model, using Green's function approach,
developed in Refs. [11–13]. This is our second and main goal. The
analytical results for LL with HW and PB conditions, Eqs. (9) and
(11), are then compared with numerical results. Excellent agree-
ment with analytical calculations can be achieved if one multiplies
the expressions (9) and (11) by a factor 2 (as in pure 1D case) and
shifts them up by ξ1 for HW and by ξ1=2 for PB conditions,
respectively. ξ1 ¼ 96 sin2 k1=W
2 is the LL in a 1D disordered system,

calculated in the weak disordered regime [20]. The shift, as it was
mentioned, reflects the fact that the right-hand side of Eq. (4) is
different from zero.
2. Q1D TB anisotropic Anderson model

Let us discuss a Q1D disordered lattice of size L�M described
by the standard TB anisotropic Hamiltonian with nearest-neighbor
transfers, tx and ty along the x- and y-directions, respectively

H¼ ∑
L

j ¼ 1
∑
M

l ¼ 1
jj; l〉ϵj;l〈j; lj−∑

j;l
∑

δ ¼ 71
fjj; l〉tx〈jþ δ; lj þ jj; l〉ty〈j; lþ δjg; ð1Þ

where jj; l〉 is the atomic orbital at site (j,l) and ϵj;l is the strength of
the random potential at site (j,l), assuming it to be uniformly
distributed in the interval ð−W=2;W=2Þ. The disordered region is
connected to perfect leads on both ends, extended to 7∞ in the x-
direction. L is the length of the system and M is the number of
modes in the left and right leads. For simplicity we choose the
lattice constant to be equal to 1. For further calculations we
assume the existence of a confining potential Vc(y) in the direction
y. This potential leads to a set of transverse modes, whose actual
values depend, however, on boundary conditions. For HW and PB
conditions, the energy of the electron is given by the following
dispersion relations:

E¼
2tx cos kn þ 2ty cos

πn
M þ 1

; n¼ 1;2;…;M; HW;

2tx cos kn þ 2ty cos
2πn
M

; n¼ 0;1;…;M−1; PB:

8>><
>>: ð2Þ

The appropriate eigenfunctions, ψnðylÞ, of the 1D Schrödinger
equation with periodic potential of the chain of atoms along the
y-direction with HW and PB conditions are ðl¼ 1;2;…;MÞ

ψnðylÞ ¼

ffiffiffiffiffi
2
M

r
sin

πln
M þ 1

HW;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−δn;0−δn;M=2

M

r
exp i

2πnl
M

� �
PB:

8>>>><
>>>>:

ð3Þ
3. Relationship between different lengths in Q1D systems

First we study the relationship between 〈ln G〉 and ln〈G〉 in Q1D
disordered systems, described by Eq. (1). Our numerical calcula-
tions show that these two lengths are connected through the
relation

〈ln G〉−4 ln〈G〉¼ C: ð4Þ
The constant C is different for HW and PB conditions and for each
case is determined numerically. C tends to zero in the 1D case as
expected. The length L dependence of 〈ln G〉 and 4 ln〈G〉 is plotted
in Fig. 1 for M¼10 and W¼1. The slopes of the two lines are the
same within error bars. For each value of W we used L′ s that
ensure that we are well inside the exponential decay (see Fig. 1).

For completeness, we show in the upper panel of Fig. 2 the 1/M
dependence of the constant C for fixed disorder and energy for
relatively large M. One can see that for Mb1 C decreases linearly,
according to the asymptotic behavior of localization lengths (see
[20] and Eq. (4)). Numerical data for the constant C versus energy
are presented in the lower panel of Fig. 2. As expected, C is very
sensitive to any change of the energy, as well as to the change of the
boundary conditions (in Fig. 2 we have presented only the results
for HW boundary conditions). Some technical details follow: to
obtain the mean values 〈⋯〉 we have used 105 independent
realizations of the disordered strip. Assuming a Gaussian form



Fig. 1. Averaged logarithm of the conductance 〈ln G〉 and logarithm of the average
conductance ln〈G〉 as a function of the length L of the strip. The value of C≈7:5 and
errors are smaller than the symbol's size.

Fig. 2. The number of channels M and energy E dependence of the constant C in
the case of HW condition.
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(as we have checked) for the logarithm of the conductance, z≡ln G,
it is straightforward to show that the average of G is
〈G〉¼ RM

0 GPðGÞ dG¼ RM
0 Pðln GÞ dG. Solving the last integral and

combining it with the numerical results for 〈ln G〉 and its variance
s2 we get

〈G〉¼ 1
2
expð〈ln G〉þ s2=2Þ Erfc 〈ln G〉þ s2−lnMffiffiffi

2
p

s

� �
; ð5Þ

where Erfc is the complementary error function.
4. Localization length in Q1D systems

4.1. All channels are propagating

Next, closely following Refs. [11–13], we evaluate the scattering
matrix elements Tnm, in the weak disordered regime. This means
that it is sufficient to restrict the expansion of the expressions of
Tnm to first order in the ϵj;l—the strength of the potential at site (j,l).
In other words, in the evaluation we only kept the terms that are
proportional to the electron's transmission amplitude from the
isolated potential ϵj;l. The result for the electron transmission
amplitude Tnm is

Tnm≈eikmðL−1Þ �
1−i

∑M
l ¼ 1∑

L
j ¼ 1ϵj;lψmðylÞψn

mðylÞ
4DLt sin km

if n¼m;

−i
∑M

l ¼ 1∑
L
j ¼ 1ϵj;le

iϕjψnðylÞψn
mðylÞ

2Lt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin kn sin km

p if n≠m;

8>>>><
>>>>:

ð6Þ

where Al ¼ ð1=2LtÞ∑M
n ¼ 1ψmðylÞψn

mðylÞ=sin kn, ϕj ¼ ðkn−kmÞðj−1Þ and
D¼ 1þ i∑M

l ¼ 1∑
L
j ¼ 1ϵj;lAl. The wave numbers kn for the propagating

modes are defined by Eq. (2), for HW and PB conditions, respec-
tively. Similarly, Lt is equal to M þ 1 or M depending on the
boundary conditions.

The inverse normalized LL ξM as a function of the system size L
and modes M can be written as

1
ξM

¼− lim
L-∞

1
2ML

ln ∑
M

n;m
jT ðNÞ

nmj2
* +

: ð7Þ

Now, replacing 〈ln G〉 by ln〈G〉 and assuming that for weak disorder
the transmission coefficients are close to 1 and thus the reflection
coefficients are close to zero, we can expand the right-hand side of
Eq. (7). Next, after ensemble averaging over the random potentials
ϵj;l distributed uniformly according to the explicit expressions for
Tnm of Eq. (6) and keeping the terms to order W2, we arrive at the
following expression for the inverse LL:

1
ξM

¼ W2

96M2 ∑
M

l ¼ 1
∑
M

n ¼ 1

ψnðylÞψn
nðylÞ

sin kn

� �2
þOðW4Þ; ð8Þ

which is valid for both boundary conditions.

4.1.1. Hard wall conditions
Using the explicit expressions for ψnðylÞ (see Eqs. (3) and (8))

for the LL ξM with HW conditions, when the M channels are
propagating, we obtain

1
ξHWM

¼ W2

192M2ðM þ 1Þ
� ∑

M

n ¼ 1

3þ δ2n;Mþ1

sin2kn
þ 2 ∑

M

nop

2þ δnþp;Mþ1

sin kn sin kp

" #
: ð9Þ

kn is the Fermi wave vector of the n-th subband (channel) and is
determined by the energy dispersion relation (2).

For M¼1 it reduces to the LL ξ1 for a 1D chain. If there is no
coupling to the second, third, etc., modes, all kn are equal, and after the
summation over the modes, we find from Eq. (9) ξHWM ¼Mξ1. This
result is somewhat expected: it confirms the prediction of Thouless
[20] that in the limit of weak coupling ξHWM must be proportional toM.
Although one can get two correct limiting values ξ1 and ξMb1 from
expression ξHWM , Eq. (9), it fails to give the exact value of LL for an
arbitrary M. A similar formula for a periodically arranged 2D δ-poten-
tial scatterers on a strip can be found in [13].

Our direct numerical computation of the LL for the Anderson
model (1) shows that we can get an almost perfect agreement
with the theoretical ξHWM , Eq. (9) for M≥2, if we multiply the latter
by a factor 2 and shift it up by ξ1, i.e., redefine new LL χHWM

χHWM ¼ ξHWM
2

þ ξ1; M≥2: ð10Þ

Fig. 3 shows the M mode dependence of χHWM . The solid lines have
been computed from Eq. (10) and the dots denote the result of
numerical calculations. The good agreement found fully supports
the validity of the analytical expression for χHWM . The comparison is
free of any adjustable parameter. We have checked that the
analytical expression, Eq. (10), agrees very well with the numerical
data in the whole range of vertical hopping parameter 0otyo1
where the χHWM is a linear function with respect to M. Note that for
0otyo1 and energy E¼0.02 all the modes are propagating, hence
the expression is valid. The non-linearity starts when ty≥1 and for
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those ty the numerical and analytical results start behaving
differently due to the fact that the validity of formula (10) breaks
down, i.e., in the spectrum began to appear evanescent modes (see
Section 3.2).

4.1.2. Periodic boundary conditions
The result for the LL reads as

1
ξPBM

¼ W2

96

1

M3 ∑
M=2

l ¼ 0

2−δl;0−δl;M=2

sin kl

" #2

if M even

1
ðM−1Þ3

∑
ðM−1Þ=2

l ¼ 0

2−δl;0
sin kl

" #2

if M odd;

8>>>>>><
>>>>>>:

ð11Þ

where kl must be defined from the dispersion relation (2). Like
expression (9) Eq. (11) is valid only for propagating modes.

The process of deriving the expression for even M is quite
straightforward. Using the explicit form of the electron wave
function ψnðylÞ, (3) and Eq. (8) yields the desired result. The case
for odd M requires special consideration. First, for the infinitely
long periodic system (W¼0) the conductance G is an asymmetric
function of energy, which is in contrast to the symmetric behavior
Fig. 3. The dependence of the localization length χHWM on the number of modes M
for disorder W¼0.4 and 1.0. Dots are the numerical results and each data point
corresponds to an average over 105 realizations of disorder (errors are smaller than
the symbol's size). The solid lines represent the theoretical prediction, Eq. (10).
At E¼0.02 all modes are propagating.

Fig. 4. M dependence of the localization length defined by Eq. (12). Dots are the numeri
of G with even M modes. Second, the analysis of the conductance
of the ideal TB model as a function of the energy (at fixed odd M)
shows that the change from one plateau value to the next one is 2
(in units of e2=h), while in the case of even M, it is 1. Formally this
means that M must be replaced by ðM−1Þ in the expression of LL
with even number of M. This conjecture was numerically tested
and supported by the direct numerical calculation of the LL (see
Fig. 4). It is clear that the difference between M and ðM−1Þ is
negligible for large M, but may not be negligible for small M.

As in the case of HW condition we get an excellent agreement
with the theoretical ξPBM , Eq. (11) for M≥2, if we multiply the latter
by a factor 2 and shift it up by ξ1=2. The new LL χPBM is

χPBM ¼ ξPBM
2

þ ξ1
2
; M≥2: ð12Þ

In Fig. 4 we have tested the prediction of the analytical theory
against the numerical results where the M mode dependence of
χPBM , Eq. (12) is shown. Solid lines have been computed from
Eq. (12) and dots denote the result of numerical calculations. The
good agreement between simulations (dots) with Eq. (12) is
evident for a relatively large range of disorder W. In the right
panel of Fig. 4 our numerical data for LL was compared with
similar expression ξ (dashed line, M is even) from Ref. [8]

1
ξ
≈

W2

96M3 ∑
M−1

l;m ¼ 0

2−δl;m
sin kl sin km

: ð13Þ

One can see that the slope of the dashed line agrees with
numerical calculations, but certainly there is a problem with an
intercept and hence with accurate numerical values of LL. To get a
correct value for LL, Eq. (13), for an arbitrary even M one needs the
dashed line to shift up by about 0:39ξ1.

Note that for the energy E¼0.02 and for the disorder range
0:4≤W ≤1 the localization lengths do not show anomalous fluc-
tuations near the band center [21].

4.2. M–ν evanescent channels

Our objective in this subsection is to extend our previous
calculations of LL (see Eqs. (9) and (11)) in the case when only
the first ν modes can propagate along the Q1D system, whereas
ðM−νÞ cannot (M is the total number of channels). Hence we
consider the case of E1oE2o⋯oEν. Proceeding along the same
line as in Section 4, one can show that only minor modifications of
the final expression for the LL, Eqs. (9) and (11), are required in
order to include ðM�νÞ evanescent modes. In other words in the
mentioned equations one should replace M2 by ν2 and the sum
cal results. Left: M is odd. Right: M is even. Dashed line represents Eq. (13) (see [8]).



Fig. 5. The energy E dependence of the localization length χHWν in the case of HW
condition (Eq. (14)). The parameters are disorder W¼0.4, number of channels
M¼10 and horizontal and vertical hopping parameters tx and ty are equal to 1. Dots
are the numerical results and the solid line represents the theoretical prediction,
(14). At E≥1:6 in the spectrum we have 4 and more evanescent modes.
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runs only up to ν propagating modes (in the case of odd M in the
Eq. (11) ðM−1Þ2 must be replaced by ðν−1Þ2). For example, the
expression for LL in the case of HW condition now reads as

χHWν ¼ ξHWν
2

þ ξ1; ν≥2: ð14Þ

where ξHWν is analogous to Eq. (9) with appropriate changes

1
ξHWν

¼ W2

192ν2ðM þ 1Þ � ∑
ν

n ¼ 1

3þ δ2n;νþ1

sin2 kn
þ 2 ∑

ν

nop

2þ δnþp;νþ1

sin kn sin kp

" #
: ð15Þ

The reason for this restriction in such a simple way was pointed
out in Refs. [22,12], in the analysis of role of evanescent states on
the ensemble average conductance in multi-channels TB and 2D
δ�potential disordered systems for weak disorder. The main idea
is that the use of the weak disorder approximation leads to the
suppression of the effect of ðM−νÞ evanescent modes. Moreover,
the presence of evanescent modes enhances the LL with respect to
LL, for all the values of the Fermi energy, when evanescent modes
are absent [12,22]. The reason is quite clear from a physical point
of view: with increasing numbers of evanescent modes, the point-
type scatterer becomes more and more transparent. As the
number of evanescent modes increases towards infinity, we get
perfect transmission which leads to perfect conductance and
hence to the increase in LL [12,22–26]. This is confirmed in Fig. 5
where we show the energy E dependence of LL, given by Eq. (14),
for fix disorder W¼0.4 and number of channels M¼10.

One can see that χHWν is decreasing monotonically with increas-
ing E up to E≈0:08 (all modes are propagating, i.e. ν¼M). Then LL
showing oscillatory behavior when E, starting from the value of
E≈0:08, approaches the points E1¼0.081 (1 evanescent mode in
spectrum), E2¼0.317 (2 evanescent modes in spectrum), E3¼0.69
(3 evanescent modes in spectrum), etc. The regions with jump
discontinuity lie precisely on E11−n ¼ 2ð1þ cos πn=11Þ values,
when new evanescent mode appears in the spectrum. Note that
an analogous oscillatory behavior shows also LL as a function of
vertical hopping parameter ty for fix disorder W, the number of
channels M and horizontal hopping parameter tx.
5. Summary

We have provided a complete description of LL in Q1D
disordered quantum wire with hard wall and periodic boundary
conditions for the case where propagating as well as evanescent
channels are present. We pointed out that the relationship
between various lengths in Q1D disordered systems obeys
Eq. (4), which basically differs from 1D case because of a finite
value of the right-hand side term C. Based on this new relation-
ship, Eq. (4), we have presented the analytical expressions (10),
(12) and (14) for LL which are in excellent agreement with
numerical calculations, exact up to order W2 (W being the disorder
strength), and valid for an arbitrary number of propagating and
evanescent channels. We show that the presence of evanescent
modes enhances the LL with respect to the value obtained when
evanescent modes are absent.
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