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Abstract
A two-dimensional δ-potential Kronig–Penney model for quasi-one-dimensional (Q1D)
disordered systems is used to study analytically the influence of a constant electric field on the
inverse localization length (LL). Based on the Green’s function formalism we have calculated
LL as a function of the incoming energy E , electric field F , length L of the Q1D sample,
number of modes M in the transverse direction and the amount of disorder w. We show that, for
large L in Q1D systems, states are weakly localized, i.e. we deal with power-law localization.
With increasing electric field in Q1D mesoscopic systems a transition from exponential to a
power-law behavior takes place, as in 1D systems. We note that the graphs showing the inverse
LL change significantly with increasing F (for fixed M) rather than with increasing M (for
fixed F). We also show that the graphs representing the ratio of the corresponding localization
length without and with electric field collapse for all modes M into a universal curve in the
Q1D strip model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of localization of the eigenstates in one-
dimensional (1D) disordered finite systems in an external
electric field F has been studied extensively, both numerically
and analytically over the last three decades [1–10]. It has been
well established that in 1D systems the electron’s transmission
coefficient shows a transition from exponential to power-law
behavior with increasing electric field. More precisely, it
has been shown that the transmission coefficient is a function
of a dimensionless parameter X = F L/E (in units of
e = 1), the ratio of the electrostatic energy F L to the
energy E of the incident electron. The parameter X plays an
important role in the behavior of electrons and the limiting

4 Author to whom any correspondence should be addressed.

case of X � 1 coincides with an exponential localized
regime and X � 1 with a power-law regime. With further
increase in X , the system becomes metallic in the sense that
all the states are extended or delocalized. The details of
these states depend on the parameters F , L, E and w (the
measure of disorder) as well as on the form of the scattering
potentials (smooth or discontinuous). But the existence of
three regimes in 1D disordered systems, i.e. exponentially
localized, power-localized and extended states, has already
been established [1, 11]. Moreover, in the case of a 1D chain
with δ-function potentials, Prigodin [1] and later Soukoulis
et al [2] have shown that in the approximation of white-noise
potential the expression − l0

2L 〈ln T 〉 follows a universal form

− l0

2L
〈ln T 〉 = ln(1 + X)

X
, (1)
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leading to a power-law localization. In equation (1), T is
the transmission coefficient, l0 = 96E/w2 is the electron’s
localization length when F = 0 and 〈· · ·〉 denotes averaging
over disorder.

Fewer details are known about the transmission coefficient
properties in Q1D and two-dimensional (2D) disordered
systems in an electric field [4, 12]. Kirkpatrik discussed
Anderson localization and delocalization in a disordered
system with one and two dimensions when an electric field
is present [4]. Using a self-consistent diagrammatic theory
of localization, his main conclusion was that in 2D systems
Anderson localization is not possible in a finite electric field
because the latter destroys the wave interference effects. In
other words, Kirkpatrik found the existence of a mobility edge
at some critical value of the electric field and impurity content
or disorder. However, he did not succeed in properly defining
a unique critical field separating the region of localized states
(F = 0) from the region of possible extended states, and
many details of such transitions, e.g. dependence on the
number of propagating modes M , were left out from his
analysis. What we are trying to point out is that a general
analytical description of the localization length (LL) for the
whole range of parameters F , L, M and E for a strip model
is still lacking. This is why we addressed the problem and try
to find some analytical results for the transmission properties
(and hence for LL), in a weakly perturbed strip model with
periodically distributed 2D δ functions with random strength.
In our calculations we will also take into account an external
longitudinal electric field. To the best of our knowledge, no
such calculations have been previously reported.

This study is of interest in several respects. First of all, any
analytical results for LL in a Q1D disordered system are highly
desirable. Second, the dependence of LL on the energy across
the energy bands of the pure system may be used to investigate
changes in one-electron states in Q1D systems due to a change
of the parameters of the system and due to an external electrical
field. Finally, it is also relevant for experimental situations,
e.g. for discussing the scaling of nonlinear (electric-field-
dependent) resistivity in high-mobility Si-MOS structures as
a function of electric field and electron density in both the
metallic and insulating phases [13].

In particular we will consider a discrete lattice of size
(N × S) with the system length L = (N + 1)a0 and cross
section Lt = (S + 1)a0 (L � Lt , N, S to be integer numbers
and a0 is the spacing in between two potentials). In a further
stage of our calculations we will assume also that S = M ,
i.e. we choose a discrete lattice whose points in the transverse
direction coincide with the number of propagating modes M
(see section 2.1).

It is worth noting that an external longitudinal electric
field greatly complicates use of the transfer matrix method in
Q1D or 2D systems to calculate scattering matrix elements.
The complication mainly is connected with the fact that each
individual transfer matrix is position-dependent and even after
averaging over any disorder they remain distinct from one
another and do not commute. However, the method proposed
in [14, 15], allows for the solution of the problem analytically.
With only minor modifications of the method, based on the

Green’s function (GF) formalism, we will show that in the
approximation of white-noise potential in Q1D systems, an
expression similar to equation (1) can be derived for LL.
Hence one can find the critical value of the parameter X
separating the exponentially localized states from the power-
law states.

We have analyzed the ratio of the corresponding LL
without and with electric field in the weak disordered regime.
Somewhat expectedly, we found that the ratio collapses, for
all modes M , into a universal curve in the Q1D strip model.
This fact can be interpreted as an indirect indication of the
applicability of the theory of single parameter scaling [16]
(SPS) in Q1D systems and can be used to determine the critical
regime of localization–delocalization transition.

Without pretending to give an exhaustive review, we
briefly present some ideas regarding the SPS hypothesis for
1D and 2D disordered systems. As is well known, according
to the SPS hypothesis all states are localized in 1D and the
full conductance distribution function is described by a single
parameter L/ξ , the ratio of the system size L to the localization
length ξ . While for 1D systems the validity of the SPS
hypothesis was carefully checked for many models in the
weak localization regime and it has been proven to hold in
most cases, the situation with SPS in Q1D and 2D systems
is currently very controversial or poorly understood. In spite
of the statement that all states in 2D are localized [16], there
are a large number of experiments in which an apparent metal–
insulator transition has been observed (see, e.g., [13, 17, 18]
and references therein). On the one hand, careful numerical
analysis [19, 20] of the 2D Anderson model showed excellent
agreement with SPS while other studies [21, 22] suggested
the existence of power-law localized states and two-parameter
scaling. Nevertheless, the popular belief is that, in the limit
of weak disorder, when the mean free path is macroscopic,
SPS holds with arbitrarily high accuracy also in 2D systems
of noninteracting electrons [23, 24].

We will restrict ourselves to a discussion of the weak
disordered regime. This regime is of general interest since,
when an external electric field is zero, localization occurs for
an arbitrarily weak potential. In this case, LL can be calculated
in the Born approximation for an uncorrelated potential in
the Q1D systems without any restriction on the numbers of
impurities (N0) and modes (M) [14, 15]. For simplicity we
will discuss the case when the number of modes M in the left
and right leads connected to the Q1D system are the same.
Furthermore, we assume that the external electric field is weak
(X < 1).

This paper is organized as follows. In section 2 we
briefly discuss the practical algorithm developed in [14, 15, 25]
for solving the Dyson equation in the Q1D strip model with
periodically arranged 2D δ impurities, with and without an
external electric field. We will show that for such a system
the scattering matrix elements can be described in terms of
determinants of rank N0 × N0. In section 2.2 we present results
for the inverse localization length when an electric field is
present. The results are discussed in section 3. The main
conclusions are summarized in section 4.
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2. Strip model with periodically arranged 2D δ
impurities

First, we review the Dyson equation for a 2D strip model with
impurity δ potential, (see equation (2)), studied in [14, 15, 25]
when the external electric field is zero. This convenient
formalism allows one to express the transmission coefficient of
a wave propagating in a Q1D disordered structure through the
determinant, which depends on the amplitudes of reflection of a
single scatterer only. The rank of the characteristic determinant
is N0 × N0, as in 1D systems, and its zeros coincide with
the poles of Q1D GF. Hence we can map the Q1D scattering
problem into a 1D problem with modified matrix elements and
obtain explicit results for LL in the Born approximation.

Consider the quantum transport of an electron in a Q1D
disordered strip in the presence of N0 2D Dirac δ potentials,
distributed randomly on a strip

V (x, y) =
N0∑

l=1

Vlδ(x − xl)δ(y − yl), (2)

where (xl, yl) and Vl denote the position and the strength of
the lth impurity in the (x, y) plane, respectively. Vl can be
repulsive (Vl > 0) or attractive (Vl < 0).

The single-electron wavefunction is the solution of the
Schrödinger equation
{
−

(
d2

dx2
+ d2

dy2

)
+ Vc(y) + V (x, y) + U(x)

}
�(x, y)

= E�(x, y), (3)

where the confinement potential Vc(y) depends only on the
transverse direction y and V (x, y) is the potential of the
impurities in the Q1D strip given by equation (2). The potential
U(x) ≡ −Fx describes the external electric field.

The transverse-mode wavefunction χn(y) satisfies the 1D
Schrödinger equation

{
− d2

dy2
+ Vc(y)

}
χn(y) = Enχn(y), (4)

where n is the subband index and En are the subband energies.
In general, χn(yl) depends on the choice of the confinement
potential Vc(y). If we take Vc(y) to be zero for 0 � y � Lt

and infinite elsewhere, then χn(yl) is given by

χn(yl) =
√

2

Lt
sin

(
nπyl

Lt

)
. (5)

The retarded GF for an electron traveling in the total
potential satisfies the Schrödinger equation
[
−

(
d2

dx2
+ d2

dy2

)
+ Vc(y) + V (x, y) + U(x) − E

]

× G(N0)(xy, x ′y ′) = −δ(x − x ′)δ(y − y ′). (6)

The Dyson equation for a Q1D wire can be written in the
form [26, 27]

G(N0)
nm (x, x ′) = G(0)

n (x, x ′)δnm

+
∑

k,q

∫
G(0)

n (x, x ′′)δnk Vkq(x ′′)G(N0)
qm (x ′′, x ′) dx ′′, (7)

where Q1D GF G(N0)
nm (x, x ′) is connected with retarded GF

G(N0)(xy, x ′y ′) through the following relation:

G(N0)
nm (x, x ′) =

∫
dy

∫
dy ′χ∗

n (y)G(N0)(xy, x ′y ′)χn(y ′).

In equation (7) G(0)
n (x, x ′) is the GF in the absence of the defect

potential V (x, y) and obeys the equation

[
− d2

dx2
+U(x)−(E−En)

]
G(0)

nm(x, x ′) = −δ(x−x ′)δnm . (8)

Thus G(0)
nm(x, x ′) is diagonal in the indices n and m, i.e.

G(0)
nm(x, x ′) = G(0)

n (x, x ′)δnm . The upper index (l) of the GF
(in equation (8) the index l = 0) indicates that the GF is
calculated in the presence of lδ potentials.

Note that equation (7) is an infinite set of coupled
algebraic equations which includes effects from both the open
and closed modes, but in actual calculations we truncate the
infinite set of coupled channels to a finite value M . This natural
cutoff for the infinite series does not affect in any essential
way the results discussed below [27, 28]. This is because the
higher evanescent modes cannot be realized in a quantum wire:
they will either dissipate or overcome the work function of the
wire [29].

The matrix elements Vnm(x) of the defect potential (2),
after performing the integration over y, become

Vnm(x) =
∫

χ∗
n (y)V (x, y)χm(y) dy =

N∑

l=1

V (l)
nmδ(x − xl),

(9)
with the coupling constant V (l)

nm defined as

V (l)
nm(yl) = χ∗

n (yl)Vlχm(y) ≡ 2Vl

Lt
sin

(
nπyl

Lt

)
sin

(
mπyl

Lt

)
.

(10)
The main algorithm for finding the GF for the whole system
with N0δ potentials is based on the idea of recursively building
up the total GF. In such calculations, the GF is evaluated first
when one δ potential is available. For this purpose we first
isolate elements of the defect potential Vnm(x) in the matrix,
equation (9), the term corresponding to the last potential at xN0 :

Vnm(x) = V (N0)
nm δ(x − xN0) +

N0−1∑

l=1

V (l)
nmδ(x − xl). (11)

We first evaluate the exact GF for a single δ potential. The
case of two δ potentials, when we separate the next (N0 − 1)th
potential from the second term in expression (11), is then
solved using the GF for a single δ potential. Then we solve the
problem iteratively with N0δ potentials by taking the solution
with the (N0 −1) known δs and extracting the scattering matrix
elements. Thus we can obtain GF elements in an arbitrary
interval [xn, xn+1] (n = 1, . . . , N0 −1) of a disordered system.

In the following our main interest will be in the matrix
elements of the GF for the range x, x ′ � x1. This allows us to
calculate the total transmission and reflection amplitudes of an
electron which is incident on the system from the left. Using
the well-known relations between the scattering amplitudes

3



J. Phys.: Condens. Matter 23 (2011) 045301 V Gasparian et al

and GF [30] the explicit form for the matrix elements of GF
for x, x ′ � x1 is

G(N0)
nm (x, x ′)=G(0)

n (x, x ′)δnm +R(N0)
nm

G0
n(x, x1)G0

m(x1, x ′)√
G0

n(x1, x1)G0
m(x1, x1)

.

(12)
Note that the expression (12) is valid for an arbitrary
G(0)

n (x, x ′) (piece-wise constant potential, constant external
electric and magnetic fields, etc). R(N0)

nm is the matrix element
of reflection amplitude from the whole system with N0δ

potentials, and may be written as the ratio of two determinants
(for more details see [31]):

R(N0)
nm = (−1)N0

1

det (D(N0)
q, j )M,1

×

∣∣∣∣∣∣∣∣∣

0 r (1)
nm · · · r (N0)

nm (λ(1N0)
n )1/2

1 · · · · · · · · ·
...

... (D(N0)
q, j )M,m

(λ(1N0)
m )1/2

...

∣∣∣∣∣∣∣∣∣

, (13)

where r (l)
nm are the complex reflection amplitudes from the

isolated potential Vl in the absence of the remaining (N0 − 1)

potentials [27]

r (l)
nm = V (l)

nm

√
G(0)

n (xl, xl)G(0)
m (xl, xl)

1 − ∑M
p V (l)

pp G(0)
p (xl, xl)

. (14)

Note that r (l)
nm satisfy the identity r (l)

mmr (l)
nn − r (l)

mnr (l)
nm = 0, which

can be checked directly, making use of equation (14).
Using the relation [31] connecting G(x, x ′) with the one-

particle GF at coinciding one-dimensional coordinates x = x ′,
the quantity λ

( jq)
n in equation (13) can be presented in the form

λ(q j)
n = λ( jq)

n = G(0)
n (x j , xq)G(0)

n (xq, x j )

G(0)
n (x j , x j)G(0)

n (xq, xq)

≡ exp

[∫ max (xq ,x j )

min (xq ,x j )

dx

G(0)
n (x, x)

]
(15)

where
∫

dx
G(0)

n (x,x)
is the phase that an electron acquires during

its motion in the field U(x) between the scatterers j and q .
The numerator of R(N0)

nm is obtained from the quantity
det (D(N0)

q, j )M,m by augmenting it on the left and on the top.

The matrix elements of the denominator (D(N0)
q, j )M,m , which

contains information about the number of modes M[1 �
q, j � N0; 1 � m � M], are

(D(N0)
q, j )M,m = −δq j + (1 − δq j)

M∑

p=1

r (q)

1 p r ( j)
pm

r (q)

1m

(λ(q j)
p )1/2. (16)

The determinant (D(N0)

q, j )M,m is in general a complex
function of the energy E . The quasibound states of an electron
in the disordered Q1D or in a 2D system correspond to the
poles of GF for the whole system, which coincide with the
zeros of det(D(N0)

q, j )M,1. Therefore, to obtain the bound energy

spectrum numerically, we must calculate det(D(N0)
q, j )M,1 and

find simultaneous zeros of its real and imaginary parts. A

specific case of this equation, the spectrum of the single δ-
function scatterer (N0 = 1) with finite number of modes M
in a Q1D waveguide (when F = 0), was studied in [32]. Note
that equation (16) reduces to the characteristic determinant of
a purely 1D system (see [33, 34]) if there is no coupling to the
second, third, etc, modes, i.e. r (p)

p1 = r (p)

1 p = 0.
Putting in the appropriate GF matrix elements, equa-

tion (12), x = x1 and x ′ = xN0 , one can calculate the transmis-
sion amplitude T (N0)

nm of an electron through the system with
N0δ potentials. Similarly to R(N0)

nm , we can write the explicit
form for T (N0)

nm as a ratio of two determinants [14, 15]:

T (N0)
nm = (−1)N0

(λ(1N0)
m )1/2

det (D(N0)
q, j )M,1

×

∣∣∣∣∣∣∣∣∣

δnm r (1)
nm · · · r (N0)

nm (λ(1N0)
n )1/2

1 · · · · · · · · ·
...

... (D(N0)
q, j )M,m

(λ(1N0)
m )−1/2

...

∣∣∣∣∣∣∣∣∣

, (17)

where the numerator is obtained from the same determi-
nant (16) by augmenting it on the left and on the top.

Using equations (13) and (17), it is straightforward to
check by mathematical induction that, for the scattering matrix
elements, current conservation takes place:

M∑

m=1

(T (N0)
nm T (N0)

nm
∗ + R(N0)

nm R(N0)
nm

∗
) = 1, (18)

where the summation is carried out over the propagating modes
only.

2.1. Zero external electric field

The case of zero electric field was discussed in [14, 15]. For
U(x) ≡ 0, the explicit form of G(0)

n (x, x ′) which satisfies
equation (8) and corresponds to a propagating mode is

G0
n(x, x ′) = − i

2kn,0
eikn,0|x−x′ |, (19)

with wavevector

kn,0 = +
√

E − n2π2

L2
t

, (20)

where the subscript index 0 indicates zero electric field.
Thus we have from equation (15)

λ(q j)
n = e2ikn,0|xq −x j |. (21)

If E < En and mode n is an evanescent mode, then in
equations (19) and (21) one must take an analytic continuation

of the kn,0 = iκn,0, where κn,0 = +
√

n2π2

L2
t

− E .

In our further calculations we evaluate the scattering
matrix elements T (N0)

nm , equation (17), in the weak disorder
regime. This means that it is sufficient to restrict the expansion
of the expressions of T (N0)

nm to first order in the δ-potential
amplitude. In other words, in the determinants we only kept
the terms that are proportional to r (l)

nm—the complex reflection

4
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amplitude (14) from the isolated potential Vl . The result for the
electron’s transmission amplitude T (N0)

nm is

T (N0)
nm ≈ eikm,0(xN0 −x1)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + i
∑N0

l=1 Vl Al

[
1 + i

N0∑

l=1

Vl

(
Al − sin2(

mπyl

Lt
)

km,0 Lt

)]

if n = m,

−i

Lt
√

kn,0km,0

N0∑

l=1

Vl sin

(
nπyl

Lt

)

× sin

(
mπyl

Lt

)
ei(kn,0−km,0)(xl −x1) if n 
= m,

(22)

with Al = ∑M
n=1

sin2(nπyl/Lt )

Lt kn,0
. yl is the coordinate of the lth δ

impurity in the y direction, and x1 and xN0 are the x coordinates
of the first and last (N th

0 ) δ functions. The wavenumbers kn,0

for the propagating modes are defined by equation (20). A
finite number M includes the effects from both propagating
and evanescent modes. The wavenumbers of the evanescent
modes are obtained by setting kn,0 = iκn,0.

As noted in [15, 35], in Q1D systems the phase in
the transmission amplitude, T (N0)

nm , is irrelevant for a white-
noise potential where 〈Vi Vk〉 = αδik . In other words, the
configuration of δ potentials is not important for uncorrelated
potentials in the linear approximation of perturbation theory.
This means that, without any loss of generality, in the x
direction we can arrange δ functions periodically with spacing
a0 = 1 and thus replace the finite length L = (N + 1)a0 by N
(N � 1).

As a further simplification we focus on the case of
periodically arranged 2D δ-potential scatterers on the lattice
points of a strip and discuss the case when the spacing between
scatterers is constant and equal in the x and y directions
and of unit length. This means that in the y direction we
choose a discrete lattice whose points are located at yl = l,
(l = 1, 2, . . . , S) and thus the width of the wire Lt = S + 1.

Now let S coincide with the number of propagating modes M ,
i.e. we will replace Lt → M + 1. This is an essential point
for our further calculations because it allows us to consider the
2D δ-function strip model as a discrete lattice of size (N × M)
(instead of (N × S)), where N and M are the number of δ

potentials in the x and y directions, respectively.
Recalling that the number of open modes M =

Int(
√

E Lt/π) (see equation (20)), i.e. the integer part of√
E Lt/π , and replacing Lt = M + 1 one can show that the√
E range is defined by

π M

(M + 1)
�

√
E � π(M + 1)

(M + 2)
. (23)

For energy E lying in this range the first M modes or channels
can propagate along the Q1D system. In our further numerical
calculations we will choose the energy E according to this
inequality.

Using the known relation for the inverse localization
length ξM as a function of the system size L and modes M

ξ−1
M = − lim

L→∞
1

2M L

〈
ln

M∑

n,m

|T (N)
nm |2

〉
, (24)

and after ensemble-averaging over the random potentials
Vl distributed uniformly in an interval [−w/2, w/2] with
the use of explicit expressions of T (N)

nm , equation (22), we
arrive at the following expression for the inverse localization
length [14, 15]:

1

ξ 0
M

= α

16M2(M + 1)

×
[ M∑

n=1

3 + δ2n,M+1

k2
n,0

+ 2
M∑

n<m

2 + δn+m,M+1

kn,0km,0

]
, (25)

with α = 〈V 2
l 〉 = w2/12.

To close this subsection we note that in equation (25) one
can say formally that all kn are equal, if there is no coupling to
the second, third, etc, modes, i.e. r (p)

p1 = r (p)

1 p = 0. Then, after
the summation over the modes (which will give 2M(M + 1))
we find as a result ξ 0

M = Mξ 0
1 ; ξ 0

1 = 8/α2 denotes the
localization length of a purely 1D system. As is clear the
found result is somewhat expected: it confirms the prediction
of Thouless [36] that in the limit of weak coupling ξ 0

M must
be proportional to M . In this sense the 1/ξ 0

M , equation (25),
is smaller by an additional factor 1/M from the analogous
expression (19) of [14]. The reason was that in [14] we used the
definition of inverse localization length which differs from (24)
by the same factor 1/M.

2.2. Inclusion of external electric field

The exact solution to equation (3) with the external electric
field U(x) = −Fx is Airy-function-like with

kn,x =
√

E − n2π2/L2
t + Fx .

For weak fields (Fa0 < E , where a0 is the spacing
between two δ potentials) one can use the so-called ladder
approximation. This means that instead of the Airy functions
we use the plane waves (see, e.g., [2, 3, 9]) and use the Poincaré
map representation of the Schrödinger equation.

Proceeding along the same lines as in section 2.1 we can
show that only minor modifications of the final expression
for LL in equation (25) are required in order to include the
weak electric field. As a result of the ladder approximation,
as well as the fact that for a white-noise potential the phase
of the transmission amplitude is irrelevant, we obtain the
inverse localization length which explicitly depends on the
coordinate x :

1

ξ F
M(x)

= α

16M2(M + 1)

×
[ M∑

n=1

3 + δ2n,M+1

k2
n,x

+ 2
M∑

n<m

2 + δn+m,M+1

kn,x km,x

]
. (26)

For convenience, we introduce the superscript F (meaning that
an electric field is present) in order to facilitate the comparison
with the corresponding expression when F = 0. Since we are
considering many potentials and the −Fx potential changes
slowly, we can integrate 1/ξ F

M(x) over the length L of the

5
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Figure 1. Plot of the inverse localization length 2L/ξ F
M (L) versus L

for different electric fields F . For all curves the number of modes
M = 15, energy E = 0.9π2 and disorder w = 0.5. The case of
F = 0 is represented by the straight dotted line, based on
equation (25), indicating exponential localization. The dashed, thick,
dotted–dashed solid curves correspond to F = 0.05, F = 0.5, F = 1
and F = 3, respectively.

system. This leads us to the following expression for the
inverse LL:

1

ξ F
M(L)

≡ 1

L

∫ L

0

dx

ξ F
M (x)

= α

16M2(M + 1)E X

×
[ M∑

n=1

(3 + δ2n,M+1) ln

(
1 + E X

k2
n,0

)

+ 2
M∑

n<m

(2 + δn+m,M+1) ln

(
1 + E X

kn,0km,0

)]
(27)

where we remember that X ≡ F L/E and kn,0 is given by
equation (20).

Equation (27) represents the central result of this work. It
express the LL in terms of the number of modes M , disorder
w, incoming energy E and electric field F . For the single
channel case, M = 1, equation (27) reduces to equation (1),
as it should. In the limit F → 0, one correctly recovers
equation (25) discussed in [14, 15]. In the following section
we analyze its limits.

3. Results

Let us start our discussion of the results from the weakly
localized regime, i.e. X � 1. The behavior of 1/ξ F

M (L) in this
limit can be more easily obtained from the series expansion for
ln(1 + x). Expanding up to order x2 we get

1

ξ F
M (L)

≈ 1

ξ 0
M

− F L

2
f (M), (28)

where 1/ξ 0
M was defined in equation (25) and f (M) has the

form

f (M) = α

16M2(M + 1)

[ M∑

n=1

3 + δ2n,M+1

k4
n,0

+ 2
M∑

n<m

2 + δn+m,M+1

k2
n,0k2

m,0

]
.

By replacing sums by integrals, performing them and
keeping only the relevant terms, after some algebra, the
following asymptotic formula for inverse LL is obtained in the
thermodynamic limit (M → ∞):

1

ξ F
M→∞

≈ α

32Mπ2

{
π2 + ln(2M)

M

− F L

2π2

[
1 + ln2(2M) + ln(2M)

M

]}
. (29)

The important feature of equations (28) and (29) is that they
already indicate that even for small electric field the states
become less localized.

To look at the influence of the electric field, we plot
2L/ξ F

M (L), based on equation (27), with electric field and
without, versus the system length L for fixed values of the
disorder w = 0.5 and number of channels M = 15 (see
figure 1 caption for details). The incoming energy E = 0.9π2

is chosen from the range (23). The case of zero electric
field, 2L/ξ

(0)
M , is presented as a dotted straight line, based on

equation (25), indicating exponential localization. It can be
seen that 2L/ξ F

M (L) follows a straight line for small L and
electric field F . The approximate expression (28) describes
this behavior well. With further increase of L the curve starts
to bend, increase slowly and finally tends to a constant value.
All the curves vary qualitatively in the same way and are quite
similar to the behavior of the LL in 1D disordered systems in
a constant electric field F , discussed in [1–3, 7]. Hence it
is not surprising that the curves in figure 1 generally capture
some feature of the 1D case, i.e. change from straight to flat
when the electrostatic energy F L is approximately equal to
the electron’s incoming energy E , when X = F L/E is of
the order of unity. For X � 1 the kinetic energy gained
by the electron from the field is small compared to E and,
therefore, the random potential is dominant and states are
exponentially localized. This corresponds to the very left part
of figure 1 for L smaller than 30. For very large X , i.e. when
the total electrostatic energy is much larger than the energy
of the particle, the potential becomes a small perturbation
and states are delocalized. It is worth noting that, as in the
1D case [1–3, 7], the saturation value of 2L/ξ F

M(L) for large
L varies drastically with even small changes in the electric
field F .

We show the dependence of 2L/ξ F
M (L) versus log L for

large L in figure 2 for the same parameter values as in
figure 1. Notice that the straight lines have different slopes:
the slopes are smaller the larger F is. Such a linear behavior of
2L/ξ F

M (L) versus log L means that in Q1D systems states are
weakly localized, i.e. we deal with power-law localization (for
more details see [1–3, 7], where a transition from exponential
to power-law behavior with increasing electric field in 1D
mesoscopic systems is discussed).

In figure 3 we have plotted 2L/ξ F
M (L) as a function of

the system length L for a different propagating mode M . The
appropriate values of E are chosen from inequality (23). The
values of the disorder w = 0.5 and the electric field F = 0.01
are fixed. We see from this figure that increasing the number
of modes M , for fixed electric field F , slightly enhances the
localization length. In other words, the electron states of the

6
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Figure 2. 1/ξ F
M (L) versus log L with the same parameter values as in

figure 1.

system are less localized for large M . From the comparison of
figures 2 and 3 one can see that the curves change significantly
with increasing F (for fixed M) rather than with increasing M
(for fixed F). In order to verify this fact and get a quantitative
answer, at least for small F , we have calculated the partial
derivatives of 1/ξ F

M→∞, equation (29), with respect to F and
M . The ratio of these derivatives leads us to the expression of
the form

∣∣∣∣
∂F (1/ξ F

M→∞)

∂M(1/ξ F
M→∞)

∣∣∣∣ ≈ L M ln2(2M)[1 + O(M−1)]. (30)

As is clear from equation (30) the ratio is always larger than
one, which is a manifestation of the fact that a change of
F affects the LL more effectively than M . Note that our
numerical calculations, based on equation (27), confirm this
statement for an arbitrary M and F .

In the opposite limit of very large X � 1, equation (27)
yields

1

ξ F
M (L)

≈ α

8Mπ2 X

[
ln(π2 X) − 2M + 1

2M(M + 1)

M∑

n=1

ln k2
n,o

]
.

(31)
For large M summation can be replaced by integration,
yielding the logarithmical asymptotic behavior of 1/ξ F

M :

1

ξ F
M

≈ α

8Mπ2 X

[
ln X + 2ln

e

2

]
+ O(M−2). (32)

Note that, following equations (29) and (32), the asymptotic
behavior of the ratio ξ 0

M/ξ F
M in the limit of large M , can be

presented:

ξ 0
M

ξ F
M

≈ 4

π2 X

[
ln X + 2ln

e

2

]
+ O

(
M−1

)
. (33)

Also note that in a 1D system the analogous ratio, equation (1),
in the same limit of X � 1, behaves as ≈ ln X/X .

In figure 4 we plot ξ 0
M/ξ F

M , the ratio of the corresponding
localization length without electric field, equation (25), to
the localization length when an electric field is present,
equation (27), versus X = F L/E . The different values of the
propagating mode and the appropriate energy are specified in

Figure 3. Plot of the inverse localization length 2L/ξ F
M (L) versus L

for different numbers of modes M , energy E and for disorder
w = 0.5. For all the curves the electric field F = 0.01. The case of
F = 0 is represented by the straight dotted line, indicating
exponential localization (M = 15, E = 0.9π2). The dashed, thick,
dotted–dashed, thin unbroken and solid curves correspond to
(M = 3, E = 0.568π2), (M = 4, E = 0.65π2), (M = 6,
E = 0.74π2), (M = 15, E = 0.9π2) and (M = 35, E = 0.95π2),
respectively.

Figure 4. Plot of the ratio ξ 0
M/ξ F

M (L) versus X = F L/EF for
different numbers of modes M = 4, 6, 10, 15, 35 and appropriate
energies: E = 0.65π2, 0.74π2, 0.83π2, 0.9π2, E = 0.95π2.
Disorder w = 0.5. and electric field F = 0.1. The dashed line shows
the approximate expression (33).

the figure caption. The values of the disorder and the electric
field are w = 0.5 and F = 0.1, respectively. As we can see
from figure 4 the curves collapse into one universal curve in
the Q1D strip model for all modes M . In the same figure
with a dashed curve we have presented the field-dependent
approximate expression (33). The far tail of the universal curve
can be fitted fairly well with this expression. Surprisingly, very
good agreement is obtained even for relatively small values of
X . The good overlap of the curves indicates the validity of
the SPS hypothesis in a Q1D disordered system, although the
definite answer concerning the applicability of SPS theory can
only give us a careful analytical and numerical analysis of the
statistical properties [13, 17, 18].

4. Conclusion

A two-dimensional δ-potential Kronig–Penney model for
quasi-one-dimensional disordered systems is used to study
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analytically the influence of a constant electric field on
the inverse LL. Based on Green’s function poles we have
calculated the inverse LL as a function of the incoming energy
E , field F , length L of the Q1D sample, number of modes
M in the transverse direction and the measure of disorder w.
We show that for fixed values of the channel M and for the
finite electric field F the LL 1/ξ F

M (L) follows a straight line
for small L, but with increasing L the graph curve starts to
bend, increases slowly and finally tends to a constant value.
This means that, for large L in Q1D systems, states are weakly
localized, i.e. we deal with power-law localization. In other
words, a transition from exponential to power-law behavior
takes place with increasing electric field in Q1D mesoscopic
systems. We noted that the graphs change significantly with
increasing F (for fixed M) rather than with increasing M
(for fixed F). To argue this empirical observation, we have
calculated analytically the partial derivatives of 1/ξ F

M→∞,
equation (29), with respect to F and M . The ratio of these
derivatives is always larger than one. We have shown that
all the curves representing the ratio of the corresponding
localization length with and without electric field collapse, for
all modes M and an energy E , into a universal curve in the
Q1D strip model. The far tail of the universal curve can be
fitted fairly well with the expression (33). The good overlap of
the curves indicates the validity of the SPS hypothesis in a Q1D
disordered system, although the definite answer concerning
the applicability of SPS theory can only be found through
careful analytical and numerical analysis of the statistical
properties [13, 17, 18].

We expect that the present results may motivate further
work along these lines.

Acknowledgments

VG thanks T Meyer for critical reading of the paper and for
many useful comments that helped to improve the paper. The
work was partially sponsored by FEDER and the Spanish DGI
under project no. FIS2007-62238.

References

[1] Prigodin V N 1980 Zh. Eksp. Teor. Fiz. 79 2338
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