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Abstract
We have analyzed the influence of the wave packet size in the relativistic
tunnelling time τ and its uncertainty �τ when it traverses a given potential
barrier. The analytical expressions obtained for both magnitudes confirm that
the size of the incident pulse has a significant effect on the tunnelling process.
This effect is greater for short pulses, compared with the length of the barrier.
For the evanescent zone, we have derived an analytical expression for τ with
a good limit of validity. This expression constitutes a value tool to calculate
the relativistic tunnelling time as a function of the incident wave packet with a
good limit of validity. Superluminal propagation is found in this region but with
a large value of the uncertainty �τ compared with the tunnelling time itself.
We can conclude that the probability of superluminal propagation is practically
negligible in the evanescent region. In respect to the Klein zone, we have
derived an analytical expression for τ that depends on the size of the incident
wave packet and the width of the Lorentzian resonance �r. This equation fits
extremely well with our numerical results for Lorentzian resonances near the
top of the Klein zone, where the overlap between them is negligible. As in the
evanescent case, superluminal propagation is not likely to occur in the Klein
region.

PACS numbers: 03.65.Xp, 41.75.Ht

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few decades the time it takes a particle or wave packet to traverse a given region
has been widely discussed in the tunnelling time literature [1–6]. The time problem has
been approached from many different points of view, mostly based on the non-relativistic
Schrödinger’s equation and, generally, leads to two characteristic times. All these approaches
can consistently be formulated in terms of Green’s function, based on measuring the spin
rotation of an electron under a weak magnetic field acting on the region of interest. Both
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characteristic times, that correspond to the real and imaginary part of a complex tunnelling
time, are not independent and are connected by Kramers–Kronig relations [7]. The imaginary
component of the complex time, τ2, is related to the transverse direction of propagation, while
the real component of the complex time τ1 is associated with the direction of propagation. The
latter, in the limit of an opaque barrier or in the forbidden gap of a periodic system, yields to
‘superluminal’ results or faster than c tunnelling velocities. A great variety of theoretical and
experimental work on this topic has been carried out during the last two decades [8–14].

Within conventional interpretations of quantum mechanics concepts, time appears only as
a parameter and thus an expectation value of time is not defined [4]. As was pointed out by Pauli
[15], the existence of such a time operator would imply an unbounded energy spectrum, given
the uncertainty relation between time and energy. However, several authors have developed
tunnelling time formalisms on the basis of quantum time operators. Miyamoto [16] introduced
a positive operator valued measure (POVM) approach for the Aharanov–Bohm time operator,
while Galapon [17] performed a theoretical development of a ‘self-adjoint’ time operator in
a discrete spectrum quantum system. Other approaches avoid a time operator definition and
deal with the tunnelling time problem in a different manner. Hara et al [18] used a real time
stochastic process to derive tunnelling time expressions and Garcia–Calderon et al [19] carried
out a passage time by means of the Feynman path approach.

Our group has studied the tunnelling time of electronic and photonic wave packets taking
into account the specific form of the pulse [20]. We performed our calculations within a
non-relativistic scheme based on the presence-time formalism, where the tunnelling time τ

was obtained as an expectation value of the energy derivative operator T̂ = −ih̄∂/∂E in the
energy representation. We found that the tunnelling time τ for an incident wave packet with
Fourier components �i(E) that traverses a potential of height V0 and length L can be written
as

τ =
∫ V0

0 dE |̂t(E)|2 |�i(E)|2 τ1(E)∫ V0

0 dE |̂t(E)|2 |�i(E)|2
, (1.1)

where |̂t(E)|2 is the transmission coefficient and τ1(E) is the phase time, which corresponds
to the energy derivative of the phase of the complex transmission amplitude ϕt(E) [1]

τ1(E) = h̄
∂ϕt(E)

∂E
. (1.2)

Equation (1.1) allows us to study the dependence of the tunnelling time τ with the spatial
width of an incident wave packet.

The Klein–Gordon equation has been widely used in the literature to derive relativistic
tunnelling time expressions [21–24]. Other works deal with the Dirac equation to calculate
different tunnelling times and derive relations between them within the relativistic framework.
Winful et al [25] derived a general relation between the phase time and the dwell time for
relativistic tunnelling particles and Cheng et al [26] studied the properties of group delay
for Dirac particles travelling through a potential. Recently, Lunardi et al [27] dealt with the
relativistic quantum mechanical problem of a Dirac particle tunnelling through two successive
barriers and Bernardini [28] obtained the solutions for the relativistic tunnelling time of a one-
dimensional potential, in the relativistic wave equation regime, for an incoming wave packet.
Besides tunnelling time calculations, the Dirac equation has been modeled both theoretically
and experimentally with two-level atoms in a harmonic trap [29–33].

For particles with rest mass m0 and total energy E in the presence of a potential V (z)

restricted to a region 0 < z < L, the Dirac equation is given by [25]

H0� = [−ih̄cαz∂z + βm0c
2 + V (z)]� = E�, (1.3)
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where αz and β are 4 × 4 matrices specified in terms of the Pauli matrices and the unit matrix
I. On the other hand, � is a 4-component wavefunction (Dirac bispinor) with two degrees
of freedom for positive energy solutions (with spin up and down) and the other two for the
corresponding negative energy solutions. The relativistic interaction of the Dirac particle
incident on a barrier with height V0 and length L can be divided into three cases. In the
case that the potential barrier is low enough to satisfy V0 < E − m0c

2, the particle has
enough energy to propagate over the potential barrier, as was discussed in [25]. No tunnelling
phenomenon corresponds to this situation where non-evanescent wave propagation exists.
When the potential barrier satisfies E − m0c

2 < V0 < E + m0c
2, and also for positive Dirac

particles, evanescent propagation occurs, by analogy with the non-relativistic tunnelling. The
most dramatic case is when the potential barrier is strong enough to satisfy V0 > E+m0c

2. This
is a transient phenomenon called Klein tunnelling, which has no non-relativistic equivalent.
Here the particle is able to tunnel through the barrier without attenuation, a process mediated
by spontaneous particle–antiparticle pair production [34–37]. Recently, quantum simulations
of the Dirac equation with Bloch–Oscillating spinor atoms [38] and detailed analysis of the
Klein tunnelling time in graphene [39–41] have been carried out.

Due to the increasing interest in the relativistic tunnelling in recent years, our group
have developed the presence-time formalism to calculate analytically and numerically this
magnitude and its uncertainty for wave packets that traverse a given potential barrier. With this
method we take into account the specific form of the pulse and we can evaluate the dependence
of both magnitudes with the size of the wave packet. In a non-relativistic formulation [20]
we showed that the size of the pulse has a substantial effect on the tunnelling time and
its uncertainty, an effect that is greater when the size of the pulse is of the same order of
magnitude than the barrier length. Our aim in this paper is to study if this finite size effect
is significant in the relativistic tunnelling time. As a consequence, relativistic formulas for
both magnitudes, as a function of the wave packet size, are derived, formulas that should be
taken into consideration when working with sort spatial pulses. The possible superluminal
propagation can also be discussed by means of our relativistic formulation. To be consistent
with this relativistic scheme and perform our tunnelling time calculations, we must redefine
the time operator T̂ to be Lorentz-covariant. As shown by Olkhovsky [42], the following
bilinear operator satisfies the latter condition

T̂ = − ih̄

2

↔
∂

∂E
, (1.4)

where the expectation values are now evaluated as

〈f |T̂ |g〉 =
〈
f

∣∣∣∣(− ih̄

2

∂

∂E

)
g

〉
+

〈(
− ih̄

2

∂

∂E

)
f

∣∣∣∣ g〉
. (1.5)

We will use equation (1.5) to derive analytical expressions for the relativistic tunnelling time
τ and its uncertainty �τ .

The plan of the work is as follows. In section 2, we develop our formalism to the simplest
case of a relativistic wave packet that propagates in free space. The relativistic tunnelling time
and its uncertainty of a wave packet through a potential barrier, where evanescent propagation
occurs, is discussed in section 3. Analytical formulas for both magnitudes as a function of
the wave packet size are derived. In section 4, we deal with the Klein tunnelling time and
obtain an expression for this time when the central energy of the incident pulse coincides
with a single transmission resonance. This is an approximate formula with a good limit of
validity near top of the Klein zone. In section 5, we present numerical results concerning the
relativistic tunnelling time and its uncertainty, results that reveal the importance of the size
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of the wave packet in both magnitudes. Moreover, the possible superluminal propagation is
discussed. Finally, we summarize our results in section 6.

2. Relativistic wave packet in free space

Let us first discuss the propagation of a relativistic wave packet �fr in free space.At t = 0 this
wave packet is peaked at z0, has a spatial width �z and moves to the right. The components
of �fr in the energy representation are given by the following Dirac bispinor [25]:

�fr(z, E) = G(E)

⎛⎜⎜⎝
1
0
η

0

⎞⎟⎟⎠ exp [ik(z − z0)] , (2.1)

where G(E) is a normalized weight peaked at the total energy E0 with an energy width �E

and the subindex indicates free space. The relativistic wave number k and the parameter η

depend on the total energy E as follows:

k(E) = 1

h̄c

√
E2 − m2

0c
4, η(E) =

√
E − m0c2

E + m0c2
. (2.2)

We can now derive an expression for the time it takes the free relativistic wave packet to
travel from z0 to z, evaluating the expectation value of the time operator T̂ (given by (1.4)) in
the energy representation [20, 43]

〈T̂ (z)〉 = 1

P

∫ ∞

0
dE �∗

fr(z, E)

(
− ih̄

2

↔
∂

∂E

)
�fr(z, E), (2.3)

where P is the normalization factor

P(z) =
∫ ∞

0
dE |�fr(z, E)|2. (2.4)

Due to the fact that the operator T̂ is Hermitian [42] the imaginary part of its expectation value
cancels, so equation (2.3) can be written, after some algebraic calculations, as〈

T̂ (z)
〉 = 1

P

∫ ∞

0
dE G2(E)(1 + η2(E))τrel(E), (2.5)

where τrel is the time it takes a relativistic particle with total energy E to travel from z0 to z

τrel(E) = E (z − z0)

c

√
E2 − m2

0c
4
. (2.6)

In the limit of low velocities v � c we can recover the non-relativistic result, taking into
account the following relations for the term (1 + η2(E)) :

1 + η2(E) = 2E

E + m0c2
� 2m0c

2 + m0v
2

2m0c2 + 1
2m0v2

� 1, (2.7)

and the relativistic crossing time τrel

τrel = E (z − z0)

c
√

(E − m0c2)(E + m0c2)
� z − z0

v
; (2.8)

hence, (2.5) reduces to〈
T̂ (z)

〉 � 1

P

∫ ∞

0
dE G2(E)

[
m0 (z − z0)√

2m0E

]
, (2.9)

4
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where we have expressed the velocity v in terms of the non-relativistic energy of the particle
E, that is, v = (

√
2m0E)/m0. Equation (2.9) is in agreement with our previous result for the

non-relativistic wave packet propagation in free space [20].
Non relativistic tunnelling time has been calculated in this section. We have only

introduced the formalism that will be used throughout the paper and applied it to the simplest
case of free propagation. In the next section, we evaluate the time it takes a relativistic wave
packet to tunnel through a potential barrier as a function of its size.

3. Relativistic tunnelling time for a potential barrier

Our one-dimensional potential barrier of height V0 is placed in the region 0 < z < L. Upon
imposing continuity of the spinor function across the interfaces z = 0, L, one has for the
complex transmission amplitude t̂ (E) [25]:

t̂ (E) = exp[−ik(E)L]

γ (E)
, (3.1)

where γ is given by

γ (E) = cosh(κL) − i

2

(
ξ − 1

ξ

)
sinh(κL), (3.2)

and ξ and the decay constant for evanescent waves, κ , take the form, respectively

ξ(E) =
(

k

κ

) (
E − V0 + m0c

2

E + m0c2

)
, κ(E) = 1

h̄c

√
m2

0c
4 − (V0 − E)2. (3.3)

The transmitted wave packet in the energy representation �tr can be expressed in terms of the
following Dirac bispinor (see equation (2.1)):

�tr(z, E) = t̂ (E) G(E)

⎛⎜⎜⎝
1
0
η

0

⎞⎟⎟⎠ exp (ikz) , (3.4)

where we have chosen the phase in such a way that our origin of time is when the incident
wave packet, propagating freely, would reach the left of the barrier.

So, the relativistic tunnelling time τ can be written as an expectation value of T̂ at z = L

[20]:

τ = 〈T̂ (L)〉 = 1

P

∫ Eu

El

dE �∗
tr(L,E)

(
− ih̄

2

↔
∂

∂E

)
�tr(L,E), (3.5)

and the integration limits correspond to El = V0 − m0c
2 and Eu = V0 + m0c

2, as required for
the evanescent tunnelling zone. P is again a normalization factor given by

P =
∫ Eu

El

dE |�tr(L,E)|2. (3.6)

Introducing the relativistic spinor (3.4) into (3.5) and after performing some algebraic
operations, we arrive at the following expression for the real part of 〈T̂ 〉:

τ = 1

P

∫ Eu

El

dE G2(E)|̂t(E)|2(1 + η2(E))τ1(E), (3.7)

where τ1 is the phase time.
Our main result concerning the relativistic tunnelling time, equation (3.7), is quite difficult

to evaluate analytically. In order to obtain an analytical approximation for τ with a good limit

5
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of validity, we consider G(E) as a Gaussian wave packet centered at E0 of small energy width
�E and expand |̂t(E)|2 and τ1(E) in Taylor series up to fourth order near E0. The reason
for this high-order expansion will be discussed in the numerical results section. Neglecting
high-order derivatives of the characteristic times τ1 and τ2, (3.7) reduce to the following
approximate expression:

τ � τ1(E0) +

(
1

h̄2

)
[τ2(E0) τ̃1(E0)] (�E)2 +

(
1

h̄4

)
[τ2(E0) τ̃1(E0) τ̃2(E0)] (�E)4

+

(
1

h̄6

) [
τ 5

2 (E0) τ̃1(E0)
]
(�E)6, (3.8)

where, as mentioned in the introduction, τ2 is the tunnelling time component related to the
transverse direction of propagation [1]

τ2(E) = h̄
∂ ln |̂t(E)|

∂E
, (3.9)

and τ̃1,2 are the derivatives of h̄τ1,2 with respect to energy, respectively. We will check the
validity of (3.8) in section 5.

Our formalism also allows us to calculate the uncertainty of the relativistic tunnelling
time �τ at z = L via the time operator T̂ [20]:

�τ = [〈T̂ 2〉 − 〈T̂ 〉2]1/2, (3.10)

where the brackets indicate, as usual, expectation values of the corresponding operators over
the total energy E. After some tedious calculations involving the bilinear operator T̂ , we obtain
for the uncertainty of the relativistic tunnelling time at L

�τ =
[

1

P

∫ Eu

El

dE
[
G2 |̂t |2(1 + η2)

(
τ 2

1 − τ̃2 − τ̃G − (τ2 + τG)2
)

−G2 |̂t |2η2(τ 2
η + τ̃η + 2τη(τ2 + τG))

] − τ 2

]1/2

, (3.11)

where the parameters τG and τη are defined as

τG(E) = h̄
∂ ln G(E)

∂E
, τη(E) = h̄

∂ ln η(E)

∂E
, (3.12)

and τ̃G,η correspond to the derivatives of h̄τG,η with respect to the energy, respectively.
The latter expression for the uncertainty �τ is also quite difficult to express analytically,

so numerical methods are required to evaluate it. In section 5 we compare the numerical
results given by (3.11) with the following second-order approximation of �τ obtained by our
group [20]:

�τ � h̄√
2 �E

, (3.13)

that gives relatively good results for different sizes of the incident relativistic wave packet, as
we will show in the following section.

4. Klein tunnelling time

For strong barriers such that V0 > E +m0c
2 we encounter the phenomenon of Klein tunnelling

which has no equivalence in the non-relativistic Schödinger’s equation. In this critical case,
the complex transmission amplitude t̂ (E) is now given by [25]

t̂ (E) = exp[−ik(E)L]

γ ′(E)
, (4.1)

6
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where γ ′ takes the form

γ ′(E) = cos(κ ′L) +
i

2

(
ξ ′ +

1

ξ ′

)
sin(κ ′L), (4.2)

and the parameters ξ ′ and κ ′ can be expressed, respectively, as

ξ ′(E) =
(

k

κ ′

) (
V0 − E − m0c

2

E + m0c2

)
, κ ′(E) = 1

h̄c

√
(V0 − E)2 − m2

0c
4. (4.3)

We can easily find the transmission coefficient for the potential barrier |̂t(E)|2 in the Klein
regime via equation (4.1):

|̂t(E)|2 =
[

cos2(κ ′L) +
1

4

(
ξ ′ +

1

ξ ′

)2

sin2(κ ′L)

]−1

, (4.4)

which consists of a set of Lorentzian resonances for the resonant energies Er [35]:

Er = V0 −
[(

nπh̄c

L

)2

+ m2
0c

4

]1/2

, n = 0, 1, 2, . . . . (4.5)

So, a relativistic particle with incident energy Er can totally be transmitted through the potential
barrier, in other words, the barrier becomes practically transparent [28]. One encounters
this transmission coefficient |̂t(E)|2 for one-dimensional periodic structures with alternating
indexes of refraction, as recently studied by our group in a detailed slow-light analysis [44].

Let us now obtain an analytical expression for the Klein tunnelling time τ as a function
of the size of the incident wave packet. To this aim, we consider a single resonance Er and
assume a Gaussian wave packet of energy width �E centered at this resonant energy. For one
Lorentzian resonance of width �r, the transmission coefficient |̂t(E)|2 and its phase ϕt(E) can
written as follows [45]:

|̂t(E)|2 = 1

1 + [ar(E − Er)]2
, ϕt(E) = − arctan

(
a−1

r

E − Er

)
, (4.6)

where ar = 2/�r. We can easily prove that the phase time τ1, equation (1.2), can be expressed
in terms of |̂t(E)|2

τ1(E) = h̄ar |̂t(E)|2, (4.7)

so, for the resonant energy Er, the phase time is proportional to the resonance lifetime, that is,
τ1 = (2h̄)/�r.

The average given by (3.7) is also valid for the Klein tunnelling time τ with new integration
limits, El = 0 and Eu = V0 − m0c

2. So, introducing the previous expressions of |̂t(E)|2 and
τ1(E) into (3.7) and evaluating the corresponding integral, we find the following result for τ :

τ = h̄

(
ar

2
+

exp[−(ar�E)−2]√
π erfc[(ar�E)−1]�E

− 1

ar(�E)2

)
. (4.8)

Having a close look into (4.8) one can deduce that, as �E tends to 0, that is, large spatial wave
packets, the Klein tunnelling time reduces to (2h̄)/�r, in consistency with the phase time τ1

for a relativistic particle with resonant energy Er (see equation (4.7)). In the next section we
will verify the validity of (4.8) for different sizes of the incident Gaussian wave packet.

7
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Δ

Δτ
τ

τ
τ

Δ

τ
τ

(a)

(b)

Figure 1. (a) Normalized tunnelling time τ/τvac, versus the ratio �z/L, for an incident Gaussian
wave packet with central velocity v0 = 0.974c. The barrier parameters are V0 = 65 000 and L = 3,
in au. The solid line corresponds to the numerical results based on (3.7) while the dashed curve
represents the fourth-order approximation, equation (3.8). The inset shows the non-relativistic
case where now v0 = 0.020c, V0 = 4 and L = 10, in au. (b) Normalized uncertainty �τ/τvac
versus �z/L for the same Gaussian wave packet and potential barrier as shown in figure 1. The
solid curve represents the numerical results obtained via (3.11) while the dashed curve corresponds
to the second-order approximation, equation (3.13).

5. Numerical results

In this section we present some numerical results concerning the relativistic tunnelling time τ

and its uncertainty �τ as a function of the size of the incident wave packet �z. The tunnelling
time, associated with evanescent waves, and the Klein tunnelling time are both investigated.
As we will see, the approximate results for τ and �τ have a good limit of validity for a wide
range of wave packet sizes. We use in all our work atomic units (au).

In figure 1(a), we represent the normalized tunnelling time, τ/τvac, versus the ratio �z/L,
for an incident Gaussian wave packet with central energy E0 = 83 768.9 (corresponding to a
central velocity of v0 = 0.974c) that traverses a potential barrier of height V0 = 65 000 and
length L = 3, in au. The parameter τvac is the crossing time of the barrier at the vacuum speed of
light. Under these assumptions, the relativistic tunnelling condition E−m0c

2 < V0 < E+m0c
2

is satisfied (c = 137.036 au). The solid curve represents the results obtained via (3.7) and
the dashed curve corresponds to the fourth-order approximation, equation (3.8). For all the
represented values of �z, the normalized tunnelling time is less than 1, so superluminal
propagation is expected. We will discuss this situation later once obtained numerical results
for the uncertainty of the tunnelling time �τ . We can observe that the dashed curve fits the
numerical results relatively well up to the values of �z of the order of nine times the barrier
length. For lower values of �z, the transmission coefficient cannot be replaced by a polynomial

8
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ΓΓ

(a) (b)

Figure 2. Transmission coefficient |̂t |2 for a strong potential barrier of height V0 = 105 000 and
length L = 5.0, in au, for relativistic kinetic energies Ec (a) near 50 000 au and (b) near the top of
the Klein region.

approximation and more complex terms are needed to improve the results. The inset shows
the normalized tunnelling time in the non-relativistic case, where now E0 = 18 782.8 (central
velocity of v0 = 0.020c). The barrier parameters are V0 = 4 and L = 10, in au. In this case,
the fourth-order approximation is valid up to values of �z of the order of L. These results
agree relatively well to that obtained by our group [20].

In relation to the uncertainty of the relativistic tunnelling time �τ , we show in
figure 1(b) the normalized uncertainty, �τ/τ0, versus �z/L for the same Gaussian wave
packet and potential barrier as the previous case. The solid curve corresponds to the
numerical results obtained via (3.11) and the dashed curve to the second-order approximation,
equation (3.13). One notes that the second-order approximation has a good limit of validity up
to the values of �z similar to 14 times the barrier length. To describe analytically the sudden
increase of �τ for short wave packets we must consider more terms in our approximation.
However, the main consequence of our previous results is that the uncertainty �τ is much
higher than the relativistic tunnelling time itself τ . So, we can conclude that the probability
of superluminal propagation is practically negligible in the evanescent region.

In order to study numerically the Klein tunnelling time, we consider a strong potential
barrier of height V0 = 105 000 and length L = 5.0, in au. The Klein region, where
V0 > E + m0c

2, corresponds to relativistic kinetic energies satisfying Ec < 67 442.3 au.
We have represented in figure 2(a) the transmission coefficient |̂t |2 versus Ec for kinetic
energies similar to 50 000 au, while in figure 2(b) we have shown the same parameter for Ec

near the top of the Klein region. One can observe that the overlap between Lorentzians is
negligible near the top, that is, complete resonances occur in this region.

Once analyzed the transmission coefficient of our barrier in the Klein zone, we plot in
figure 3(a) the normalized Klein tunnelling time τ/τvac versus the ratio �z/L for an incident
Gaussian wave packet centered at the resonance Ec,r = 50053.2 au (with a central velocity
of v0 = 0.96c). The solid line represents our numerical calculations obtained via (3.7),
while the dashed line are the approximate results given by (4.8). For long spatial wave
packets, equivalently, short values of the energy width �E, the normalized Klein tunnelling
time saturates to the value 1.61. This corresponds to the resonance lifetime (2h̄)/�r, where
�r = 36.3 au in this case. In figure 3(b) we show the same parameters for a Gaussian wave
packet centered at Ec,r = 67 309.3 au. For this resonance, the approximate calculations fit
relatively well the numerical results for practically all sizes of the incident wave packet. The
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Figure 3. Normalized Klein tunnelling time τ/τvac versus the ratio �z/L, for an incident
Gaussian wave packet centered at (a) Ec,r = 50053.2 and (b) Ec,r = 67 309.3, in au. The
solid line corresponds to the numerical calculations obtained via (3.7), while the dashed lines
are the approximate results given by (4.8). The normalized uncertainties �τ/τvac are shown
in figures (c) (where Ec,r = 50053.2 au) and (d) (Ec,r = 67 309.3 au). The solid curves
represent the numerical results via (3.11) and the dashed curve to the second-order approximation,
equation (3.13). The inset in figure (c) corresponds to the same curve as the main part, and has
been included for the sake of clarity.

reason is that there exist complete Lorentzian resonances near the top of the Klein region
where our approximation, given by (4.8), is more suitable than in the overlapped Lorentzians
region.

One observes that, in both regions, τ/τvac is always greater than 1 so, superluminal
propagation is not likely to occur. To confirm this matter, we plot the normalized uncertainty
�τ/τvac for the overlapped Lorentzians region (figure 3(c)) and near the top of the Klein region
(figure 3(d)). The solid curves represent the numerical results via (3.11) and the dashed curve
to the second-order approximation, equation (3.13). The inset in figure 3(c) corresponds to the
same curve as the main part, and has been included for the sake of clarity. As in the evanescent
case, �τ/τvac is much higher or of the same order of magnitude than the Klein tunnelling time
itself, so we conclude that the probability of superluminal propagation is practically negligible
in the Klein region.

6. Conclusions

We have analyzed the influence of the wave packet size in the relativistic tunnelling time and
its uncertainty when it traverses a given potential barrier. The analytical expressions derived
for both magnitudes confirm that the size of the incident pulse has a significant effect on
the tunnelling process. This effect is greater for short pulses, compared with the length of
the barrier. For the evanescent zone, the approximate expression given by equation (3.8)
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constitutes a value tool to calculate the relativistic tunnelling time as a function of the incident
wave packet with a good limit of validity. Superluminal propagation is found in this region
but with a large value of the uncertainty �τ compared with the tunnelling time itself. We
can conclude that the probability of superluminal propagation is practically negligible in the
evanescent region. In respect to the Klein zone, we have derived a useful expression for
tunnelling time τ (see equation (4.8)) that depends on the size of the incident wave packet
and the width of the Lorentzian resonance �r. This equation fits extremely well our numerical
results for Lorentzian resonances near the top of the Klein zone, where the overlap between
them is negligible. As in the evanescent case, superluminal propagation is not likely to occur
in the Klein region.
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