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We reconsider the problem of a one-dimensional Ising model
with an arbitrary nearest-neighbor random exchange integral,
temperature, and random magnetic field in each site. A
convenient formalism is developed that reduces the partition
function to a recurrence equation, which is convenient both
for numerical as well as for analytical approaches. We have
calculated asymptotic expressions for an ensemble averaged
free energy and the averaged magnetization in the case of strong

1 Introduction In the theory of disordered one-
dimensional (1D) systems, many problems in thermodynam-
ics and quantum transport can be reduced to the evolution of
the product of transfer matrices [ 1-4]. The method is efficient
in evaluation of many physical quantities (e.g., electron
scattering matrix elements, energy spectrum, localization
length, partition function, etc.) in finite periodic systems
with complex, but identical unit cells. In such cases it
is straightforward to diagonalize the product of transfer
matrices. This method also allows us, in the presence of any
kind of disorder (e.g., in the Anderson model with diagonal
and/or off-diagonal disorder, in the case of inhomogeneous
Ising alloys, or in quasiperiodic systems), to carry out
numerical calculations very effectively. Unfortunately the
method becomes almost useless for solving the problem
analytically in the general case when the number of
impurities becomes very large. This is connected with the
fact that the product of the individual transfer matrices do not
commute and one needs to calculate the product of all transfer
matrices which exponentially increases with their number.
This is the main difficulty of the transfer matrices method and
arose in many studies in the theory of 1D disordered systems
and particularly of calculation of partition function in 1D

and weak couplings in external constant magnetic field. With
a random magnetic field at each site in addition to nearest-
neighbor random exchange integrals we also evaluated the
free energy. We show that the zeros of the partition function
for the Ising model in the complex external magnetic field
plane formally coincide with the singularities of the real part
of electron’s transmission amplitude through the chain of §-
function potentials.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

disordered magnetic Ising systems in the intermediate region,
i.e., when the magnetic field (or temperature) is not very
high or low (see, e.g., Refs. [5, 6]). The situation becomes
more complicated when we deal with two or more random
parameters as in the case of 1D Ising inhomogeneous model
with random magnetic field at each site in addition to nearest-
neighbor random exchange integrals. A new approach which
avoids direct calculation of the product of arbitrary 2 x 2
matrices in many 1D problems was presented in Ref. [3].
The author has shown that the product of matrices can be
reduced to a recurrence relation directly for the exponent and
thus maps many 1D problems on each other. Nevertheless the
method developed in Ref. [3] is more convenient, in our view,
for large systems, where the boundary and initial conditions
are not as important.

Another useful method, based on the exact calculation
of the Green’s function of a quantum particle in a given
potential, to investigate the behavior of electrons in one
and multi-channel random chains was developed in Refs. [7,
8]. This so-called characteristic determinant method, in our
view, has some advantages compared with the methods used
in Refs. [1-3]. First of all, this method makes it possible to
reduce the calculation of the product of finite and arbitrary

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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matrices to the calculation of the determinant D (or inverse
transmission amplitude) of the order N x N (N is the number
of individual scattering sites or atoms in the chain). Secondly,
knowing the explicit form of the Green’s function of a
quantum particle in a given potential makes it possible to
calculate the average density of states over the sample as well
as the characteristic barrier tunneling time [9] and represent
them by the determinant D .

The purpose of the present paper is to extend the
method of characteristic determinant to the general case
of the disordered 1D Ising model with an arbitrary
nearest-neighbor random exchange integral, temperature,
and random magnetic field in each site. Magnetic realization
of the latter is typically dilute antiferromagnetism in uniform
field. We explore further the analogy between the phase
coherent charge transport through single channel systems
and 1D Ising models; even though these two major areas are
seemingly disparate and have evolved independently. Our
main focus is to present a unified approach which will allow
us first to recover all well-known results for 1D Ising model
and second to derive simple analytical expressions for the
ensemble averaged free energy (F) and for the averaged
magnetization (M) in the intermediate region when the
magnetic field (or temperature) is not very high or low. To the
best of our knowledge there are no analytical expressions for
(F) and (M) in this regime because, as we mentioned above,
all available methods are more convenient for numerical
simulations only.

2 Model and derivation of the main relations
We consider a 1D chain of N spins with an arbitrary
interaction between the nearest atoms in the presence of a
random magnetic field (inhomogeneous model). The model
is defined by the Hamiltonian

N N
j=1 j=1

ey

where o; takes the values %1, /; is the nearest-neighbor

random exchange integral, and 4; is the random magnetic

field at site j. We assume that all the h;’s and I;’s are

independent random variables with the distribution functions

f(h) and g(I), respectively. The aim, as always, is to calculate

the partition function in the thermodynamic limit N — oco.
The partition function of the system is given by

N N-1
A Z . Z exp{ﬂzh,ﬂj + ,BZ IjGjGjH} )
o1==£1 j=1 =1

on==lI

@)

where = 1/kT is the inverse temperature.

It is well known that in the homogeneous case, when
all the nearest-neighbor exchange integrals /; are equal, the
partition function can be obtained by means of the transfer
matrices technique [10, 11]. Following this method, one can

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

show that in general case, as discussed here, the partition
function Z™, Eq. (2), corresponding to a closed sequence of
N spins (07 = oy4) can be written in the following form:

7M — Z Z P(01,0,) P,(0,,03) - - - Py(oy,01)

o1=%1 oy=%l1
=Tr PV, 3)
where
pm - p
N) _ L _ 11 12
P™ = PP, Py < py  po |- 4

For the P; we can use the following representation [3]:

eYi
e’/tan x;
. 5 \q1/2 COS X; '
P; = [2sinh(21))]" R IO
e Vitan x;
COS X;

where y; = Bh;, x; = arcsin(e27), and 1, =Bl
Now let us define unimodular matrices M

e
etan x;
coS X;
— J
M; = , eV . 6)
e Yitan x;
COS X;

Then a successive matrix M is an ordered product of
the individual matrices M

)
Mll

MY = MM, My =
e ! (ME?”

My ) .
My )’

with the matrix elements M|\’ and M, given below

N
MY = Dyer . ®)

_ N
my = D= SO Dt 3o ©
sin xy

Here, Dy, is the characteristic determinant introduced in
Ref. [7]. The matrix elements of N x N determinant Dy are
determined by

(Dy)u = det O + [0 —n) = 6(n — DI(L = 8,)
COS X

n

B Zmax(l.n) v
x e “i= ' tan x|, (10)

where 6(z) = 1 if z> 0 and 0 otherwise.

www.pss-b.com
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Note that the matrix elements M5y’ and M) are obtained
from Egs. (8) and (9) by replacing y;, — —y;
MY =

M (=), (1)

M3 = M3 (=) (12)

Then it follows directly from the obtained expression
(10) that the determinant Dy can be presented in tridiagonal
Toeplitz form, where the only non-zero elements are the diag-

onal elements nn, and the nearest-neighbor elements n £ 1

A, by 0 o ... 0
Cy Az bz 0 s 0
0 Cy A3 b3 s 0
det Dy = . . . . . (13)
0 <o 0 Ccyoa Anoi by
0O .- ... 0 ey Ay
cn-1, by_1, and Ay are given by
e
CN—1 = — (I +sinxy_y); ¢ =0,
COS Xy_1
—INE
byt = — (| —sinxy ) by=0.  (14)
SIN Xy _1
1 B 1
AN = N , =
COSXy  COSXy_; COoS X,
with
tan
BN = CN,le,l = & 672))1\1; Bl =0.
tan xy_;

By expanding in minors on the last row, we find for the
determinant D, the recurrence relation

Dy =AyDy_y — ByDy_,, (15)
where the initial conditions are: D, = 1/cos x;, Dy, =1, and
D_,=0.

Dy_in-2 is the determinant of the matrix of Eq. (10)
in which the Nth or (N — 1)th row and column are absent.
Note that the analogous recurrence relation to Eq. (15), with
different Ay and By, takes place in the calculation of the
transmission amplitude of the electron through a random 1D
system as in the case of an open system [7], as well as with
the periodic conditions on the system, equivalent to joining
the two ends of the line so as to form a circle [12].

In view of Egs. (4)-(12), Z™ can be written in terms of
the Dy(yy, ...,yy) and Dy(—=yy, ..., — Yy)

zV = [DN(ylau-vyN)eZ' "4 Dy(=y1s s = )

> ] ﬁ [2 sinh(zf,-)} "

Jj=1

(16)

www.pss-b.com

This formula represents the central result of our work.
Together with Eq. (15), it expresses the partition function
fully in terms of the individual atoms in the chain and
allows one to compute, for an arbitrary y; and I~]-, the
partition function Z® and any other physical quantities,
e.g., free energy (F), equilibrium magnetization (M), etc.
It is worth noticing that using the transfer matrix techniques
one can derive a recurrence relation directly for the ratios
ZM()/Z™M (=) (for more details see Refs. [13, 14]), where
Z™M(4) and Z™(—) are the partition function of N spins
with the last spin s, =41 and s, = —1, respectively. This
functional recursion relation, yielding the fixed distribution
of the relation from which the free energy and other
thermodynamic properties can be calculated, looks too
complicated for the exact results.

In the following section, we analyze the limits of (16)
and will provide an asymptotic expressions for (F) and for
(M) in the case of strong and weak couplings, without any
restriction on the external magnetic field 4. We also analyzes
the case of binary £, magnetic field distribution.

3 Method of solution Before we proceed further
and derive the partition function for an arbitrary external
magnetic field, we briefly discuss a practical algorithm for
solving the recurrence Eq. (15) for two well-known cases
[10, 11].

3.1 Homogeneous Ising model In the homoge-
neous Ising model all nearest-neighbor random exchange
1ntegrals I and the random fields y; are equal I ==
Iy=1 and yy=---=yy=1y). This means that the
quantities Ay and By (see Eq. 14) do not depend on indices
N and that Dy can be presented in the form Dy = ¢,U) +
¢, UY, where U, and U, are the solutions of the equation

U*— AU+ B =0, a7

and ¢, and ¢, are assumed to satisfy the initial conditions
DO = C =+ Cy = 1

1

D1=C]U]+C2U2: .
COS X

Solving Eq. (17) and taking into account the initial
conditions for ¢; and ¢, we obtain for Dy the following
expression:

—Ny

DN = — ¢
24/e# + sinh® y cos¥ x
x {eW =A%) — N =AM Y cos’x ), (18)
where
y=e (cosh y 4 1/e* + sinh® y) . (19)

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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If we formally define and as N— oo this lead us to the other well-known

coshy / ~
cosh B, = ;o cosx=1\/1—e¥>0,
CcOS X

then Eq. (18), after simple algebra, can be rewritten in the
more compact form

Dy — e {cosh(N,Bl) N sinh y sinh(Nﬂl)} '

- (20)
cosx sinh B,
It is not difficult to see that the second term in the bracket

is an odd function with respect to y and thus the partition
function Z™ (16) reads

~ N
1
Z™ = [Dy(y)e™ + Dy(—y)e™] ( c >
CosS x
=AY+ AN

In the thermodynamic limit, when N — oo, (A_/A,)Y —
0 we have

VAE DS 21)
that is, the result which was obtained by Kramers and
Wannier using the transfer matrices technique [10].

The partition function for the Ising model on a 1D
translationally invariant lattice with complex unit cells with
different exchange integrals 7, can be found in a similar way
by solving the same recurrence relation (15) for Dy. Together
with the periodicity of the system it allows us to find an
analytical expression for the characteristic determinant D,
(M x n is equal to N, the total number of spins) and hence
the partition function. In Section 4 we show that using the
similarity between quantum electron transport in 1D chain
and the Ising model, one can easily get the partition function
in such a case.

3.2 Zero magnetic field The second case when the
recurrence Eq. (15) can be calculated straightforwardly for
an arbitrary 1, is zero magnetic field, i.e., i, =y, = 0. In this
case it is easy to verify that the solution of Eq. (15) has the
form

1 N N
=3 (H (a;+6;) + ] (a; - b./)) ; 22)
j=1 j=1
where a; = 1/cos x; and b; =tanx;.
Thus, the partition function reads
N _ N _
ZM — N <H cosh I; + H sinh I_,-) , (23)
i=1 j=1

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

result for the inhomogeneous Ising model at zero magnetic
field [10]

7 @) 24)

N
=2" H cosh I;.
j=1

3.3 An arbitrary constant external magnetic
field Equations (21) and (24) are well known from the
theory of the 1D Ising model [11] and are included
only for completeness. Now we can go a step further
and discuss the thermodynamic properties of the system,
assuming that the nearest-neighbor exchange integrals 7]-
are independent random variables with the same probability
distribution function g(7). As for the external magnetic
field we will assume that it is an arbitrary, but constant,
ie., hy =---=hy = h. Although it is well known that
the equilibrium properties of the system in an external
magnetic field & cannot be evaluated exactly, i.e., it is
not possible to find the analytical solution for Z" in
the general case, we will show that in two limiting
cases one can find new asymptotic expressions for
.

First let us discuss the case of strong coupling which
assumes that 7,- > 1 (I; > kT). In this case the recurrence
relation (15) can be solved in the following way. The
initial conditions (see Eq. 14) for the recurrence relation
(15) can be approximately replaced by cosx ~ 1, Ay =~
14+ By, and D, ~ 1. Then it is readily verified that
the approximate solution of the recurrence relation (15),
with above assumptions, is Dy = 1. Substituting Dy(y) =
Dy(—y) = linto Eq. (16), we find for the partition function
ZWN)

S

N
20~ (& +e ) [ [2sinh 2T

j=1

1/2

~ 2 e icosh (N). (25)

We added a subscript s to indicate that we are discussing the
strong coupling case. Note that the above equation reduces
to Eq. (24) when we take magnetic field y =0 and 7]- > 1,as
it should be.
Now, it is straightforward, for any external magnetic field
h using Eq. (25) to evaluate the average free energy (F)
and the average magnetization (M™) for a given distribution
function f (7 ). For simplicity we discuss the case when the
nearest-neighbor random exchange integral I is distributed
unlformly in an interval [0,W], i.e., dlstrlbutlon function
(I.,) = 1. After averaging we will get for (F") and (M),
respectively

www.pss-b.com
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(F™) = / / InZ™Mdl, ...dly
~NWY
w
A -5 —ln cosh Ny, (26)
™) 1 /2 ™)
<Mg > =——(—InZ" ) ~ —tanh Ny. (27)
| N \ dy

In the low- and high-% limits the free energy (26) can be
shown to be

(FM) ~ —% — 27Th2 + O (28)
and

(F™)y~ —h — KL gamner . (29)
respectively.

Note that similar asymptotic expressions for an average
free energy (F) in the low- and high-4 limits, using the
different probability law for /;, were also obtained in
Ref. [5]. Nevertheless in Ref. [5] the mathematical method
of calculation of the free energy, based on the evaluation
of N transfer matrices did not allow their authors to get an
analytical expression for an average free energy (F) in the
intermediate region in contrast to our result (26) which is
valid for arbitrary magnetic field A. For this reason both
expansions in Ref. [5], like (28) and (29), were shown to
be connected only numerically, through direct numerical
evaluation of a product of N transfer matrices.

To complete all the methods of calculating the recurrence
relation (Eq. (15)), we finally consider the case of weak
coupling, i.e., when the average strength of the 7_, LI K
kT). In this case we have sinx ~ 1, cosx ~ 0, Ay > By,
and the recurrence relation can be written in the form

DN - ANDN—I'

It is not difficult to see that the solution of the above
recurrence relation has the form

N
DN - Al HAJ
j=2

or

N

H e Ptanx; | .
= cosx, >\ cos x;

Jj=

Substituting the above expression for D in Eq. (16) gives

N N
ZW = ehty HZcosh (I+y) +eh™ H2cosh I, —y),

j=2 j=2

www.pss-b.com

and because 7j <« 1 the final results for the partition function,
free energy, and magnetization read, respectively

Z™M = (2cosh y)¥e v H cosh 7j

1 o~
~ N 2
~ (2cosh y) (1 + 3 ]-Ezl I; > ) (30)
h w?
F"Y~ —kTIn2cosh— — —, 31
(RY) NN T ekt Gh
and
) h
<M > ~ —tanh (32)

kT

Note that the result, Eq. (32), is similar to the one which
can be obtained from simple Ising model magnetization (per
site)

i
T e s1nh—kT
N—ooo — P h ’
47 oinh2
1 4+ e* sinh T

(33)

if one takes the limit of high temperature (I — 0). This means
that at high temperature the disorder does not play an essential
role.

In Fig. 1, we plot average free energy for strong (dashed
line) and weak (dot line) coupling regimes, defined by
Egs. (26) and (31), as a function of the disorder W (strength
of random exchange integral). It can be seen that the expected
behavior for these limits is obtained and that the curves are
fitted well with the numerical result, obtained from Eq. (16)

s L L L | L L L L L L
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1 Average free energy as a function of disorder W (strength
of random exchange integral). Solid, dashed, and dot curves are
given by Egs. (16), (28), and (31), respectively. N=100 and
h=0.1.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 Average magnetization (per site) as a function of disorder

magnetic field / (dotted line, Eq. (32)). Solid curve is obtained from

Eq. (16). N=100 and w=0.02.

(solid line). The value of external magnetic field is 7 =0.1
and number of the spins in the chain is N = 100.

In Fig. 2, we have plotted the average magnetization (per
site) for the weak coupling regime (dotted curve), defined by
Eq. (32), as a function of the external magnetic 4. The solid
line is the numerical result based on Eq. (16). Figure 2 shows
that the analytical expression (32) agrees very well with the
exact expression (solid line) in the whole range 0 <h < 2.5
for the values of disorder w=0.02 and number of spins in
the chain N=100.

Letus finally present the average magnetization (per site)
for strong coupling regime as a function of external field
h (see Fig. 3). The dotted line is the limiting expression,
Eq. (27), which asymptotically follows to the numerical
result, based on Eq. (16). One can see that for 4> 0.8 both
curves practically coincide. The difference between the two
curves for small 4 in Fig. 3 connected with the fact that in
expression (25) we ignored the terms which are proportional

toe ™.

0.8

085+

-0.9

<MS(N)>

-0.95

1.2 1.6 2

Figure 3 Same as Fig. 2, but for strong coupling. Dotted line is the
average magnetization and is given by Eq. (32). Solid curve based
on numerical calculation (Eq. (16)).

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

3.4 Random magnetic field Our objective in this
subsection is to extend our previous calculations of partition
functions Z™ and Z!™ (see Egs. (25) and (30)) when we
have random magnetic field at each site in addition to nearest-
neighbor random exchange integrals. We proceed along the
same line as in Subsection 3.3, and show that only minor
modifications of the final expressions, Egs. (25) and (30),
are required in order to include a random magnetic field y;.
Indeed, for Z?QMF we will get a similar expression to Eq. (25)

N~ e e\ Y 172
~ (er—l I +e Zle If) [2 sinh 211-]

J=1

Z(N)

s,RMF

N o~ N
~ 22 cosh Z ¥, (34)

Jj=1

Here, subscript RMF stands for “random magnetic field”.
From the comparison of the above partition function in the
presence of random magnetic field y; with the expression
of partition function when magnetic field is constant (but
arbitrary, see Eq. (25)) one can see that in Eq. (34) Ny is
replaced by the sum over y;. The reason for this replacement
in such a simple way is connected with the fact that in the
limit of strong coupling both parameters, 7/- and y;, are not
correlated, statistically independent of each other and can be
easily decoupled. After ensemble averaging over the random
exchange integral TJ-, distributed uniformly in an interval
[0,W], the average free energy for this Ising model takes the

form
kT w w
=_NWN/0 /0 In Z8 e dl ...

W kT .
A —5 - Wlncosh;yj.

(Fie)

s,RMF

dIN
(35)

In the next stage, we need to average (F, :,]}g,m) over the random
field y; and so for given distribution f{y;) calculate integral
over variables y;. Here, we want to emphasize the following
point. The presence of the summation over y; in the
logarithmical function in (Fiﬁ?vm) does not allow us to get a
closed analytical expression and one has to rely on numerical
solution of Eq. (35). Thus, the analytical calculations no
longer possible without further simplifying assumptions,
connected with the magnitude of the random field y;. To
set an analytical expression for an average free energy over
the random y; let us discuss, as we did in Subsection 3.3,
the two limiting cases of random magnetic field y;, i.e.,
y; > landy; < 1.Forsimplicity, we will focus on so-called
binary distribution function which describes the discrete
random fields where h; = 4h, and h; = —h, each occur with
probability 1/2 (see, e.g., Refs. [13, 14]). In this case

1
f(h)y = 2 [8(h = ho) + 8(h + hy)] - (36)

www.pss-b.com
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Assuming that all y; >> 1 and after Taylor expansion of
the logarithmic function in Eq. (35) and using the above
binary distribution function, one can get the following
expression for free energy

v kT 2h
FO N KT o 2o
< s,RMF> N cos T

(37)
Here, the over bar denotes averaging over the ensemble of
chains with the distribution function f(4) (Eq. 36).

In the low magnetic field limit, i.e., y; < 1, we arrive at

w h?
— - 2 Lo,

2 2uT %)

(Fie) ~

The case of the weak coupling can be treated in the same
way as we did in Subsection 3.3 (see Eq. 31). The final result

for (FV(VIYIQMF) is

W2

—_— h
FM )V~ —kTIn2cosh— — ——.
( w,RMF) n.zcos 6kT

kT (39)
4 Zeros of the partition function As mentioned in
Section 1 there is considerable similarity between the phase
coherent charge transport through single channel system and
1D Ising model, in spite of the fact that these two major areas
are seemingly disparate and have evolved independently. The
resemblance runs even deeper when one considers the zeros
of the partition function, Eq. (16), and analyzes the chaotic
trajectories in the complex external magnetic field / plane
(for more details, see Refs. [15, 16] and references therein).
To demonstrate the technique of complex y in calculation
of the partition function, Eq. (16), in the case of a periodic
system with many atoms in a unit cells we follow closely to
Ref. [9] and write down the explicit form of Green’s function
poles (or characteristic determinant which is inversely
proportional to the transmission amplitude through a general
structure) in the case of generalized Kronig—Penny model

. e in(KBd
D, = ek {cos(Kﬂd) +iIm {e™D,} sin(Kp )} ,

sin(Bd)
(40)

where D, is the characteristic determinant for one unit cell,
d is the lattice period, K is the number of cells, and n x K is
equal to N, the total number of §-potentials. § plays the role
of quasimomentum for the GKP and is given by the equation

cos(Bd) =Re {e ™™D, }. 41)
When the modulus of the RHS of Eq. (41) turns out to be
greater than 1, § has to be taken as imaginary. This situation

corresponds to a forbidden electron’s energy gap in an infinite
system.

www.pss-b.com

Now the first step is to replace in Eq. (40) kd by iy* and
Bd by B,. Then we will get

N . sinh(KB,)
D, x =e " qcosh(KB,) +iL————— ;, 42)
sinh(,)
where
cosh B, = Re {e™™ D,(y = =iy} [,y 43)
and
L =1Im {e—iny* Dn(y - _ly*)} |y*—>iy . (44)

The second key step, after calculating the cosh §, and the
imaginary part of L, makes another analytical continuation
by replacing y* — iy.

It can be checked directly that the second term in Eq. (42)
is always an odd function with respect to y and thus the final
expression for the partition function can be presented

Z0 R = {2 cosh (KB,) | [12sinh 2E]K/2}

j=1
= A+ mF, (45)
with

n
) _ oEh 1;
Ay =e He’cosxj.

J=1

(46)

The validity of the expression Z"*® for the case of a
periodic spin system with complex cells may be explicitly
checked for smalln,i.e.,n=1,2,.... Forexample, forn=1,
one has from Eqgs. (15) and (43)

o1
cosh B; = Re {e’y }
cos x

which yields Eq. (20).
For n =2 one has

__coshy

cosx

YE—>iy

. 1 -
cosh B, = Rede ™ | ————— + e tanx, tan x,
COS X COS X, iy
cosh 2y
= — = 4 tanx, tanx,. (47)

COS X COS X,

By inserting Eq. (47) into Eq. (45) we obtain partition
function Z%*®_ For illustrative purpose one can check that for
magnetization per cell, in the thermodynamic limit, we have

1

=———1nZ®H
K dy

M

K—o0

sinh 2y

\/(coszy + sin x; sinx,)> — cos? x; cos? x,
(43)
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For identical nearest-neighbor exchange integrals,
x| = x, the homogeneous case (Eq. 33) is recovered.

Concluding, note that the zeros of the partition function
Z R = (A% 4 (A")¥ = 0 in the complex y plane can be
found by replacing A" = ¢"/¥1" (—K<g < K is odd). The
case of n=1 (homogenous Ising model) was discussed in
Ref. [15].

5 Conclusion A convenient formalism is developed,
based on the determinant method, that allows one to calculate
the partition function Z™, Eq. (16), for the 1D Ising model
with an arbitrary nearest-neighbor random exchange integral,
temperature, and magnetic field. It is shown that the
calculation of Z™ can be reduced to solving the recurrence
relation given in Eq. (15) which is convenient both for
numerical as well as for analytical approaches. Particularly,
we have calculated asymptotic expressions for the ensemble
averaged free energy (F) and for the averaged magnetization
(M) in the intermediate region, i.e., when the magnetic field
(or temperature) is not very high or low. We have evaluated
also the free energy when possessing random magnetic
field in each site in addition to nearest-neighbor random
exchange integrals. The zeros of the partition function for
the Ising model in the complex external magnetic field plane
coincide with the singularities of the real part of transmission
amplitude through the 1D chain of §-function potentials.

It should be clear that the concepts discussed in this
article apply not only to the discrete random magnetic field /;
but can be generalized to the problem when both /; and /; are
random and described by continuous distribution functions,
e.g., Gaussian or uniform.
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