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We study numerically the behavior of the distributions functions for diagonal and off-diagonal elements of
the global partial density of states �DOS� in quasi-one-dimensional �Q1D� disordered wires as a function of
disorder parameter from metal to insulator. We consider two different models for disordered Q1D wire: a set of
two-dimensional N scatterers of � potentials with arbitrary signs and strengths placed randomly and a tight-
binding Hamiltonian with several modes M and on-site disorder. We show that the variances of global partial
DOS in the metal to insulator crossover regime are crossing. The critical value of disorder wc, where we have
crossover for given numbers of N scatterers and for modes M, can be used for calculating a localization length
in Q1D systems. The matrix elements of Green’s function of Dyson’s equation in Q1D wires for the two
models are calculated analytically. It is shown that the Q1D problem can be mapped to the 1D problem and that
the poles of the Green’s function matrix elements, as well as the scattering matrix elements, are a determinant
of rank N�N, where N is the number of scatterers. It is shown that the determinant can be used to calculate
the spectrum of an electron in the disordered Q1D wire, the DOS, the scattering matrix elements, etc., without
determining the exact electron wave function.
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I. INTRODUCTION

Calculating the density of states �DOS� allows us to ob-
tain many properties of the system under consideration, such
as charging effects, electrical conduction phenomena, tunnel-
ing spectroscopy, or thermodynamic properties. Furthermore,
the decomposition of DOS in the partial density of states
�PDOS� and global PDOS plays an important role in dy-
namic and nonlinear transport in mesoscopic conductors.1–8

Particularly, the emissivity, which is the PDOS in configura-
tion space for electrons emitted through arbitrary lead,2,9,10 is
always present in physical phenomena where quantum inter-
ference is important. The adiabatic quantum pump and its
noise properties, the heat flow, etc., can be expressed in
terms of a generalized parametric emissivity matrix ��X� �see
Ref. 8�. The diagonal element ����X� of the emissivity ma-
trix is the number of electrons entering or leaving the device
in response to a small change �U�x�, such as distortion of the
confining potential. The off-diagonal element ����X� of the
parametric emissivity matrix determines the correlation be-
tween the current in leads � and � due to variation of pa-
rameter X.11

Note that the elements of global PDOS are closely related
to characteristic times of the scattering process and conse-
quently to the absolute square of the scattering states. Par-
ticularly, in one-dimensional �1D� systems, ��� and ��� are
related to the Larmor transmitted time �T �or Wigner delay
time� and to the reflected time �R which are, respectively,
weighted by the transmission coefficient T �Refs. 5, 12, and
13� and reflection coefficient R. The Wigner delay time can

be interpreted as a time delay in propagation of the peak of
the wave packet due to scattering in comparison with a free
wave packet propagation. The theory of weighted delay time
for a waveguide in the diffusive regime, when the length L of
the system exceeds the mean free path but is still less than
the localization length �, is formulated in Refs. 14 and 15.
They have shown that the weighted single-channel delay
time is not a self-averaging quantity and that large mesos-
copic fluctuations in delay time can be expected. These fluc-
tuations, as we will see in Sec. IV, will affect the statistics of
the diagonal and off-diagonal elements of the parametric
emissivity matrix.

As was mentioned in Ref. 16, the emittance is in general
not capacitancelike, i.e., the diagonal and the off-diagonal
emittance elements are not positive and negative values, re-
spectively. Whenever the transmission of carriers between
the two contacts predominates the reflection, the associated
emittance element changes sign and behaves inductancelike.
This type of crossover behavior for the diagonal element of
emittance ��� �taking into account the Coulomb interaction
of electrons inside the sample� was found in Ref. 17, where
the authors studied the distribution function �DF� of emit-
tance. They found that in the range of weak disorder, when
the system is still conductive, the DF is Gaussian-like. With
increasing disorder of the system, the DF becomes non-
Gaussian. In other words, the system shows inductivelike
dynamic behavior when the system is almost transparent, and
it behaves capacitivelike when we have complete reflection
from the system.

The purpose of this paper is to study numerically the be-
havior of DFs of the diagonal elements ��� and off-diagonal
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elements ��� of global PDOS in the Q1D disordered wires,
where not much is known about the behavior of the DF. We
will be interested in the three different regimes of transport:
metallic ��	L� �where � is the localization length and L is
the typical size of the system�, insulating ��
L�, and cross-
over ���L�. Our results indicate that in the intermediate
regime of transport between the metallic and insulating re-
gimes, there exists a critical value of disorder wc where we
observe crossover between the variances var����� and
var����� �see Fig. 1�. This critical wc determines the local-
ization length of the Q1D system for given length L and
number of modes M. It turns out that in the metallic regime,
the distribution function P����� is Gaussian, which means
that the first and second moments �i.e., the average ����� and
the variance var�����= ����

2 �− �����2� are enough to describe
the behavior of P�����. In the strong localization regime, the
distribution of ��� is log-normal, which means that ln ���

follows a Gaussian distribution. As regards the distribution
function of ���, we can say that in the strong localization
regime, it is characterized by an exponential tail, the values
of ��� are positive, and the dynamic response of the system
is capacitivelike.16 In the metallic regime, the emittance has
non-Gaussian-like behavior and some of the values of ���

are negative �inductivelike behavior�.17,18

We will consider two models: a Q1D wire with the set of
� scattering potentials of the form

V�x,y� = �
n=1

N

Vn��x − xn���y − yn� , �1�

where Vn, xn, and yn are arbitrary parameters, and a Q1D
lattice of size L�W �L	W, L is the length and W is the
width of the system�. The site energy can be chosen ran-
domly. In both cases we have calculated the Green’s func-
tions of 1QD �Ref. 19� analytically and used them in our
numerical calculations �see the Appendix�.

The elements of global PDOS ���, in the case of a tight-
binding model, can be calculated in terms of the scattering
matrix and the Green’s function as well. To this end, we start

from the Fisher-Lee relation20,21 between the scattering ma-
trix, which corresponds to the transmission between modes n
and m and the Green’s function:

snm = − �nm + ı�	vnvm�
i,j

�n�r0i
�G�r0i

,r0j
��m�r0j

� . �2�

Here, �m�r0j
� is the transverse wave function corresponding

to mode m at point r0j
and G�r0i

,r0j
� is the Green’s function

�GF� for noncoinciding coordinates. vm is the velocity asso-
ciated with propagating mode m. By recalling that the den-
sity response and the current response of the scattering prob-
lem can be expressed in terms of the local PDOS to linear
order in a perturbation, �U�x�:1

dnnm�r�
dE


 −
1

4
ı
�snm

* �snm

�U�r�
−

�snm
*

�U�r�
snm� , �3�

and when Eq. �2� is inserted into Eq. �3�, we get

dnnm

dE
�r� = −

�	vnvm

4

�
i,j

�smn
* �n�r0i

�G�r0i
,r�G�r,r0j

��m�r0j
�

+ H.c.� , �4�

where H.c. denotes Hermitian conjugate. To arrive at the
above expression, we have calculated the functional deriva-
tive of the Green’s function by adding the local potential
variation �U�r�=�Ua��r−ra� ��Ua→0� to the Hamiltonian
of our system, which leads us to the relation5

�G�rn,rm�
�U�r�

= G�rn,r�G�r,rm� .

Once we have calculated the local PDOS, we can obtain the
global PDOS by adding the local PDOS over the particles of
our system:

dNnm

dE
= �

k

dnnm�rk�
dE

. �5�

After summation over the indices i, j, and rk, the above equa-
tion can be presented in matrix form:

dNnm

dE
= −

�	vnvm

4

�smn

* Qnm + H.c.� , �6�

where the Qnm matrix is defined as

Qmn = �̃n
�
j=1

M

GmjGjn��̃m
T �7�

and �̃n is the column matrix:

�̃ = � �n�1�
]

�n�M�
� . �8�

Here, �̃m
T is the transpose of column matrix �̃m and Gmj is the

matrix of M �M rank �M is the number of modes in each
lead, see the Appendix�.

Finally, ��� and ��� can be obtained from global PDOS
dNnm /dE by summing every mode n in lead � and every
mode m in lead �, respectively:

FIG. 1. Crossover between var����� and var����� for sample of
L=400 and M =4.
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��� = �
n,m��

dNnm

dE
, �9�

��� = �
n��,m��

dNnm

dE
. �10�

��� and ��� can be written similarly. Thus, the global DOS �
must be the sum of all global PDOS:

� = ��� + ��� + ��� + ���. �11�

In the case of a Q1D wire with the set of � potentials �see Eq.
�1�� in all the quantities in Eqs. �5�, �9�, and �10�, calculated
for the tight-binding model, one must replace the summation
sign by the appropriate spatial integration.

The paper is organized as follows: In Sec. II, we present
our model and the relevant assumptions for the numerical
calculations to obtain the probability distributions of ��� and
��� for different regimes. In Sec. III, we study the behavior
of var����� and var����� as a function of disorder strength w.
In Sec. IV, we calculate the distribution functions for ��� and
��� in three different regimes of transport mentioned in Sec.
I. The conclusions of the paper are presented in Sec. V.

II. THE MODEL AND NUMERICAL PROCEDURES

For the numerical study, we consider a quasi-one-
dimensional lattice of size L�W �L	W�, where L is the
length and W is the width of the system. The standard tight-
binding Hamiltonian with nearest-neighbor interaction is

H = �
i

�i�ri��ri� − t�
i,j

�ri��rj� , �12�

where �i is the energy of site i chosen randomly between �
− w

2 , w
2

� with uniform probability. The double sum runs over
nearest neighbors. The hopping matrix element t is taken to
be 1, which sets the energy scale, and the lattice constant
equals 1, setting the length scale. The energies are measured
with respect to the center of the band, so we will always deal
with propagating modes. Finally, our sample is connected to
two semi-infinite, multimode leads to the left �lead �� and to
the right �lead ��. The leads are represented by the same
Hamiltonian as the system, Eq. �12�, but without diagonal
disorder. We use hard wall boundary conditions in the direc-
tion perpendicular to the leads. For simplicity, we take the
number of modes in the left and right leads to be the same
�M� and the width of this system W thus equals M �for a
tight-binding model, the number of modes coincides with the
number of sites in the transverse direction�. The conductance
of a finite size sample depends on the properties of the sys-
tem and also on the leads, which must be taken into account
appropriately. In order to take the interaction of the conduc-
tor with the leads into account, we introduce a self-energy
term A as an effective Hamiltonian, which will be calculated
as �see, e.g., Ref. 20�

Ap�r0i
,r0j

� = − t�
m�p

�m�r0i
�eıkma�m�r0j

� , �13�

Aq�r0l
,r0k

� = − t�
n�q

�n�r0l
�eıkna�n�r0k

� , �14�

A = Ap + Aq. �15�

Finally, to allow for the numerical calculation of DF of
var����� and var����� for M 	1 and for higher dimensions
of the system, we calculate the Green’s function as

G = �EÎ − Ĥ − Â�−1. �16�

To perform the numerical calculation of the elements of this
Green’s matrix, we will use Dyson’s equation, as in Refs. 22
and 23, propagating strip by strip. This drastically reduces
the computational time, because instead of inverting an L2

�M2 matrix, we just have to invert L�M matrices L times.
In this way, we build up the complete lattice starting from a
single strip and introduce one by one the interaction with the
next strip. Each time we introduce a new strip, we apply the
recursion relations of Dyson’s equation, until we finally ob-
tain the Green’s function for the complete lattice. Once we
have determined the Green’s function matrix, we calculate
var����� and var����� according to Eqs. �9� and �10� and
obtain their probability distributions for random potentials.
Over 250 000 independent impurity configurations were av-
eraged for each N. Finally, the localization length � is ob-
tained from the decay of the average of the logarithm of the
conductance, ln g, as a function of the system size L,

�−1 = − lim
L→�

1

2L
�ln g� , �17�

where g is given by the Büttiker-Landauer formula20,24

g =
2e2

h
�
n,m

Tnm. �18�

Tnm is the transmission coefficient from mode n to mode m
and is calculated in the Appendix for the two mentioned
models.

III. var„���… AND var„���… VERSUS w

In this section, we will study the dependence of the
var����� and var����� vs disorder w and vs the number of
mode M. In Fig. 1, we show the behavior of var����� and
var����� as a function of disorder w, which is plotted for a
sample of L=400 and M =4. The crossover defines a critical
value of disorder wc. In Fig. 2, we show the dependence of
the critical value wc on the number of modes M for several
samples. The crossing point moves to the left and the wc
decreases with increasing numbers of modes. This means
that in the weak localized regime, in analogy with 1D sys-
tems, the ratio of localization length � to the longitudinal size
of the sample L for given modes M follows, in a good ap-
proximation, the relationship

�

L
� C�M,wc,E� , �19�

where C is a constant that depends on M, wc, and energy.
Equation �19� can be also written in the form
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� � Mwc
−2, �20�

which indicates that in the weak disorder regime, the local-
ization length for a Q1D conductor with large number of
transversal channels M, is proportional to wc

−2 or to the mean
free path.25 The inset of Fig. 2, where we plot ln wc vs ln L,
shows that the curves in Fig. 2 are fitted well by straight lines
and that the slopes of the straight lines are −0.5, in agree-
ment with Eq. �20�.

Note that with the appropriate choice of an effective
length Lef f =L�a+bMc� �with a=0.967, b=0.035, and c
=2.33�, we were able to show that all the curves presented in
Fig. 2 collapse into one universal curve in the Q1D system,
supporting the hypothesis of single-parameter scaling26 in
disordered systems. In Fig. 3, we plot this universal curve for
wc as a function of 1/Lef f. The different values for the modes
are specified inside the figure.

Let us finally remark that in a strictly 1D system, follow-
ing Ref. 5, one can write ��T
���+��� and �R
���+����

�ln �R� = �ln �� + �ln R� , �21�

�ln �T� = �ln �� + �ln T� , �22�

where � is the global DOS and is defined by Eq. �11�. R and
T are the reflection and transmission coefficients, respec-
tively and �¯� denotes averaging over the ensemble. Using
the asymptotic behavior of �ln T� and �ln R� as L→� �see,
e.g., Ref. 27�, these expressions in the weak disorder regime
can be written as

�ln �R� = �ln �� + ln�1 − e−2L/�� , �23�

�ln �T� = �ln �� − 2L/� , �24�

where an average over the ensemble ln � can be numerically
calculated directly from Eq. �11�. In Fig. 4, we plot the av-
erage of ln �R and ln �T for different values of disorder wc as
a function of L /�. We see that the numerical data for these

FIG. 2. Critical value wc for several samples as a function of 1/L: � is for 1D sample; �, �, �, and � are for Q1D samples with the
number of modes M =2, 3, 4, and 5, respectively. The inset presents dependence ln wc vs ln L. The slope of the straight line is −0.5 and
shows that L�1/wc

2.

FIG. 3. �Color online� Universal curve wc for several samples as
a function of 1/Lef f. � is for 1D sample; �, �, �, and � are for
Q1D samples with the number of modes M =2, 3, 4, and 5,
respectively.
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quantities coincide with Eqs. �23� and �24� for small wc or
for large L /�. For the sake of clarity, we have shown an
enlargement of the region near L /�=0 in the inset of Fig. 4.

IV. PLOTS AND DISCUSSION

In this section, we analyze the DF P����� and P�����
along the transition from the metallic to the insulating regime
for several sample sizes and for the two models mentioned in
Sec. I. We found that the relative shape of the DF depends
only on the disorder parameter L /�, i.e., when we increase
the number of modes M we can always find an appropriate
range of w for which all the curves have the same form.
Therefore, in the remainder of this section, we present our
results for a sample of L=400 and M =4 for several values of
disorder w without loss of generality.

The distribution functions in the metallic regime, when
the system size is much smaller than the localization length,
L
�, are shown in Fig. 5, with W=0.2, L /�=0.17, and �g�
=2.52. We have checked that the distribution P����� is
Gaussian-like and can be fitted with the following expression
�B=1.0, �=116.5, and �=20.2�:

P����� =
B

	2
�
e−���� − ��2/2�2

. �25�

Although we deal with Q1D systems in our numerical stud-
ies �the number of modes M �1�, the Gaussian-like behavior
of the ��� in the ballistic regime can be understood well if
we recall the fact that ��� is connected with physically
meaningful times characterizing the tunneling process.5 In-
deed, according to Ref. 5, in 1D systems, global PDOS is
related to the Larmor transmitted time �T �or Wigner delay
time� weighted by the transmission coefficient:

FIG. 4. Average of ln �R and ln �T as a function of L /�. Solid curves are given by Eqs. �23� and �24�. The data points ��� are the
numerical results for a sample of L=400. The inset shows an enlargement of the region near L /�=0, in the same units.

FIG. 5. Probability distributions of ��� and ��� in the metallic
regime ��g�=2.52� for a disorder of w=0.2. The solid lines corre-
spond to a Gaussian distribution for ��� and a log-normal tail dis-
tribution for ���.
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��� =
T

2
�T, �26�

where the quantity �T is related to the DOS of the system,28

�T = � Im �
0

L

G�x,x�dx = � Im
 � ln t

�E
+

r + r�

4E
� . �27�

Here, G�x ,x� is the Green’s function for the whole system,
and t and r are the transmission and reflection amplitudes for
the finite system. r� is the reflection amplitude of the electron
for the whole system, when it is incident from the right. The
second term in Eq. �27� becomes important at low energies
and/or short systems. This term can be neglected in the semi-
classical WKB case and, of course, when r �and thus r�� is
negligible, e.g., in the resonant case, when the influence of
the boundaries is negligible.

As one can see from Eq. �26�, the distribution function of
��� is affected by correlations between the value of the DOS
�or Wigner delay time� and the transmission coefficient of
resonances via localized states, but it still captures the gen-
eral behavior of the Wigner delay time in 1D systems in the
regime T�1. As was pointed out in Refs. 29 and 30, basing
on the invariant embedding method, the DF of the Wigner
delay time for ballistic systems is universal, given by a
Gaussian function, and can be characterized by a first mo-
ment and a second cumulant. A similar result for delay-time
distribution was also predicted in Ref. 31, using random-
matrix theory. In other words, if the system is very transmis-
sive, then the inductivelike dynamic behavior dominates.
Note that the DF of transmission delay time for single-
channel waveguide for all �T is analytically calculated in Ref.
13.

A relation similar to Eq. �26� holds for ���:

��� =
R

2
�R, �28�

where �R is the reflection time defined as

�R = � Im
1 + r

r
e−i2��0��

0

L

G�x,x�ei2��x�dx

= � Im
 � ln r

�E
−

1 − r2 − t2

4Er
� , �29�

with

��x� = exp��
0

x dx

2G�x,x�� .

We note that for an arbitrary symmetric potential, V��L /2�
+x�=V��L /2�−x�, the total phases accumulated in a trans-
mission and in a reflection event are the same and thus the
characteristic times for transmission and reflection corre-
sponding to the direction of propagation are equal,

�T = �R, �30�

as follows from Eqs. �27� and �29�. For the special case of a
rectangular barrier, Eq. �30� was first found in Ref. 32. Com-

parison of Eqs. �27� and �29� shows that for an asymmetric
barrier, Eq. �30� breaks down.33

One can see from Fig. 5 that the DF P����� in the same
regime includes a big range of negative ��� values, indicat-
ing a predominantly inductive dynamic response of the sys-
tem to an external ac electric field.16 To try to get more hints
on the form of the DF for positive values of ���, we have
calculated higher order cumulants as a function of the L. It
turns out that for positive values of ��� the tail of the distri-
bution P����� is fairly log-normal with the parameters B
=0.875, �=60.5, and �=0.25.

P����� =
B

	2
����

e−�ln ��� − ��2/2�2
. �31�

With increase of disorder w, when we are almost in the
crossover regime, we obtain a wide range of broad distribu-
tions, as shown in Fig. 6. Here, we plot DF for two values of
disorder: w=0.5 �L /�=0.69 and �g�=0.75� in the left panel
and w=0.6 �L /�=0.93 and �g�=0.5� in the right panel. As
one can see from Fig. 6 �right panel�, P����� has a constant
region for almost the full range of ���, while in the left
panel, it decreases rapidly. In both cases, the distributions for
P����� can be fitted to two log-normal tails. This type of
behavior is typical for distributions of conductance g in the
same range of parameters in Q1D, as one can see from the
same figure where we present P�g�. For values g�1, we
have a flat part, while in the regime g�1, the distribution of
conductance decreases rapidly. This is in complete agree-
ment with a number of numerical simulations in the interme-
diate regime �see, e.g., Refs. 34–36�.

P����� is shifted to the right in Fig. 6, to much larger
values of ���, which means that it becomes less conductive.
For this range of parameters, DF is still quite symmetric
�right panel� but broader if we compare it with the DF from
Fig. 5. The P����� for w=0.6 becomes less symmetric �left
panel�.

With further increase of disorder w �in the insulating re-
gion�, P����� becomes a one-sided log-normal distribution.
This type of behavior was predicted for distributions of con-
ductance g �Refs. 36 and 37� and numerically
calculated.34,35,38

With regard to P�����, we can mention that the tail of the
distribution follows a power-law decay P������1/���

m , with
m�2.3. The power-law decay tail for delay time in the lo-
calized regime as also found in Refs. 13, 29, and 39. On the
other hand, as w increases, P����� shows a tail in the nega-
tive region of ���. In Fig. 7, we plot the distributions P�����
and P����� for disorder w=1 �L /�=2.6 and �g�=0.08�.

Deeply in the localized regime �L	� and �g��0�, the
distribution of ��� is log-normal, as one can see from Fig. 8,
where we fitted P�ln ���� to a Gaussian distribution:

P�x� =
B

	2
�x
e−�ln x − ��2/2�2

, �32�

with B=0.997, �=−460.5, and �=27.7.
The shape of P����� is highly asymmetric with two peaks

very close to each other. The position and the amplitude of
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these peaks depend on the disorder parameter and cause sev-
eral fluctuations in the distribution function. The tail of the
distribution follows a power-law decay P������1/���

m , with
m�2.0.

V. CONCLUSIONS

We have studied the distribution functions for the global
partial density of states in quasi-one-dimensional disordered
wires as a function of disorder parameter from metal to in-
sulator. We consider two different models for a disordered

Q1D wire: a set of two-dimensional � potentials with signs
and strengths determined randomly and a tight-binding
Hamiltonian with several modes and on-site disorder. It was
shown that the poles of the Green’s functions for these mod-
els can be presented, as was done in the 1D case,42 as a
determinant of rank N�N �N is the number of scatterers�,
where the matrix elements depend on the model, type of
disorder, and number of modes, M. The determinant can be
used to calculate the spectrum of an electron in the disor-
dered Q1D wire, the DOS, the scattering matrix elements,
etc., without determining the exact electron wave function.

FIG. 6. Distributions P�g�, P�����, and P����� in the crossover regime for two values of the disorder: right panel for w=0.5 �L /�
=0.69 and �g�=0.75� and left panel for w=0.6 �L /�=0.93 and �g�=0.5�.
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We show that the variances of partial global DOS in the
metal to insulator crossover regime are crossing. We also
show that with increase of the number of modes, M, the
crossing point moves to the left, i.e., wc decreases. The criti-
cal value of disorder wc, where crossover occurs, can be used
to calculate localization length in Q1D systems.

In the metallic regime, when the system size is much
smaller than the localization length, L
�, the DF for P�����
is Gaussian-like. In the same regime, the distribution func-
tion P����� includes a large range of negative ��� values,
indicating a predominantly inductive dynamic response of
the system to an external ac electric field.16 For positive val-
ues of ���, the tail of the distribution P����� is fairly log-
normal. In the vicinity of the crossover regime, the distribu-
tion function for P����� can be fitted to two log-normal tails.
P����� is shifted to the right, to much larger values of ���,
which means that it becomes less conductive. Further in-
crease of disorder w �in the insulating region� affects the
P����� and it becomes a one-sided log-normal distribution.
With regard to P�����, we can mention that the tail of the
distribution follows a power-law decay P������1/���

m , with
m�2.3. Deep in the localized regime �L	� and �g��0�, the
distribution of ��� is log-normal, while the shape of P�����
is highly asymmetric with two peaks very close to each
other. The position and amplitude of these peaks depend on
the disorder parameter and cause fluctuations in the distribu-
tion function. In general, the system shows inductivelike dy-
namic behavior when it is almost transparent, and it behaves
capacitivelike when we have complete reflection from the
system.
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APPENDIX: DYSON EQUATION IN A Q1D DISORDERED
SYSTEM AND THE POLES OF GREEN’S FUNCTION

Our main result in this appendix shows that we can ex-
press the reflection and transmission amplitudes from mode
n to mode m, Rnm and Tnm, for the potential V�x�, Eq. �1�,
from its characteristic determinants without knowledge of
the exact electron wave functions. This means that the Q1D
problem can be mapped to the 1D problem and that the poles
of the Green’s function matrix elements, as well as the scat-
tering matrix elements Tnm and Rnm, conductance �Eq. �18��,
etc., are a determinant of rank N�N, where N is the number
of scatterers.

Let us write down once more the impurity potential:

V�x,y� = �
n=1

N

Vn��x − xn���y − yn� , �A1�

where Vn, xn, and yn are arbitrary parameters.
The equation for the GF with the above potential V�x ,y�

is

FIG. 7. Distributions P����� and P�ln ���� in the insulating re-
gime ��g�=0.08� for a disorder of w=1. We have a one-sided log-
normal distribution for ��� and power-law tail for ���, P�����
�1/���

m , with m�2.3.

FIG. 8. Distributions P����� and P�ln ���� in the insulating re-
gime ��g��0� for a disorder of w=12. The solid lines correspond to
a Gaussian distribution for ln ��� that exhibit a log-normal distri-
bution for ���. The tail of the distribution follows a power-law
decay P������1/���

m , with m�2.0.

RUIZ, JÓDAR, AND GASPARIAN PHYSICAL REVIEW B 75, 235123 �2007�

235123-8



�E − �−
�2

2m

 d2

dx2 +
d2

dy2� + Vc�y� + V�x,y���G�xy ;x�y��

= ��x − x����y − y�� , �A2�

where the confinement potential Vc�y� depends only on the
transverse direction y. The Dyson equation for a Q1D wire
can be written in the form40

Gac�x,x�� = Ga
0�x,x���ac

+ �
b,d
� Ga

0�x,x���abVbd�x��Gdc�x�,x��dx�.

�A3�

The matrix Vab�x� elements of the defect potential are

Vab�x� =� �a
*�y�V�x,y��b�y�dy = �

n=1

N

Vab
�n���x − xn� ,

�A4�

with Vab
�n� defined as

Vab
�n��x� = �a

*�yn�Vn�b�yn� . �A5�

Details of the calculation of the matrix elements of GF
Gnm�x ,x�� of the Dyson equation �Eq. �A3�� for this case,
based on the method developed in Refs. 41 and 42, will be
given elsewhere.19 Here, we only present the basic output of
the calculation of the Dyson equation, which shows that the
pole of GF can be rewritten as a determinant of rank MN
�MN �M is the number of modes and N is the number of �
potentials�.

The matrix elements of determinant

DMN =
det Dn,l

�MN�

�
l=1

N �1 + �
p=1

M

rpp
�l�� �A6�

are

Dn,l
�MN� = − I�nl + �I − �nl���nl��r�l��, 1 � n,l � N ,

�A7�

where

I = �1 . . . 0

] � ]

0 . . . 1
� �A8�

is the unit matrix. The lth scattering matrix �r�l�� and the ��nl�
matrix are matrices of rank M �M, defined in the following
way:

�r�l�� = � r11
�l�

¯ r1M
�l�

] � ]

rM1
�l�

¯ rMM
�l� � , �A9�

��nl� = ��nl
�1� . . . 0

] � ]

0 ¯ �nl
�M� � = �eik1�xn−xl� . . . 0

] � ]

0 ¯ eikM�xn−xl�
� .

�A10�

The quantity rkm
�l� ,

rkm
�l� =

Vkm
�l� 	Gk

0�xl,xl�Gm
0 �xl,xl�

1 − �
p=1

M

Vpp
�l�Gp

0�xl,xl�

, �A11�

is the complex reflection amplitude of an electron from the
isolated potential Vl with the coordinates xl ,yl. Electrons are
incident from the normal mode m �m=1,2 , . . . ,M� on the
left �right� side and reflected from the normal mode k on the
same side. By permuting indices k and m in Eq. �A11�, one
can find the complex amplitude rmk

�l� . Note that the determi-
nant of the matrix r�l� is zero, i.e.,

det�r�l�� = 0. �A12�

This follows from the fact that

rmm
�l� rkk

�l� − rmk
�l� rkm

�l� = 0,

which can be checked directly if one uses the definition of
rkm

�l� �see Eq. �A11��.
The rank MN�MN of the above determinant �see Eq.

�A7��, after some mathematical manipulation, can be reduced
to the determinant of rank N�N, as in the case of a 1D chain
of arbitrarily arranged potentials,41,42 with the following ma-
trix elements, which now contain information about the num-
ber of modes M:

Dn,l
�N� = − �nl + �1 − �nl��

p=1

M
r1p

�n�rp1
�l��nl

�p�

r11
�n� ,

1 � n,l � N . �A13�

Once we know the explicit form of determinant DN,

DN =
�− 1�N det Dn,l

�N�

�
l=1

N �1 + �
p=1

M

rpp
�l�� , �A14�

i.e., the poles of GF, we can calculate the spectrum of an
electron in the disordered Q1D wire, the DOS, the scattering
matrix elements, etc., without determining the exact electron
wave function in the disordered Q1D wire. The form of the
determinant is valid for �-function potentials of arbitrary
strength and for arbitrary number of propagating and evanes-
cent modes M. Note that Eq. �A13� reduces to a characteris-
tic determinant �see Refs. 41 and 42� if there is no coupling
to the second, third, etc., modes, i.e., rp1

�p�=0.
This is our main result. In the following, we will show

how to calculate the scattering matrix Tnm
�N� and Rnm

�N� elements
and the electronic spectra of the Q1D disordered wire.

The transmission amplitude Tnm
�N� �n�m� from the set of

N� potentials can be presented:
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Tnm
�N� = eik1�xN−x1�det D̃n,l

�N�

det Dn,l
�N� , �A15�

where the matrix D̃n,l
�N� is obtained from the matrix Dnl

�N�

�Eq. �A13�� by augmenting it on the left and on the top in the
following way:

D̃n,l
�N� = �

1 rnm
�l� . . . rnm

�N�eik1�xN−x1�

1 . . . . . . . . .

] ] Dn,l
�N�

e−ik1�xN−x1�
]

� .

�A16�

The reflection amplitude Rnm
�N� �n�m� of electrons from the

same set of N � potentials is given by

Rnm
�N� =

det D̄nl
�N�

det Dnl
�N� , �A17�

where the matrix D̄nl
�N� is obtained from the matrix Dnl

�N�

�Eq. �A13�� by augmenting it on the left and on the top:

D̄n,l
�N� = �

0 rnm
�l� . . . rnm

�N�eik1�xN−x1�

1 . . . . . . . . .

] ] Dn,l
�N�

eik1�xN−x1�
]

� . �A18�

It can be checked directly that Eq. �A15�, for the case of two
point scatterers �i.e., N=2� and for two modes �M =2� when
n=m=1, leads us to �a1=x2−x1�

T11
�2� = eik1a1

�1 + r11
�1���1 + r11

�2�� + r12
�1�r21

�2�ei�k2−k1�a1 − r22
�1�r22

�2�e2ik2a1 − ei�k1+k2�a1r12
�2�r21

�1�

1 − r11
�1�r11

�2�e2ik1a1 − r22
�1�r22

�2�e2ik2a1 − �r12
�1�r21

�2� + r21
�1�r12

�2��ei�k1+k2�a1
,

which, after the appropriate notation used in Ref. 43 will coincide with their expression of T11 calculated by the transfer matrix
method.

For the same case of N=M =2, R11
�2� is obtained from Eq. �A17�,

R11
�2� =

r11
�1� + r11

�2��1 + 2r11
�1��e2ik1a1 + �r12

�1�r21
�2� + r21

�1�r12
�2��ei�k1+k2�a1

1 − r11
�1�r11

�2�e2ik1a1 − r22
�1�r22

�2�e2ik2a1 − �r12
�1�r21

�2� + r21
�1�r12

�2��ei�k1+k2�a1
.

To calculate the energy spectrum of a Q1D system, one
must enclose the system between two infinite potentials to
make it a close system and calculate the zeros of the deter-
minant DN, Eq. �A14�. This determinant can be calculated
recursively and give us most magnitudes of interest, since it
is directly related to the GF of the system.

Finally, we note that the expressions for the pole of the
GF �Eq. �A7�� for transmission amplitude Tnm

�N� and for Rnm
�N� in

the tight-binding model are obtained by replacing the unper-
turbed GF for normal mode m,

Gm
0 �x,x�� = − i

m0

�2km
exp�ikm�x − x��� , �A19�

with

km = +	2m0�E − Em�
�2 , �A20�

by the appropriate GF for the tight-binding model:44

Gm
0 �l,n� = −

i
	B2 − �E − ��2

e�l−n��. �A21�

Here �x
�E−�� /B�,

� = ln�x − i	1 − x2� �A22�

and the symbol 	1−x2 denotes the positive square roots.
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