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Tunneling-time calculations for general finite wave packets based on the presence-time formalism
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We analyze the tunneling-time problem via the presence time formalism. With this method we reproduce
previous results for very long wave packets and we are able to calculate the tunneling time for general wave
packets of arbitrary shape and length. The tunneling time for a general wave packet is equal to the average over
the energy components of the standard phase time. With this approach we can also calculate the time uncer-
tainty. We have checked that the results obtained with this approach agree extremely well with numerical

simulations of the wave packet evolution.
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I. INTRODUCTION

The time spent by a particle in a given region of space is
a problem that has been approached from many different
points of view. There is much literature on the tunneling
phenomena for electrons through a barrier. Landauer and
Martin [1] pointed out that there is no clear consensus about
simple expressions for time in quantum mechanics (QM),
where there is not a Hermitian operator associated with it.
Hartman [2] asserted that for opaque barriers the tunneling
time is independent of the barrier length and the time spent
by the particle in these regions can be less than the time
required to travel the same distance in vacuum. However,
many physicists hesitated to deal with Hartman’s results
since a very fast tunneling implies that the tunneling velocity
or the average velocity may become higher than the vacuum
light velocity c. One can define the traversal time as the time
during which a transmitted particle interacts with the region
of interest measured by some physical clock which can de-
tect the particle’s presence after leaving the region. For elec-
trons, this approach can utilize the Larmor precession fre-
quency of the spin produced by a weak magnetic field acting
within the barrier region [3-5]. Analogously, our group [6]
proposed a clock based on the Faraday effect to measure the
interaction time for electromagnetic waves in a slab or a
periodic structure. Another approach consists of calculating
the traversal time of a particle through a barrier by following
the behavior of a wave packet and determining the delay due
to the structure of the region. In this approach an emerging
peak is not necessarily related to the incident peak in a caus-
ative way [7]. The phase time is the time which elapses
between the peak of the wave packet entering the barrier and
leaving it and can be defined as the energy derivative of the
phase.

Often, more than one tunneling time are involved in the
problem. One can define a time 7, associated with the direc-
tion of propagation and another time 7, related to the trans-
verse direction. Biittiker [5] assumed that the relevant inter-
action time 72" depends on both characteristic times and is
given by

P74 7, (1)

which is the so-called Biittiker-Landauer time for transmitted
particles. Gasparian et al. [8,9] introduced a method based
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on Green’s functions and obtained a complex tunneling time,
7. The real and imaginary part of this complex time were
related to 7, and 7,, respectively.

Other methods to calculate the traversal time uses the
Feynman path-integral approach of QM. Sokolovski and
Baskin [10] applied this formulation to obtain a traversal
time. Sokolovski and Connor [11] studied the tunneling time
for wave packets via this path-integral approach. For the
square potential barrier, Fertig [12], using the path decompo-
sition of Auerbach and Kivelson [13], defined a propagator
that corresponds to the amplitude for tunneling between two
points on opposite sides of the barrier with initial energy E,
summed over the Feynman paths that spend a time 7 inside
the barrier.

In QM we can only measure quantities for which we have
introduced a Hermitian operator. For these quantities, expec-
tation values can be calculated and checked experimentally.
However, time appears in the standard quantum-mechanical
approach only as a parameter and therefore its expectation
value is not defined. Moreover, Pauli [14] argued that a
self-adjoint time operator implies an unbounded energy spec-
trum. In spite of this, many authors have proposed time
operators and others have developed formalisms for arrival
times in QM (for a review see Muga et al. [15]). Allcock [16]
was the first to focus on the concept of arrival time, rather
than on time operators, and concluded that wave mechanics
cannot give an exact and ideal definition of arrival
time. Werner [17] overcame Pauli’s theorem by introducing
non-self-adjoint operators in the framework of positive
operator valued measures (POVMS). Leén et al. [18] intro-
duced a formalism for the calculation of the time of arrival
for particles traveling through a region with a given potential
energy. They employed quantum canonical transformations
from the free to the interacting cases to compute the time of
arrival in the context of the POVMs. However, it has been
criticized that this approach does not always recover the
classical expression for the arrival time when the effects
of noncommutativity of the operators involved may be
neglected [19].

Many authors have developed formalisms based on time
operators rather than arrival times in QM [20-23]. In these
approaches, the average presence time at position y for a
spatial wave packet W(y,?) is defined as
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provided that this integral exists. Kobe er al. [22] named the
time operator whose average is given by Eq. (2) as the “tem-
pus” operator, and one can study efficiently the tunneling
time through a barrier via the local value of this operator
[23].

We studied numerically the tunneling time for electronic
wave packets in nanostructures and found that the finite size
effect of the incident wave packet was relevant when treating
tunneling time in this spatial scale [24]. The aim of this work
is to show first that the approach based on the presence time
gives equivalent results to standard treatments for very long
wave packets. In second place, we want to study finite size
effects of the wave packet in the tunneling time with this
formalism, which is specially suited for this problem. We
also want to compare the results obtained with the presence
time formalism with those obtained using the time of arrival
approach of Leén et al. [18].

The plan of the work is as follows. In Sec. II we introduce
the presence time formalism and apply this method to the
simplest case of free propagation. In Secs. III and IV we
calculate, within the framework of the presence time formal-
ism, the tunneling time and its uncertainty for a wave packet
which moves towards a rectangular barrier, respectively. In
Sec. V we present some numerical results which include the
finite size effect of the electronic wave packet in the tunnel-
ing time and its uncertainty for a rectangular potential bar-
rier. We also calculate the traversal time and its uncertainty
for photons crossing a set of layers with a frequency gap.
Finally, we summarize our results in Sec. VI.

II. PRESENCE TIME FORMALISM

The calculation of the average presence time can be per-
formed in terms of integrals over the energy, instead of inte-
grals over time as in Eq. (2). To this aim, it is convenient to
consider only scattering states incident with positive mo-
menta so that there is no energy degeneracy. Then we can
define the energy wave packet in the following way:

®O(y,E) = (Zwﬁ)_l/ZJw dr¥(y,t)expli(Et)/t], (3)

where W(y,7) is the physical wave packet in the space rep-
resentation. We can write the average presence time, Eq. (2),
as a expectation value of the energy derivative operator
—ifidg in the energy representation [25]

o

wn=5 dE@*(»E)[—ih(%)]@(y,E), @
0

where P is the normalization factor
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P(y) = f dE|D(y,E)|*. (5)
0

We will assume that the energy wave functions ®(y,E) are
continuous, differentiable and square integrable in the energy
variable. If we further restrict to functions satisfying
®(y,E=0)=0 then the energy derivative operator —ifid is
Hermitian [20]. For shortness, we will refer to this operator
as T from now on.

To illustrate the presence time formalism, we consider
first a wave packet propagating in free space. At =0 this
wave packet is peaked at y,, has a spatial width Ay and
moves to the right. The components of the wave packet in
the energy representation are

(D()’»E) = G(E)exp[lk(y - y())]’ (6)

where G(E) is a normalized weight peaked at E, with an
energy width AE, and k(E)=v2mE/# is the corresponding
wave number. Substituting expression (6) in Eq. (4) we

obtain for the expectation value of Tata point y

[

<f(y)>=% f dEG*(E)[74(y,E) - it6(E)], (7)
0

where 7,(y,E) is the time it takes the particle to travel from
me 1
yo to y with velocity v2mE/m,

m(y = yo)
\2mE ’

Ta(y.E) = (8)

and 7 is the partial derivative of the natural logarithm of the
weight G(E) with respect to the energy,

d1n G(E)

oE ©)

76(E)=h

The real part of the time is the average of the classical time
at y for a particle with energy E weighted by the probability
density in the energy representation.

We can easily prove the hermiticity of T in this case by

showing that the imaginary part of (f) cancels. Introducing
Eq. (9) into Eq. (7) we can write the imaginary part of the
expectation value of 7 in the following way:

- [ JG(E) (" __(gf)b_
m{(7(3))] = fo a6 "0 E - f w6=(%) =o.

(10)

where we have assumed that G(E) tends asymptotically to 0
in the energy limits.

Let us calculate the uncertainty of T for the free case. The
expectation value of the square of 7 is equal to
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FIG. 1. A rectangular potential barrier placed between 0 and L
and a spatial wave packet moving towards it.

(T(y)) = f dEGHE){[74(y,E) - 75(E) — 75(E)] ,
0
(11)

where 7 is the energy derivative of 7;. So, the uncertainty
of T is given by

AT(y) = (7, E)) = (F6(E)) - (E)) = [y, EN T,
(12)

where the averages represent the integrals over the energy
weighted by G*(E).

Now we restrict ourselves to a Gaussian weight of
width AE centered at E, For AE<E, one can
easily find that (74(y,E))=[(ry(y,E))]> and that

—~(T5(E))= 2(7%;(E)) =#%/(2AE?) so the uncertainty of T can
be written as

A h

A
AT = ~ =

— - ) (1 3
V2AE vy )

where Ay is the spatial width of the free propagating wave
packet and v, its group velocity. So, we have shown explic-
itly that the energy-time uncertainty relation is satisfied for

the definition of 7 in the free case.

III. TUNNELING TIME FOR A RECTANGULAR BARRIER

We now want to apply the presence time formalism to the
tunneling time problem. Let us consider a one-dimensional
rectangular potential barrier of height V|, placed between 0
and L and a spatial wave packet W(y,#) which moves to-

wards it (see Fig. 1). We calculate the expectation value of T
at y=L with and without the barrier and, with our choice of
phases, the tunneling time 7 will be equal to the difference
between these two times.

The components of the wave packet in the energy
representation at the right-hand side of the barrier are
given by
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Oyy(y,E) = G(E)|{(E)|exp{ilk(y = L) + @(E)]},  (14)

where |#(E)| is the modulus of the complex transmission
amplitude and ¢ (E) its phase. We have chosen the phase in
such a way that our origin of time is when the incident wave
packet propagating freely would reach the left of the barrier,
but we have included the factor ikL in the transmitted part so
that ¢,(E) does not accumulate the phase for free propagation
across the barrier.

To obtain the expectation value of the operator T at L, we
first calculate the partial derivative of ®y;(y,E) with respect
to energy
Jfi(E)|

JE

Ouwnb) G(E)l " If(E)I‘”na—g(E) +ili(E)|

m(y—L)  d¢(E) ) ,
X + expfi[k(y = L)
( \,’/2mEﬁ OF plilk(y
+ ()]} (15)
Multiplying Eq. (15) by ®;(y,E) and integrating over the

energy we can write the expectation value of T at L as

. 1 (Yo
<T(L)> = ;f dE|(I)IH(L7E)|ZTy(E)’ (16)
0
where 7,(E) is the phase time
d¢(E)
(E)=h——. 17
E)=h=" (17)

7,(E), as given by Eq. (17), coincides with the longitudinal
characteristic time defined in the Biittiker formalism [5]. Let
us remember that the condition for hermiticity is that the
weight G(E) tends asymptotically to zero when the energy
tends to zero [20]. One must ensure that the weights consid-
ered satisfy this condition. Note that in Eq. (16) the integral
over E is up to V|, since we are assuming tunneling
processes only.

Equation (16) tells us that the tunneling time for a general
wave packet of finite width is given by the average of Biit-
tiker time 7, over the energy weighted by the probability
density in the energy representation at the right-hand side of
the barrier, |®;(L,E)|>. Similar expressions can be found in
the literature (see, for example, Brouard er al. [26] and Leén
et al. [ 18]). In both cases, the time is written as an average of
7, over the momentum, instead of the energy. The only dif-
ference is in the integration variable and, as we will see, it
turns out to be very small.

In order to obtain an analytical approximation for the tun-
neling time, we assume a Gaussian wave packet of very
small energy width AE and expand |/(E)|* and 7,(E) in
Taylor series up to second order near E,. We arrive at the
following result:

<f(L)> = Ty(EO) + (%)[TZ(EU)@(EO)](AE)Z, (18)

where 7,(E) is the tunneling time component related to the
transverse direction of propagation [5]
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dn|#(E)|

E)=t
7,(E) E

(19)
and 7, is the derivative of 77, with respect to energy. As we
will see, Eq. (18) is valid up to values of spatial widths of the
incident wave packet similar to the barrier length.

IV. UNCERTAINTY OF THE TUNNELING TIME

In this section we calculate the uncertainty of the tunnel-
ing time through the barrier, which is equal to the sum of
the uncertainties of the incident and transmitted wave
packets. The uncertainty of the tunneling wave packet can be

obtained through the expectation value of the square of T
when the system wave function is given by Eq. (14). The

expectation value of 72 at L is

(PL) =(7} = 7.~ T — (m.+ 76)7), (20)

where 7. is the derivative of A7, with respect to the energy.
So, the uncertainty of T at L can be expressed as

AT(L) = (7)) = (7) = (7o) = (1. + 70D = (1. (21)

In the next section we will use this equation to calculate
numerically the uncertainty in the tunneling time for general
wave packets.

In the limit of very long spatial wave packets, very nar-
row in energy, we can obtain an approximate analytical ex-
pression for the uncertainty in the tunneling time. If we ex-
pand 7, 7%, 7,, and 7§ in Taylor series up to second order in
E near E,, and consider again a Gaussian weight of width AE
centered at Ej, one can easily see that <T§>2<Ty>2 and that
2((7,+75)?) =—(7). Neglecting terms proportional to 7, we
can write Eq. (21) in the following way:

. h A
AT(L) = —— = =2, (22)
V’ZAE [0

where Ay is the spatial width of the transmitted wave packet
and v, the group velocity of the incident one. We can see that
this uncertainty is proportional to the spatial width of the
wave packet and satisfies the energy-time uncertainty rela-
tion. Equation (22) is valid only when Ay is larger than the
barrier width as we will show in the next section.

The uncertainty associated to the incident wave packet is
equal to its spatial width divided by the group velocity,
Ay/vg. So, the uncertainty in the tunneling time A7 is the
sum of this uncertainty of the incident packet and Eq. (21).

V. NUMERICAL RESULTS

In this section we present numerical results about finite
size effects in the tunneling time for electrons and photons.
We calculate the delay time of the particle by following the
behavior of its wave packet when crossing the square barrier
as before of height V|, and placed between 0 and L. We
consider a Gaussian wave packet in momentum space, cen-
tered at p, and of width Ap, initially peaked at y, which
moves towards a potential barrier.
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FIG. 2. (Color online) Tunneling time 7 versus the size of the
wave packet in the momentum space, Ap, for an incident electron
with momentum py=2.5 and barrier parameters Vy=5 and L=20.
The numerical results are represented by squares, the results based
on the presence time formalism by the solid curve and the second
order approximation by the dashed curve.

We follow the time evolution of the transmitted and the
incident wave packets to measure the time it takes the par-
ticle to traverse the potential barrier. We calculate the posi-
tion of the centroid and extrapolate its movement for the
incident wave up to the beginning of the barrier. We call £,
the time when the incident peak would reach the barrier as-
suming that there are not perturbations due to the presence of
the barrier. We also calculate the centroid of the transmitted
peak and extrapolate back its movement to the right of the
barrier L. The corresponding time is called #,. The tunneling
time is then defined as the difference between #; and
t,, T=t,—t;. This approach is the most adequate to include
the finite size effects.

In Fig. 2 we represent the tunneling time, 7, versus the
width of the incident wave packet in the momentum domain,
Ap, for an incident electron with a momentum py=2.5. We
use in all our work atomic units, i.e., Ai=m,=1. The barrier
parameters are V=5 and L=20. The squares represent the
numerical results and the solid curve the results obtained
with the presence time formalism. We can see that this curve
fits very well the numerical results for all sizes of the inci-
dent wave packet. The dashed curve corresponds to the sec-
ond order approximation, Eq. (18), and fits the numerical
results relatively well up to values of 1/Ap of the order of
the barrier length. For higher values of Ap the transmission
coefficient cannot be replaced by a second order approxima-
tion and more terms are needed to improve the results. Our
results based on the presence time formalism (solid line in
Fig. 2) basically coincide with the results based on the ap-
proach of Leén er al. [18]. The former averages 7, over the
energy, while the latter averages over momentum. For elec-
trons, due to their nonlinear dispersion relation, both meth-
ods are not strictly equivalent, but the difference between
their results is always less than 0.5% in all cases studied.

For very small wave packets in momentum space the re-
sults tend to the real part of the time obtained with the Green
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FIG. 3. (Color online) Traversal time 7 versus Ak for an elec-
tromagnetic wave packet with ky=3.927. The periodic arrangement
consists of 19 layers with alternating indices of refraction 2.0 and
1.0, and widths 0.6 and 1.2, respectively. The squares represent the
results obtained via the wave packet approach, the solid curve
shows the results obtained with the presence time formalism and the
dashed curve the second order approximation.

function approach [8,9], which is the same as the 7, compo-
nent of the Buttiker time [5]. The Hartman effect is real, but
it is not a paradox because it only occurs for very long wave
packets in real space so that the uncertainty is much larger
than the difference between the tunneling time and the time it
would take a free particle to cross the barrier. We will study
this problem more deeply in the context of electromagnetic
waves.

We now extend the previous calculations to the traversal
time for photons crossing a set of layers with a frequency
gap. In this case, we know that no signal can travel faster
than light in vacuum, so this is a good test of the possible
constraints in Hartman effect. For electromagnetic waves the
expression of T is the same as for electrons but changing the
energy by the frequency divided by #.

The incident electromagnetic wave packet moves towards
a periodic arrangement of N—1 layers. Layers with index of
refraction n; and thickness d; alternate with layers of index
of refraction n, and width d,. For this periodic structure there
exits a frequency gap where evanescent modes can be found.
The wave numbers in the layers of the first and second type
are ky=wn;/c and ky=wn,/c. Let us call a the spatial period,
so a=d;+d,. The periodicity of the system allows us to ob-
tain analytically the transmission amplitude ty using the
characteristic determinant method [27]

ty = exp(—ik,d;) {cos(N,BaQ)

_ sin(Nﬁa/2)>\/, , (k%—k% _ ﬂ-l
_l< sin(Ba) sin(a) + 2k ik, sintkdy) ’

(23)

where 3 plays the role of quasimomentum of the system, and
is defined by
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FIG. 4. (Color online) Uncertainty of the tunneling time 7 ver-
sus the size of the wave packet in the wave number space, Ak, for
an incident electromagnetic wave packet with central wave number
ko=3.927. The periodic arrangement is the same as in the preceding
example. The numerical results are shown by squares and the solid
curve represents the results obtained via the presence time formal-
ism. The dashed curve corresponds to the second order
approximation.

2 2

ki+k
cos(Ba) = cos(k,d,)cos(k,d,) — ( 21k . 2)sin(kldl)sin(kzdz).
1Kk2

(24)

When the modulus of the right-hand side of Eq. (24) is
greater than 1, 8 must be taken as imaginary. This situation
corresponds to a forbidden frequency window. We perform a
simulation of the propagation of the wave packet similar to
that for electrons.

In Fig. 3 we represent the traversal time, 7, versus the
width of the wave packet in the wave number domain, Ak,
for an incident electromagnetic wave packet with momentum
ko=3.927, which corresponds to the center of the forbidden
frequency window of our system. The units are set by the
choice i=c=1. The periodic arrangement consists of 19 lay-
ers with alternating indices of refraction 2.0 and 1.0, and
widths 0.6 and 1.2, respectively, so the spatial length of the
structure is 16.8. This periodic case satisfies the relation
n;dy=n,d, and most experimental setups use this periodic
arrangement [28]. The numerical results are represented by
squares, while the solid curve corresponds to the results ob-
tained with the presence time formalism. We can see that this
curve fits very well the numerical results for all sizes of the
incident wave packet. The dashed curve represents the sec-
ond order approximation and fits the numerical results rela-
tively well up to values of 1/Ak of the order of the barrier
length. The limit of very narrow wave packets in Ak again
coincides with the real component of the time obtained with
the Green function approach. In the case analyzed, it is much
smaller than the crossing time of the structure at the vacuum
speed of light, represented by the horizontal line in Fig. 3.
The crossing time remains smaller than the vacuum crossing

032104-5



DEL BARCO, ORTUNO, AND GASPARIAN

time for sizes of the wave packet in real space up to one-half
the width of the structure.

In the circumstances analyzed in the preceding paragraph,
there is no signal traveling faster than light at vacuum due to
the large uncertainty in the time. In Fig. 4 we represent the
uncertainty of the tunneling time, A7, versus the width of
incident the wave packet in the momentum domain, Ap, for
the periodic structure of the previous example. The numeri-
cal results are shown by squares and the solid curve repre-
sents the results obtained via the presence time formalism.
We can see that this curve fits very well the numerical results
for all sizes of the incident wave packet. The dashed curve
corresponds to the second order approximation.

VI. CONCLUSIONS

We have used the presence time formalism to calculate
the tunneling time and its uncertainty for finite size wave
packets. In the simplest case of a one-dimensional rectangu-
lar potential barrier the tunneling time is related to the ex-

pectation value of the time operator T at the right-hand side

of the barrier, weighted by the transmitted wave packet in the
energy representation, |®;(L, E)|>. This expectation value is
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in turn given by an energy average of the phase time 7,(E).

For very long wave packets the presence time formalism
produces the same results as previous approaches to the tun-
neling time problem [5,24]. For wave packets of spatial size
of the order of the dimensions of the barrier, the results agree
extremely well with numerical simulations of wave packet
evolution. These results are also in quite good agreement
with our calculations based on the time of arrival approach
by Leén et al. [18]. Similar conclusions apply to the traversal
time problem of photons through dielectric structures in the
frequency gap region.

There is no fundamental problem with Hartman effect,
because the uncertainty in the time is larger than the advance
in time with respect to its vacuum value, whenever this dif-
ference is important [29]. Our approach is particularly valu-
able for this type of problem, since it is able to handle finite
size effects of wave packets.
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