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1. INTRODUCTION
During the last few years key subjects and, consequently,
terms in materials research have been continuously chang-
ing, indicating a tendency towards smaller and smaller
scales. The physics of “low-dimensional structures” was
replaced by the discipline of “submicron physics,” empha-
sizing the effects due to a reduction of size. Then the term
“mesoscopic systems” was introduced referring to typical
length-scales ranging from a few nanometers up to a few
micrometers. Mesoscopic systems are so small, that a com-
plete quantum-mechanical treatment of electrons is required
if one wants to describe their transport properties. On the
other hand, they are so large, that an exact microscopic
description, starting from precise location of impurities and
sample boundaries, is not useful, since only the slightest
change of the mesoscopic details will completely change
the result. More recently still, the terms “nanophase” and
“nanostructured materials” have become popular, indicating

1Also at Department of Physics, Yerevan State University, 375049 Yere-
van, Armenia.

that scientists had learned to manipulate, synthesize, ana-
lyze, and observe objects approaching the molecular and
atomic scales.

Often one distinguishes between “physical” and “chemical
nanostructures.” Under the term “physical nanostructures”
are classified all artificially built up structures, as obtained,
for example, by evaporation and subsequent deposition of
materials. On the other hand, the term “chemical nano-
structures” comprises all those nanophase materials that can
be obtained by methods of chemical synthesis, such as the
chemical compounds with chainlike or layer-type structures,
as well as the cluster compounds. A review of the electronic
properties of nanophase materials obtained from chemical
synthesis was given by de Jongh [1]. A survey of chemi-
cally synthesized metal clusters was edited by Schmid [2].
The prospect of the applications of metal and semiconductor
clusters in inorganic host structures was presented by Simon
and Schön [3].

The time spent by a particle in a given region of space is
not a new problem, although recently it has attracted a great
deal of interest [4–16]. The problem has been approached
from many different points of view, and there exists a huge
literature on the tunnelling problem of electrons through
a barrier, although tunnelling times have continued to be
controversial even until now. As pointed out by Landauer
and Martin [11], there is no clear consensus about simple
expressions for the time in quantum mechanics (QM), where
there is not a Hermitian operator associated with it. The
problem of the tunnelling time of single electrons (SE) in
nanostructures or in mesoscopic systems smaller than 10 nm
becomes even more complicated, due to the Coulomb block-
ade effects [17] on small amounts of electrons and discrete-
ness of electric charge.

In the present review we present the theoretical approa-
ches to tunnelling times to illustrate the problems involved
in nanostructures. But this plan proved to be more difficult
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2 Electronic Tunnelling Time in Nanostructures

than expected: although there exists an extended literature
on tunnelling times (see [11] and [4] and references therein),
quantum-mechanical treatments mostly deal with propagat-
ing wavepackets in a more or less general way and they do
not concentrate on tunnelling times in nanostructures. As
far as we know, there is not yet a proper treatment about
tunnelling times in very small nanostructures with single,
localized electrons, where the radius of “localization” is in
the same order of magnitude as the length of the barrier
L. Thus it proved to be necessary not simply to present the
existing models and theories on tunnelling time but to review
them with respect to these necessities together with possi-
ble alternatives and to estimate future developments. In this
context some original works will be analyzed from this point
of view. We will be particularly concerned with the closed
analytical treatment based on Green’s function formalism.

In the main part of the chapter we study the Larmor clock
approach to tunnelling time, based on measuring the spin
rotation of an electron under a weak magnetic field acting
on the region of interest. We also develop a Green’s func-
tion formalism for the traversal, reflection, and dwell times
based on the previous approach. The latter corresponds to
the amount of time that a particle spends in a region inde-
pendently of whether it later is transmitted or reflected.
We review the rest of the existing major approaches to the
time problem in Section 3. In Section 4, we present numer-
ical results about the traversal time in rectangular barriers
including finite size effects. We finally extract some conclu-
sions and present open questions.

1.1. Tunnelling Time

Tunnelling refers to the classically impossible process of a
particle to penetrate an energy barrier when its energy is
smaller than the maximum of the potential of the barrier.
The main magnitudes involved in the problem are the height
V0 and the length L of the potential barrier. If they are large,
the probability to penetrate the barrier is very small and we
say that it is an opaque barrier. Examples of tunnelling pro-
cesses are �-decay, transmission of electromagnetic waves
(EMW) in undersized waveguides, and tunnelling of elec-
trons. A quantum particle usually is said to have an intrinsic
“wave nature,” often paraphrased by “wave functions” or
“wavepackets.” The probability to penetrate a barrier, which
is quantified through the transmission coefficient (probabil-
ity) T , strongly depends on the nature of the exponential
decay of the wave function under the barrier.

Tunnelling of electrons has been of utmost importance
for all fast effects in ME. The first device used as a fast
switch was the semiconductor tunnel-diode which was com-
mercially introduced in the late 1950s [18]. But again, only
its total relaxation time was of interest and not the pure tun-
nelling time through the bounding barrier. Until relatively
recently, little attention was paid to Hartman’s theoretical
work on tunnelling time of wavepackets in the 1960s [19].
His main striking result was that under certain circumstances
(opaque barrier) the tunnelling time is independent of L
and the traversal time can be less than the time that would
be required to travel a distance equal to L in vacuum. Simi-
lar results were found by Rybachenko [20] for electrons in a
rectangular barrier. Although these were excellent pioneer

works, 30 years ago time was not ripe for a further evalua-
tion with respect to practical consequences in ME or even to
philosophical ones. Additionally, many physicists hesitated
to deal with Hartman’s results since a very fast tunnelling, or
a zero tunnelling time, holds a serious consequence: the tun-
nelling velocity or the average velocity may become higher
than the light velocity c. Thus superluminal speed can be
expected [21, 22] or measured in some cases like in exper-
iments where electromagnetic waves pass through a barrier
[23–27] or through an optical gap [9, 10, 16].

Since SE tunnelling processes could be evaluated in
many nanostructures [28–31], it provided a strong motive
for advancing nanofabrication technologies and research on
tunnelling, which become important even at room temper-
ature, since the operating temperature of single electron
devices is directly related to the geometrical size of the
electron localization. In SE the discreteness of the electric
charge becomes essential and a quantum-mechanical tun-
nelling of electrons in a system of rather opaque junctions
can be much affected by Coulomb interactions. For ME pur-
poses the electron interactions, the barrier height and shape,
and thus the tunnelling probability can be varied at will by
externally applied voltages or by injected charges.

Usually in QM we can only measure quantities for which
we have introduced a Hermitian operator, for example,
energy E, momentum p, coordinate y, and so on. For
these quantities, expectation values can be calculated and
checked experimentally. However, time appears in the stan-
dard quantum-mechanical approach only as a parameter
and therefore its expectation value is not defined. Since the
beginning of QM, people have been aware of the concep-
tual problem of how to introduce a time operator with an
appropriate classical analog, and there have been different
theoretical approaches to find a consistent description of this
problem [4, 11, 32].

Moreover, according to QM a particle under a barrier,
with energy E smaller than V0, can only be observed with
a strong inelastic in uence. If we fix its coordinate with an
accuracy of 	y smaller than the length of the barrier L, it
necessarily results in a variation of momentum, caused by
the measurement, and correspondingly in a change of the
kinetic energy of the particle. This change in energy must
be greater than the energy difference between the barrier
height V0 and the energy of the particle E [33]. If such a
measurement would be carried out by light quanta, then we
would have �
 ≥ V0 − E. The latter result demonstrates
impressively that it is practically impossible to measure the
propagation time from one coordinate (position) to the next
under a barrier. This means that in practice one must try
to observe the particle outside the barrier, say left or right
of the region of interest. For short wavepackets, where the
length of the wavepacket approaches the barrier length L,
this means “far” left and “far” right.

One can associate the traversal time with the time dur-
ing which a transmitted particle interacts with the region
of interest, as measured by some physical clock which can
detect the particle’s presence after leaving the region. For
electrons, this approach can utilize the Larmor precession
frequency of the spin produced by a weak magnetic field
hypothetically acting within the barrier region [20, 34–36].
Similar procedures have been developed for electromagnetic
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waves in [37], where was proposed a clock based on the
Faraday effect to measure their interaction time in a slab.
Another approach is to calculate the traversal time of a
particle through a barrier by following the behavior of a
wavepacket and determining the delay due to the structure
of the region. In this approach one has to be careful with the
interpretation of the results, since, for example, an emerg-
ing peak is not necessarily related to the incident peak in
a causative way [38]. For more discussions on this prob-
lem see, for example, [11] and references therein. Martin
and Landauer [39] studied the problem of the traversal time
of classical evanescent electromagnetic waves by following
the behavior of a wavepacket in a waveguide, and Ruiz and
co-workers [15, 40] analyzed their behavior in the optical
gap of a periodic structure. Japha and Kurizki [41] used the
Faraday effect as a quantum clock for evanescent waves and
studied its implications on two-photon correlations.

The problem of defining velocities is equally complicated
as that of determining the time. One cannot use just one
definition for the velocity both inside and outside the bar-
rier at the same time. Usually, for a quantum particle when
going from sub-barrier region to above-barrier region, one
can do analytical continuation of the wave function. But in
the first case there is an exponential decay of the wave func-
tion and in the second case we deal with a free propagation
of the electron and so a wave function with oscillations. This
analytical continuation is not correct for the velocity under
the barrier, because one gets an imaginary velocity. So there
is no definition of velocity for sub-barrier regions and as a
consequence, in the limit of an opaque barrier or in the for-
bidden gap of a periodic system, there may be observed a
“superluminal” speed.

1.2. Wavepacket Approach and Limits

The simplest model which illustrates the tunnelling problem
for a quantum particle is a plane wave incident on a one-
dimensional (1D) barrier. Part of the plane wave is reflected
and part is transmitted. The above plane wave, which repre-
sents the electron in our model, is by nature infinitely large
in space. The discussion of whether wavepackets with an
infinite extension model the wave function of single pho-
tons or electrons and of whether they might be interpreted
as signals is complicated [4, 11] and important for ME
with nanostructures. Therefore it is better to consider a
finite wavepacket and to look at its peak evolution in time
(see Fig. 1). Thus the phase time is the time which elapses
between the peak of the wavepacket entering the barrier and
leaving it and can be defined as the energy derivative of the
phase:

�� = �
d�

dE
(1)

In some cases this time can be easily calculated, but as was
mentioned before, it will lead us to Hartman’s effect. We will
see (Section 2) that, in general, more than one tunnelling
time are involved in the problem: �y , �z, and the so-called

Büttiker-Landauer �BL =
√
��y�

2 + ��z�2. Unfortunately this
time is not additive in the sense, that when dividing the
length of the barrier L�y� arbitrarily into different parts,
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Figure 1. (a) The initial wavepacket enters from the left onto the bar-
rier. (b) Transmitted and reflected wavepackets are moving away from
the barrier in opposite directions.

the total �BL tunnelling time is not the sum of the individual
tunnelling times.

To illustrate consequences from the above wavepacket
model, let us consider a sharply peaked Gaussian wave-
packet in space which starts to enter very far from the
barrier to exclude any interaction. A wavepacket is an over-
lap of many plane waves with different wave numbers k.
Hence, one may imagine the wavepacket as something like
a group of electrons with different energies and velocities.
The propagation will be dispersive and as a consequence
the high-energy components of the packet will reach the
barrier first. Due to the fact that higher energies can be
transmitted more effectively than the low-energy compo-
nents, the peak of the transmitted packet can leave the
barrier long before the peak of the incident packet has
arrived [11].

But what is really surprising is that even for the sub-
barrier tunnelling, that is, when the wavepacket contains
no energy components with energies above the rectangu-
lar barrier of height V0, the transmitted packet will have
a higher mean velocity than the free space propagation
velocity. Numerical simulations show that one obtains very
short tunnelling times when the spread of the Gaussian
wavepacket is larger than the barrier width L. Within these
restrictions even the simple rectangular barrier is an “elec-
tron accelerator.” This is a manifestation of the aforemen-
tioned Hartman effect (see Section 2) which was treated by
Rybachenko [20] for spin particles with analogous results.
As we will show (Section 2), the tunnelling time component
�y is independent of L and can be less than the time that
would be required for a free particle to travel a distance
equal to the barrier thickness L.

As a matter of principle, in ME for high information data
rate, the spread of the Gaussian wavepacket must be small.
Tunnelling time(s) then will depend to a higher degree on
the size of the incident wavepacket and the shape of the
barrier: tunnelling will become more sensitive to boundary
effects at the barrier.

Proof's Only
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For the future SE logics in nanostructures, “pure”
quantum-mechanical properties of monochromatic single
electrons with an energy less than 1 eV will be predominant.
For such particles the de Broglie wavelength �B = �/p will
be in the same order of magnitude as the length of the bar-
rier. At the same time, this wavelength will be comparable to
the radius of localization (e.g., for electrons confined in the
core of ligand-stabilized microclusters) in switches or mass
memories (stores). Physically speaking, this means that the
picture of a dispersive wavepacket is now failing. As far as
we know, fast tunnelling for this case has not been treated
theoretically until now.

1.3. Phase Time and Superluminal
Velocity in Periodic Nanostructures

In ME the simultaneous transmission of electrons and of
microwavepackets of selected optical signals between inte-
grated microchips on wafers is of great importance and
today much attention is paid to optoelectronics, since on the
way to future ultimate miniaturization, the present genera-
tion of devices hopefully will be replaced by nanostructured
systems.

While at the end of the preceding section we sketched
the problems with localized electrons for the future SE log-
ics in nanostructures, in the present section we first pay
attention to microwaves in undersized waveguide barrier-
systems and then to photons propagating in 1D periodic
and quasi-periodic Fibonacci and Thue-Morse systems. We
briefly report about the former first “superluminal” exper-
iment, but we are mainly interested in the latter as there
exists a considerable analogy between these periodic sys-
tems and, for example, chains of the above chemical nano-
structures. So there also must exist forbidden bandgaps
where electrons may propagate with “superluminal” speed.
It must be noted that periodic structures can be easily built
up in crystals of ligand-stabilized microclusters or likewise in
chains or layers of supported cluster arrangements on struc-
tured wafers or other substrates or even in channels or layer
spaces of porous chemical nanostructures (see [3]).

In order to avoid the problems involved with the disper-
sive nature of the electron’s wavepacket and the invasive
measuring process in QM, it was easier to look at a gaus-
sian wavepacket of classical electromagnetic waves and to
try to measure the delay time at a barrier. Indeed, in most of
the past tunnelling experiments, instead of electrons, elec-
tromagnetic waves were used [8, 23], to exclude any elec-
tronic interaction with the tunnelling barrier. The analogy
between the time-independent forms of the Schrödinger and
the Maxwell equations confronts us again with Hartman’s
case: the possibility of achieving extremely high tunnelling
velocities, even superluminal velocities.

Thus looking back, it was not so surprising that the
actual discussion on “superluminal” speed started almost at
the same time with the series of microwaves experiments
by transmission through systems consisting of undersized
waveguides [7, 8, 23–27]. Steinberg et al. [9] found “superlu-
minal” velocities for electromagnetic waves in the photonic
bandgap of multilayer dielectric mirrors. Spielman et al. [10]
observed that the barrier traversal time of electromagnetic
wavepackets tends to become independent of the barrier

thickness for opaque barriers. This phenomenon is closely
related to Hartman’s theoretical prediction for electron tun-
nelling [19]. The theoretical explanation of this phenomenon
can be found in the framework of classical Maxwell equa-
tions by following the time evolution of the wavepacket in
time, as it was mentioned above (see, e.g., [22, 36, 40]). It
was clear that parts of the microwavepacket were able to
propagate with “superluminal” speed, proving the practical
use of Hartman’s effect.

The propagation of electromagnetic waves in 1D quasi-
periodic Fibonacci and Thue-Morse systems was studied in
[14]. It was shown that, under certain conditions, again the
phase time becomes independent of the system size and so
“superluminal” group velocities can be obtained for very
narrow-frequency-band wavepackets.

2. LARMOR CLOCK APPROACH
Baz’ [34, 35] proposed the use of the Larmor precession
to measure the time spent by a spin-1/2 particle inside a
sphere of radius r = a. He considered the effect of a weak
homogeneous magnetic field B inside the sphere on an inci-
dent beam of particles of mass m and kinetic energy E =
�

2k2/2m. Let us assume that the magnetic field is directed
along the z axis and the incoming particles move along the
y axis with their spin polarized along the x axis. As soon
as a particle enters the sphere, its magnetic moment will
start precessing about the field vector with the well-known
Larmor frequency 
L = 2�B/�. The precession will go on as
long as the particle remains inside the sphere. The polariza-
tion of the transmitted (and reflected) particles is compared
with the polarization of the incident particles. The angle �⊥
in the plane xy, perpendicular to the magnetic field, between
the initial and final polarizations is assumed to be given, in
the lowest order in the field, by the Larmor frequency 
L
multiplied by the time �y spent by the particle in the sphere

�⊥ = �L�y (2)

The change in polarization thus constitutes a Larmor clock
to measure the interaction time of the particles with the
region of interest.

Rybachenko [20] considered the simpler problem of the
interaction time of particles with a one-dimensional rectan-
gular barrier of height V0 and width L, for which everything
can be calculated analytically. Rybachenko thought that the
spin, in first order in the field, remains in the xy plane. For
an opaque barrier, where there is a strong exponential decay
of the wave function, he found a characteristic interaction
time �y given by

�y =
�k

V0�
(3)

where � is the inverse decay length in the rectangular barrier

� = �k2
0 − k2�1/2 (4)

with k0 = �2mV0�
1/2/�. This characteristic time �y is inde-

pendent of the barrier thickness L. Instead of being propor-
tional to the length, L is proportional to the decay length.
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For an opaque barrier this decay length can become very
short and so �y can be very small, in fact, smaller than
the time that would be required for the incident particle to
travel a distance L in the absence of the barrier. A similar
result was found by Hartman [19] analyzing the tunnelling of
a wavepacket through a rectangular potential barrier, which
is known as Hartman’s effect.

2.1. Büttiker Approach

Büttiker [36] argued that the main effect of the magnetic
field is to tend to align the spin parallel to it in order to min-
imize the energy. It means that a particle tunnelling through
a barrier in a magnetic field does not only perform a Larmor
precession, but also a spin rotation produced by the Zeeman
effect, which necessarily has to be included in the formal-
ism. The idea behind this Zeeman rotation is the following.
A beam of particles polarized in the x direction can be rep-
resented as a mixture with equal probabilities of particles
with their z component equal to �/2 and to −�/2. In the
barrier the kinetic energy differs by the Zeeman contribu-
tion ±�
L/2, giving rise to a different exponential decay of
the wave function depending on its spin component along
the direction of the magnetic field. In the limit of small fields
we have

�± =
(
k2

0 − k2 ∓ m
L

�

)1/2 � � ∓ m
L

2��
(5)

where the sign indicates whether the z component of the
spin is parallel (+) or antiparallel (−) to the field. The parti-
cles with spin �/2 will penetrate the barrier more easily than
the particles with spin −�/2, and so the transmitted particles
will have a net z component of the spin. This net component
of the spin along the direction of the field defines a second
characteristic time �z of the particle in the barrier.

For each of the spin components, one can define a char-
acteristic time describing the interaction of the tunnelling
particle with the barrier:

lim

L→0


Sx� =
�

2

[
1− 
2

L��
BL
x �

2

2

]
(6)

lim

L→0


Sy� = −�

2

L�

BL
y (7)

lim

L→0


Sz� =
�

2

L�

BL
z (8)

Only two of these characteristic times are independent. The
spin expectation values 
Sx�, 
Sy�, and 
Sz� can be obtained
in terms of the transmission amplitude for particles with
Sz = ±�/2

t± ≡ √
T±e

i�± (9)

where T± and �± are the corresponding transmission coeffi-
cient and phase, respectively.

For the special case of a 1D rectangular barrier, it is
possible to find exact analytical expressions for the time.
For energies smaller than the height of the barrier, E < V0,
Büttiker [36] obtained the following expression for the
characteristic time associated with the direction parallel to

the field �BL
z :

�BL
z = − m

��

! ln T 1/2

!�
(10)

For the time �BL
y associated with the direction of propaga-

tion, perpendicular to the field, he found

�BL
y = − m

��

!�

!�
(11)

Here T and � are, respectively, the transmission coefficient
(probability) and the phase accumulated by transmitted par-
ticles due to the rectangular barrier in the absence of the
magnetic field. In Figure 2 we represent �BL

y and �BL
z for a

rectangular barrier.
Büttiker assumed that the relevant interaction time depe-

nds on the times associated to both the Larmor precession
and the Zeeman splitting, and is given by

�BL =
{(
�BL
y

)2 + (
�BL
z

)2}1/2
(12)

0

0

0

5

5

5τz

τy

10

10

10

20

–10

–5

E

15

15

15

20

Figure 2. Components �BL
y and �BL

z of the Büttiker-Landauer time for a
rectangular barrier. For energies higher than the barrier potential, both
components oscillate with energy.

Proof's Only
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This traversal time is the so-called Büttiker-Landauer (BL)
time for transmitted particles. Although it was obtained in
the context of tunnelling, it is a general definition which
applies for the traversal time of a particle or an electromag-
netic wave through any given region of space. For a rectan-
gular barrier, it is then given by

�BL = m

��

{(
! ln T 1/2

!�

)2

+
(
!�

!�

)2}1/2

(13)

When the energy E of an incident particle is well below
the barrier height V0 of an opaque rectangular barrier, Büt-
tiker’s result (13) is approximately equal to

�BL 
 mL

��
(14)

which is very different from the result of Rybachenko,
Eq. (3). It is, however, in agreement with the traversal time
obtained by Büttiker and Landauer [42] based on the tran-
sition from adiabatic to sudden limits for a time-modulated
rectangular opaque barrier.

2.2. Green’s Functions Method

We now derive a general expression for the traversal time
using the Green’s Function (GF) method [43, 44]. We will
consider a 1D system with an arbitrary potential V �y� con-
fined to a finite segment 0 < y < L, which we will call “the
barrier.” As for a rectangular barrier, we apply a weak mag-
netic field B in the z direction and confined to the barrier
(see Fig. 3).

Our electron is incident on the barrier from the left with
an energy E and with its spin polarized along the x direc-
tion. In the presence of the magnetic field, the Schrödinger
equation takes the form(

− �
2

2m
d2

dy2
+ V �y�− E

)
"̂ �y� = −�B

(
1 0
0 −1

)
"̂ �y�

(15)

X

S

re–iky

eiky teiky

Z B

S

V(y)

O L y

Figure 3. General potential barrier restricted to the interval 0 < y < L
with a magnetic field applied.

where the column wavevector "̂ �y� represents compactly
both spin states.

The problem is solved by perturbation theory. In the low-
est order in B, the spinor "̂ �L� of the electron on the right
end of the barrier is given by [43]

"̂ �L� =
(
1
1

)
#�L�+ e�B

2mc

(
1
−1

) ∫ L
0
#�y�G�y%L� dy

(16)

Here #�y� is the solution of the spatial part of the
Schrödinger equation in the absence of the magnetic field,
which can be written in terms of the GF of the system as

#�y� = exp�iky�−
∫ L
0
G�y% y′�V �y′� exp�iky′� dy′ (17)

whereG�y% y′� is the retarded GF, whose energy dependence
is not written explicitly. It should satisfy Dyson’s equation:

G�y% y′� = G0�y% y
′�+

∫ L
0
G0�y% y

′′�V �y′′�G�y′′% y′� dy′′

(18)

where G0�y% y
′� = i�m/k�2� exp�ik�y − y′�� is the free-

electron GF. We can obtain all the relevant properties of
the problem in terms of the GF, solution of the previous
equation.

We first concentrate on the calculation of the traversal
time. The expectation value of the component of the spin
along the direction of the magnetic field of the transmitted
electron is, up to second order in B:


Sz� =
�

2

"̂ �L� �&z� "̂ �L��

= −e�
2B

mc
Re
[
#∗�L�

∫ L
0
#�y�G�L% y� dy

]
(19)

We want to express the wave function #�y� appearing inside
the integral in the previous equation in terms of the GF. In
order to do so, we take into account the following relation-
ship between the wave function and the GF of a 1D system:

#�y� = − i�
2k

m
G�0% y� (20)

For one-dimensional systems also, we can further simplify
the problem by writing the general expression of the GF,
G�y% y′�, in terms of its own expression at coinciding coor-
dinates y = y′ [45]. One finds that the spin component along
the direction of the magnetic field is given by


Sz� =
e�2B

mc
�#�L��2 Re

∫ L
0
G�y% y� dy (21)

Similarly, the spin component along the y direction is
equal to


Sy� = −e�
2B

mc
�#�L��2 Im

∫ L
0
G�y% y� dy (22)

Proof's Only
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Büttiker-Landauer characteristic traversal times for the z
and y directions are proportional to the corresponding spin
components, Eqs. (8) and (7), and we finally arrive at

�BL = �

∣∣∣ ∫ L
0
G�y% y� dy

∣∣∣ (23)

Instead of defining the modulus of �BL
z and �BL

z as the
central magnitude of the problem, we prefer to define a
complex traversal time � as

� = �BL
z + i�BL

y = �

∫ L
0
G�y% y� dy (24)

As we will see, other approaches also get a complex time.
The two characteristic times of the problem can be written
in a compact form as the real and imaginary parts of a sin-
gle well-defined magnitude. Besides, these two time compo-
nents may be separately relevant to different experimental
results, and do not have to necessarily enter into the prob-
lem through the modulus, Eq. (23). We will come back to
this question.

The final result, Eq. (24), only depends on the inte-
gral of the GF at coinciding coordinates. For practical pur-
poses and in order to compare this result with those of
other approaches, it is interesting to rewrite it in terms of
the transmission t and reflection from the left r and from
the right r ′ amplitudes [44, 45]. The spatial integral, over the
length of the barrier, of the GF at coinciding coordinates
can be expressed in terms of partial derivatives with respect
to energy E:

� = �

∫ L
0
G�y% y� dy = �

{
! ln t
!E

+ 1
4E
�r + r ′�

}
(25)

This is a general expression, independent of the model
considered.

The first term in the RHS of Eq. (25) mainly contains
information about the region of the barrier. Most of the
information about the boundary is provided by the term
including the reflection amplitudes r and r ′. This term is on
the order of the wavelength � over the length of the sys-
tem L, and it becomes important for low energies and/or
short systems. It can be neglected in the semiclassical WKB
case and when r is negligible, for example, in the resonant
case, when the influence of the boundaries is negligible. Cer-
tain approaches only obtain the contribution to the time
proportional to an energy derivative, missing the terms pro-
portional to the reflection amplitudes. The same type of
problem arises when calculating densities of states or partial
densities of states [46].

The components of the traversal time can be related to
the density of states and the resistance. The imaginary part
of G�y% y� is proportional to the local density of states at the
corresponding energy. So, �BL

y can also be written as �BL
y =

'�L(L�E�, where (L�E� is the average density of states per
unit energy and per unit length.

Thouless has shown [47] the existence of a dispersion
relation between the localization length and the density of
states. This relationship can be expressed [48] in the form
of a linear dispersion relation between the real part, Re ln t,

and the imaginary part, Im ln t, of the transmission ampli-
tude. The self-averaging property of �BL

z and of �BL
y is there-

fore an immediate consequence of self-averaging of the
localization length and of the density of states [48]. While
�z and �y are additive, the total tunnelling time �BL, given
by Eq. (23), is not the sum of the individual transmission
times. This property has also been pointed out by Leavens
and Aers [49]. It is a consequence of the fact that, for an
infinitesimal B, the interference between the effects of the
magnetic field in the separate regions )0* y+ and )y*L+ is
of higher order than linear and does not contribute to the
local times [49]. Mathematically speaking, we say that the
BL time, Eq. (23), adds as the absolute value of complex
additive numbers, and so it is not additive.

2.3. Reflection Time

For reflected particles we can proceed in the same way as
we did for transmitted particles. We will use the subindex
R to indicate that the magnitude corresponds to reflection,
and we understand that similar magnitudes related to trans-
mission will have no subindex. Proceeding as above, we find
for the expectation values of the spin components of the
reflected wave: and


Sz�R = �

2

�"̂ �0�− 1� �&z� �"̂ �0�− 1��

= e�2B

mc
�#∗�0�− 1�2 Re

∫ L
0
#�y�G�0% y� dy (26)

and


Sy�R = −e�
2B

mc
�#∗�0�− 1�2 Im

∫ L
0
#�y�G�0% y� dy (27)

We can again define three new characteristic times, �BL
z%R,

�BL
y%R, and �

BL
x%R, each of them associated with a component of

the spin. Only two of these times are independent. Invoking
Eqs. (26) and (27) and the relationship (20) between the
wave function and the GF of a one-dimensional system, we
arrive at

�BL
y%R = � Im

1+ r
r
e−i2��0�

∫ L
0
G�y% y�ei2��y� dy (28)

�BL
z%R = �Re

1+ r
r
e−i2��0�

∫ L
0
G�y% y�ei2��y� dy (29)

where ��y� is a phase function given by

��y� =
∫ y
0

im

�2

dy′

G�y′% y′�
(30)

The characteristic times �BL
y%R and �BL

z%R are the real and imag-
inary components, respectively, of a complex quantity. This
quantity is proportional to a new integral of the GF at coin-
ciding coordinates, which in this case involves the phase
function also. The previous integral can be written in terms
of the transmission and reflection amplitudes. We arrive at
the following expression for the complex reflection time [50]:

�R = �BL
z%R + i�BL

y%R ≡ �

{
! ln r
!E

− 1
4Er

�1− r2 − t2�
}

(31)



8 Electronic Tunnelling Time in Nanostructures

This is again a general equation, independent of the model
used.

For an arbitrary symmetric potential, V ��L/2� + y� =
V ��L/2� − y�, the total phases accumulated in a transmis-
sion and in a reflection event are the same, as can be
deduced from the form of the scattering matrix elements,
and so the characteristic times for transmission and reflec-
tion corresponding to the direction of propagation are equal:

�BL
y = �BL

y%R (32)

as it immediately follows from Eqs. (25) and (31) (see also
the review article by Hauge and Støvneng [4]). For the spe-
cial case of a rectangular barrier, Eq. (32) was first found
by Büttiker [36]. For an asymmetric barrier, Eq. (32) breaks
down as discussed by Leavens and Aers [51].

2.4. Dwell Time

There is also another important characteristic time called
the dwell time, about which there exists a vast literature
(see, e.g., [4, 11] and references therein). This time was first
introduced by Büttiker [36] region divided by the average
number entering (or leaving) the barrier per unit time. It
corresponds to the average time spent by a particle within
the barrier irrespective of whether it is finally reflected or
transmitted.

The dwell time in a neighborhood of y is defined as the
ratio between the particle number in the interval )y% y+ dy+
and the incoming current [36]:

d��D��y� = �#�y��2
J

dy (33)

where #�y� is the steady-state scattering solution of the
time-independent Schrödinger equation. Obviously, Eq. (33)
describes a balance equation: in the stationary case the
injected current equals the decay rate of the probability in
)y% y + dy+. The dwell time ��D� of a finite region within the
context of a stationary-state scattering problem is obtained
via a spatial integration of Eq. (33). So the dwell time ��D�

is given by [36]

��D� ≡ m

�k

∫ L
0

�#�y��2 dy (34)

Here the integral extends over the barrier, and �k/m is the
incident flux. Again we want to calculate this time in terms
of the transmission and reflection amplitudes.

Let us consider again a particle moving along the y direc-
tion in the presence of an arbitrary potential barrier V �y�
in the interval )0% L+. Taking explicitly into account that the
wave function appearing in Eq. (34) is a solution of the
Schrödinger equation, we arrive at [52]

��D� = − �

4k

[
#∗2�y�

!

!E

(
#′�y�#�y�
�#�y��2

)
+ #2�y�

!

!E

(
#∗′�y�#∗�y�

�#�y��2
)]L

0
(35)

This expression is formally the same for particles incident
from the left or from the right, but we have to remember

that the corresponding wave functions will not be the same.
García-Calderón and Rubio [53] arrived at the same result
by a completely different method.

We can now rewrite Eq. (35) in terms of the retarded GF
G�y% y′� of the system, as we have been doing for the other
times. The dwell time is given by

��D� =
[
i
!

!E
��y�−G�y% y� !

!E

(
G′�y% y�
G�y% y�

)]L
0

(36)

As it occurs for the wave function, the GF G�y% y′� depends
on whether the particle arrives to the barrier from the left
or from the right. After some cumbersome algebra, we can
express the dwell time in terms of the transmission and
reflection amplitudes:

��D�− = � Im
{[
! ln t
!E

+ 1
4E
�r + r ′�

]
+ 1

2

[√
R
!

!E
ln
r

r ′
+ 1

2E
�r − r ′�

]}
(37)

The subindex-indicates that the particle is coming from the
left. R is the modulus square of the reflection amplitudes
R = �r �2 = �r ′�2. When the particle is coming from the right,
the dwell time is given by an expression similar to Eq. (37),
but interchanging r and r ′. We will refer to this case with
the subindex +.

Gasparian et al. [44] showed that the first term on the
RHS of Eq. (37) is proportional to the density of states.
Then, we finally arrive at the following expression for the
dwell time:

�
�D�
± = '�L(�E�± �

2
Im
[√
R
!

!E
ln
r

r ′
+ 1

2E
�r − r ′�

]
(38)

For a symmetric potential we have that the reflection coef-
ficients from the right and from the left are equal, r = r ′,
and we obtain ��D�− = �

�D�
+ = '�L(�E�, in agreement with

the result of Gasparian and Pollak [43].
For an asymmetric barrier, it is easy to check that the

contribution from the asymmetry is the opposite for particles
coming from the left and from the right. Then we find that

(�E� = 1
2'�L

(
��D�− + ��D�+

)
(39)

This result was obtained in a much wider context by Iannac-
cone [54], which considered the relation between the dwell
time and the density of states for a three-dimensional region
. of arbitrary shape with an arbitrary number of incoming
channels. He arrived at

(.�E� =
1

2'�

N∑
n=1

��D�n (40)

where (.�E� is the density of states per unit volume, and
�
�D�
n is the dwell time for particles coming from the n-

channel. This result shows that the density of states in . is
proportional to the sum of the dwell times in . for all the
incoming channels.
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A controversial question concerning the dwell time is
whether it satisfies or not the relation (see [49, 55, 56])

��D� = R�BL
y%R + T�BL

y (41)

This result is trivial for classical particles, for which the
traversal time coincides with the y component of our com-
plex traversal time and for which there is no interference
between the reflected and the transmitted particles. For the
quantum coherent case, this result is not so clear. We can
prove this relation, which we believe must hold because
a particle incident on the barrier is either transmitted or
reflected. Reflection and transmission of a particle are mutu-
ally exclusive events in the sense of Feynman and Hibbs
[57]; that is, a measurement can determine, without inter-
fering with the scattering event, whether a particle has been
transmitted or reflected. Our results for the y component
of the transmission and reflection times, Eqs. (25) and (31),
respectively, and for the dwell time, Eq. (37), allow us to
prove exactly the previous relation between these times. On
the other hand, our results also prove that a similar rela-
tion involving the full BL times does not hold. This relation
has been claimed very often in the literature, and has been
strongly criticized by other authors [11].

3. OTHER APPROACHES
In this section, we review other approaches to the prob-
lem of the traversal and reflection times. We would like to
show that most results, obtained from very different points
of view, are almost compatible and coincide with Eq. (25)
for the traversal time and with Eq. (31) for the reflection
time. Often, these approaches only obtain the contributions
to the time proportional to the energy derivative of the log-
arithm of the transmission amplitude.

We start with the oscillatory incident amplitude and with
the time-modulated barrier approaches. Then we review the
Feynman path-integral approach, where the idea of a com-
plex time arises more naturally. We finish with the kinetic
approach, which is very convenient to study finite size effects
and so the standard errors inherent to the problem.

3.1. Oscillatory Incident Amplitude

We assume an incident wave of oscillatory amplitude inter-
acting with a time-independent potential, and study the
shape distortion of the transmitted wave by the barrier. This
method was proposed by Büttiker and Landauer [58, 59]
and analyzed by Leavens and Aers [51] and Martin and
Landauer [60]. The incident wave consists of two interfering
plane waves:

"�y% t� = exp
{
i

[
ky − Et

�

]}
+ exp

{
i

[
�k + 	k�y − �E + 	E�t

�

]}
= 2 exp

{
i

[
�k + 	k/2�y − �E + 	E/2�t

�

]}
× cos

(
	ky

2
− 	Et

2�

)
(42)

The energy difference between the two plane waves char-
acterizes the oscillations in amplitude of the incident wave.
In the region to the right of the barrier, we have the sum
of two transmitted plane waves which can be written in the
form

"�y% t� = t�E�
{
i

[
ky − Et

�

]}
+ t�E + 	E�

× exp
{
i

[
�k + 	k�y − �E + 	E�t

�

]}
(43)

The shape distortion produced by the barrier on the trans-
mitted wave will strongly depend on 	E. If 	E is small, the
incident wave is modulated very slowly and in that case the
transmitted wave (43) will reproduce the incident wave (42),
in the sense that the destructive and constructive interfer-
ences will occur at the same time for both of them. As we
increase 	E, t�E� and t�E+	E� will increasingly differ and
the transmitted wave (43) will no longer reproduce the inci-
dent wave. We can assume that appreciable shape distortion
will take place when a characteristic time delay, or disper-
sion in transit time, becomes comparable to or larger than
the modulation period [58, 59]. Thus we define a new traver-
sal time � as �/	E, where 	E is the energy difference which
establishes the onset of significant distortion of the transmit-
ted wave, that is, the energy such that 	E�d��E�/dE� ≈ 1.

The analysis of this approach based on the WKB approx-
imation led Büttiker and Landauer [58] to the following
results. For E < V �y�, the phase of the transmission ampli-
tude is of secondary importance as compared with the expo-
nential decay of the modulus of t�E�. We can write the
transmission amplitude in the form

tWKB�E� = exp
[
−
∫ y2
y1

��y� dy

]
(44)

where � is the inverse decay length, given by Eq. (4), and
y1 and y2 are the classical turning points. From this expres-
sion of the transmission amplitude, Büttiker and Landauer
obtained for the traversal time for tunnelling

�WKB�E� =
m

�

[
−
∫ y2
y1

dy

��y�

]
(45)

When E > V �y�, the energy dependence of t�E� comes
primarily from the dependence of the phase ��t�E�� = 1�,
and then we can assume that t�E� is of the form

tWKB�E� = exp
[
−i
∫ L
0
K�y� dy

]
(46)

with K�y� = i��y�. For this case, in which the phase domi-
nates, we have

�WKB�E� =
m

�

[∫ L
0

dy

K�y�

]
(47)

It is easy to check that, for a rectangular barrier, the traver-
sal time �WKB is equal to mL/�� for energies below the
barrier height and equal to mL/�K for energies above the
barrier. As it was shown by Martin and Landauer [60],
the general analysis of this two-interfering-incident-waves
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approach yields characteristic times that depend on energy
derivatives of the transmission coefficient

� = �
∣∣t−1
E

∣∣∣∣∣∣dtEdE
∣∣∣∣ = �

{(
d�

dE

)2

+
(
d ln T
dE

)2
}1/2

(48)

As in the Büttiker and Landauer approach to the Larmor
clock, the time is equal to the square root of the sum of
the squares of two characteristic times, one involving energy
derivatives of the phase and the other energy derivatives of
the logarithm of the modulus of the transmission amplitude.
The same result for the traversal time is also obtained in the
modulated barrier approach [60].

It is interesting to note that this oscillatory amplitude
approach without resort to the WKB approximation led
Leavens and Aers [51] to complex times. Let us write the
transmission amplitude as

t�E� = exp )i3�E�+ (49)

where 3�E� is in general complex. For sufficiently small 	E,
we may expand t�E + 	E� to lowest order in 	E:

t�E + 	E� � exp
[
i

(
3�E�+ 	Ed3�E�

dE

)]
= t�E� exp

[
i	E

d3�E�

dE

]
(50)

This expression should be substituted in Eq. (43) for the
transmitted packet. For sufficiently small 	E, the difference
in exponents of the two components of the transmitted wave
at y = L and t = 	t is greater than that of the two compo-
nents of the incident wave at y = 0 and t = 0 by an amount

i

[
	kL− 	E

�	k

(
	t − �

d3�E�

dE

)]
� i	k

[
L− v�k�

(
	t − �

d3�E�

dE

)]
(51)

with v�k� ≡ �
−1dE/dk = �k/m being the group velocity.

In the absence of the potential barrier, the traversal time
associated with the propagation of the wavepacket from y =
0 to y = L is the value of 	t for which L − v�k�	t = 0,
that is, � = L/v�k�. Formally, in the presence of the poten-
tial, Leavens and Aers [51] obtained from Eq. (51) the com-
plex barrier interaction “time”

�E = L

v�k�
+ �

d3�E�

dE
≡ −i� ! ln t

!E
(52)

This final answer for the time is just proportional to
! ln t/!E, and so is correct for infinitely large systems only
�L � ��. The difference between this expression for the
traversal time and our general expression (25) is the term
proportional to the reflection amplitude, which cannot be
obtained with this type of approach.

We can deduce explicit expressions for all these times, and
so see clearly the difference between Eq. (52) and Eq. (25),
obtained with the GF formalism, for the special case of a
rectangular barrier. Let us associate the real and imaginary
components of this complex time, Eq. (52), with the previous

characteristic times for the y and z components, and let us
denote them as �Ey and �Ez . The explicit expressions for the
two components of the traversal time �Ey and �Ez for this
special case of a constant potential can be written in the
form [51]

�Ez =−�
! lnT 1/2

!E

= mk4
0

2��2k2

2��2−k2�sinh2��L�+k2�Lsinh�2�L�

4k2�2+k2
0 sinh

2��L�
(53)

�Ey =�
!�

!E
= m

�k�

2�Lk2��2−k2�+k4
0 sinh�2�L�

4k2�2+k2
0 sinh

2��L�
(54)

After an obvious change of notation, it is easy to check that
the times �Ey and �Ez are related to the exact results �BL

y and
�BL
z through

�Ey = �BL
y + 1

2E
Im r

−�Ez = �BL
z + 1

2E
Re r

(55)

where �BL
z and �BL

y are given by Eqs. (10) and (11). Figure 4
compares �Ey with �BL

y for a rectangular barrier. It can be
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Figure 4. Components of the traversal time for a rectangular barrier
according to Eqs. (25) and (54).
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seen that, even for an opaque barrier ��L � 1�, the dif-
ferences between these times can be very significant. This
is particularly so at very small energy E where �BL

y goes to
zero as E1/2, while �Ey diverges as E−1/2, and, at the same
time, �BL

z is approximately equal to 0, while �Ez diverges
as E−1. The oscillatory amplitude approach in general does
not give the same answer as the GF formalism, based on
the Larmor clock approach. As the difference between the
corresponding tunnelling times is proportional to the ampli-
tude of reflection, we concluded that it arises from boundary
effects [44].

3.2. Time-Modulated Barrier

The time-modulated barrier approach to the traversal time
was introduced by Büttiker and Landauer [42] (see also
[58, 61]). Its basic idea is simple and can be explained as
follows. Let us add to the static barrier potential which we
discussed before a time-dependent potential which is zero
everywhere except in the region of interest. So the 1D poten-
tial can now be written in the form

V �y% t� = V �y�+ V1 cos�
t� (56)

where V1 is the amplitude of the small modulation added,
and 
 is its corresponding frequency. For the sake of sim-
plicity, it is more convenient in this approach to consider the
barrier restricted to the region −L/2 < y < L/2.

Suppose that there is a characteristic time � during which
the particle interacts with the barrier. If the period of the
modulation T = 2'/
 is long compared to the time � ,
then the particle sees an effectively static barrier during its
traversal. In the opposite extreme, that is, for slowly tun-
nelling electrons, for which 
� > 1, the barrier oscillates
many times during the period of traversal of the electron.
There is thus a crossover from a low-frequency behavior to
a high-frequency behavior, and we expect to occur two dis-
tinct types of electron-barrier interactions, depending on the
value of 
� as compared with unity.

We will use a rectangular barrier extensively, for illustra-
tive purposes, but in principle all the results can be gener-
alized to an arbitrary potential barrier by considering the
adiabatic limit, 
 → 0, of this inelastic scattering process
[62]. The Hamiltonian for the time-modulated rectangular
barrier in the scattering region is

H = − �

2m
d2

dy2
+ V0 + V1 cos�
t� ≡ H0 + V1 cos�
t�

(57)

As it is well known from the time-dependent perturba-
tion theory [63], incident particles with energy E, interact-
ing with the perturbation V1 cos�
t�, will emit or absorb
modulation quanta �
. In first-order corrections to the
time-independent case, this means that inside the barrier,
for �y� > L/2, the reflected and transmitted waves, used
to represent the tunnelling electrons, we will now have a
main feature at the initial energy E and also sidebands
at the energies E + �
 and E − �
, as it is schemati-
cally represented in Figure 5. Taking V1 as a perturbation,
the two independent eigensolutions of the corresponding

y

E+�ω E+�ω

E–�ω E–�ω

E E

V(y)

Figure 5. For an oscillating barrier, besides a main transmission and
reflection component at the initial energy E, there are two lateral
components at energies E ± �
. Reprinted with permission from [86],
V. Gasparian et al., “Handbook of Nanostructured Materials and Nano-
technology” (H. S. Nalwa, Ed.), Vol. 2, Chapter 11, 1999. © 1999, Else-
vier Science.

time-dependent Schrödinger equation, within the rectangu-
lar barrier, can be written as [63]

"bar�y% t* E� = �E�y� exp
{
− iEt
h

}
exp

{
− iV1

�

sin
t

}
(58)

Here �E = e±�y is a wave function solution of the time-
independent problem H0�E = E�E , with the simpler Hamil-
tonian H0.

As it was shown by Büttiker and Landauer [42], the next
stage to find the solution for the oscillating rectangular bar-
rier is to match Eq. (58) with the corresponding solutions at
the same energy outside the scattering region. For an elec-
tron of energy E impinging on the scattering region, there
will be reflected and transmitted waves at the three energies
E, E + �
, and E − �
. So, if the electron is coming from
the left, its wave function in the region to the left of the
barrier, y < −L/2, will be of the form

"inc+ ref = �eik�y+L/2� + re−ik�y+L/2��e−iEt/� + r+e−ik+�y+L/2�
× e−i�E+�
�t/� + r−e−ik−�y+L/2�
× e−i�E−�
�t/� (59)

where k± are the wavevectors corresponding to the side
energy bands, defined as k± = �2m/�2�1/2�E ± �
�1/2.
Equation (59) represents an incident plane wave of unit
amplitude and three reflected waves, one of amplitude r at
the incident energy and two of amplitudes r± at energies
E ± �
. To the right of the barrier �y > L/2�, we have for
the transmitted wave

"tra = teik�y−L/2�e−iEt/� + t+eik+�y−L/2�e−i�E+�
�t/�

+ t−eik−�y−L/2�e−i�E−�
�t/� (60)

where t is the transmission amplitude at the energy of the
incident wave and t± are the transmission amplitudes of the
sidebands.

In the barrier, for an infinitesimal amplitude of the time-
dependent potential, V1 � �
, we can expand Eq. (58) to

Proof's Only
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lowest order in V1 and represent the wave function in the
form

"bar = )Be�y + Ce−�y+e−iEt/�
[
1+ V1

2�

e−i
t − V1

2�

ei
t

]
+ )B+e

�+y + C+e
−�+y+e−i�E+�
�t/�

+ )B−e
�−y + C−e

−�−y+e−i�E−�
�t/� (61)

�± are the inverse decay lengths for the sidebands, defined
as �± = �2m/�2�1/2�V0 − E ∓ h
�1/2. The coefficients r , r±,
B, B±, C, C±, t, and t± are determined by matching the wave
functions and their derivatives at y = −L/2 and at y = L/2
in the usual manner. Note that the matching conditions must
hold for all times; therefore, we have to match each time
Fourier component separately. r and t play the role of the
static reflection and transmission amplitudes, respectively.
Using the standard matching relations, it is straightforward
to show that for an almost completely reflecting barrier in
the opaque limit, �L� 1, the coefficient t of the static bar-
rier is given by the standard expression [63]

t = 4k�
k2

0

e−�L exp
{
−i arctan

[
�2 − k2

2k�

]}
× exp

{
i

[
y − kL− Et

�

]}
(62)

For the transmitted waves at the frequencies �E/�� ± 
,
Büttiker and Landauer found that their transmission coeffi-
cients are

t± = ∓t V1

2�

�e±
� − 1�

× exp
{
i

[
k± ∓ m
L

2�
− �E ± �
�t

�

]}
(63)

� = mL/�� is the time it would take a particle with the
velocity v = ��/m to traverse the opaque rectangular bar-
rier. To obtain Eq. (63) it was additionally assumed that
�
 � E, so that the wavevectors of the sidebands are
approximately equal to k± � k ± m
/�k, and also that
�
 � V0 − E, so that the decay lengths satisfy �± = � ∓
m
/��.

Note that for opaque barriers the traversal time �BL

obtained in the Larmor clock approach, Eq. (14), coincides
with the expression considered in the previous equation, � =
mL/��. The classical time that one would obtain in the
WKB limit at energies below the peak of the barrier is given
by the integral

� =
∫ y2
y1

m

���y�
dy =

∫ y2
y1

{
m

2�V0�y�− E�
}1/2

dy (64)

where y1 and y2 are the classical turning points. This result
also reduces to the value appearing in Eq. (63) for the case
of a rectangular barrier, when V0�y� is constant.

The probability of transmission at the sideband energies,
determined from Eq. (63), is

T± = �t±�2 =
(
V1

2�


)2

�e±
� − 1�2T (65)

where T is the transmission coefficient for the static barrier.
For small frequencies, so that 
� � 1, the probabilities of
transmission for the upper and lower sidebands obtained
from Eq. (65) are the same and equal to

T± =
(
V1�

2�

)2

T (66)

Remember that � is the approximate expression for the
Büttiker–Landauer time for an opaque barrier, given by
Eq. (14).

At high frequencies, the upper sideband is exponentially
enhanced, while the lower sideband is exponentially sup-
presseds. So for an opaque barrier we do indeed have
a rather well-defined crossover between tunnelling at high
frequencies and tunnelling at low frequencies, with the char-
acteristic time corresponding to the value given by Eq. (14).
This characteristic crossover time is the same one appear-
ing in the expression of the transmission coefficients of the
sidebands in the adiabatic limit.

3.2.1. General Barrier
Let us briefly discuss the results of the general oscillating
barrier problem following the papers of Hauge and Støvneng
[4] and [62]. It was shown that in the adiabatic limit, 
→ 0,
the expression for the transmission coefficients for the side-
bands, Eq. (65), can be generalized in the form

T± = �t±�2 →
(
V1�� �V �
2�

)2

�t�E% �V ��2 (67)

where �t�2 = T and we have written explicitly the E and �V
dependence of the transmission amplitude t. �V is the aver-
age value of the barrier potential in the scattering region,
that is,

�V ≡ 1
L

∫ L/2
−L/2

V �y� dy8 (68)

�
�V is a complex quantity, with the dimensions of time,

defined as

�
�V = i� ! ln t�E%

�V �
!�V (69)

This quantity characterizes the crossover from the adiabatic
to the high-frequency limits, and we define it as the traversal
time in the time-modulated barrier approach.

The corresponding definition of the reflection time
appeals to the adiabatic limit of the reflected sidebands.
Their reflection coefficients R± = �r±�2 tend in the adiabatic
limit to an expression that can be written as

�r±�2 →
(
V1

∣∣� �V
R

∣∣
2�

)2

�r�E% �V ��2 (70)

where �r �2 = R is the static reflection coefficient. Again,
we have explicitly written the E and �V dependence of the
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reflection amplitude r . � �V
R is a new complex quantity, playing

the role of a reflection time, defined as

�
�V
R = i� ! ln r�E%

�V �
!�V (71)

The complex times � �V and � �V
R are related to the real quan-

tities �BL
z , �BL

y , �BL
y%R and �BL

z%R and therefore the BL traversal
time can be formally written in the form

�BL ≡ �

∣∣∣∣! ln t�E% �V �!�V
∣∣∣∣ (72)

It is still not so clear how this time, which was obtained from
an analysis of the time-modulated barrier and which is valid
for an arbitrary shaped potential V �y�, whose average is �V ,
can be justified as a traversal time for a general barrier [64].
In any case, note that Eq. (72) for an opaque barrier leads us
to Eq. (14), which was obtained by Büttiker’s analysis of the
Larmor clock [36]. The BL reflection time can be defined as
in Eq. (72), but replacing t�E% �V � by r�E% �V �.

3.3. Complex Time

Although common sense dictates that the tunnelling time
must be a real time and that there are no clocks that mea-
sure a complex time, nevertheless the concept of complex
time in the theory of the traversal time problem of elec-
trons appeared in many approaches (see [65], and references
therein). The optical analog of the Larmor clock for classi-
cal electromagnetic waves based on Faraday effect lead us
also to a complex time [37].

We saw, with the help of the GF formalism, that the two
characteristic times appearing in the Larmor clock approach
correspond to the real and imaginary components of a single
quantity, which we define as a complex traversal (or reflec-
tion) time. In the subsection on the oscillatory incident
amplitude, we also discussed that Leavens and Aers [51]
arrived at a complex barrier interaction time, Eq. (52), by
studying the shape distortion of the transmitted wave by the
barrier.

It is in the Feynman path-integral approach where the
concept of a complex time arises more naturally. Sokolovski
and Baskin [55], using this kinematic approach to quantum
mechanics, showed that a formal generalization of the clas-
sical time concept to the traversal time led to a complex
quantity. The starting point for the Feynman path-integral
approach [57] to the traversal time problem is the classi-
cal expression for the time that the particle spends in an
arbitrary region [0, L], which can be calculated through the
expression

�cl0L =
∫ �
0
��y�t′�� ��L− y�t′�� dt′ (73)

where � is here the step function, equal to 1 when its argu-
ment is positive and zero otherwise. The two � functions
ensure that we only count the time while the particle is in
the barrier region. To use Eq. (73) in the quantum regime
one has to generalize the expression for the classical time by
replacing the classical trajectory y�t� in the previous expres-
sion by a Feynman path and average Eq. (73) over all possi-
ble paths that start at position 0 on the left side of the barrier

and end at position L at time t. Each path is weighted by
the quantity exp�iS9y:�, where

S9y�t�: =
∫ t
0

(
m

2

(
dy

dt′

2)
− V �y�t′��

)
dt′ (74)

is the action associated with the path y�t�. As we are weight-
ing each trajectory with a complex factor, it is natural to
obtain a complex result for the average value. This weighting
assumption has generated some controversies [4, 11, 66, 67].
Sokolovski and Baskin [55] arrived at the following complex
time:

�0L = i�
∫ L
0

; ln t
;V �y�

dy (75)

where ;/;V �y� represents the functional derivative with
respect to the barrier potential.

This result, Eq. (75), is strictly equivalent to our expres-
sion of the traversal time. We would like to emphasize that
this coincidence is quite natural, because in the tunnelling
time problem we always deal with an open and finite sys-
tem. The functional derivative with respect to the poten-
tial appearing in Eq. (75) is equivalent to a derivative with
respect to energy plus a correction term proportional to the
reflection coefficient (see Eq. (25)).

The modulus of this expression, Eq. (75), is the time that
Büttiker [36] obtained for the tunnelling time in a square
potential barrier and related to the Larmor clock times via

Re �0L = �y (76)

−Im �0L = �z (77)

Sokolovski and Connor [68] extended the Feynman path-
integral approach to include the treatment of wavepackets.
In their method the complex tunnelling formally appears as
a transition element �0L = 
"F��cl�"I� between the initial
wavepacket "I and the final one "F. Nevertheless, we have
to note that Feynman and Hibbs [57] themselves do not
associate any physical significance to transition elements.

Fertig [69, 70] avoided the problem of having to use
wavepackets by considering restricted operators, for a fixed
energy or for a fixed time. In this way, he was able to evalu-
ate exactly the amplitude distribution for the traversal time
for a rectangular barrier. He assumed that the weight of
each path is proportional to exp�iS9y:�, where the action S
is given by Eq. (74). He obtained the following amplitude
distribution for the traversal time [70]:

F ��� = 1
2't�E%V0�

∫ �

−�
e−i
tt�E%V0 − 
�d
 (78)

where t�E%V0� is the transmission amplitude at energy E
through a barrier of height V0. With this probability ampli-
tude distribution for the average traversal time for the
square potential barrier, he arrives at


�� = − d�

dV0
+ i

2
d ln T
dV0

which is the result of Sokolovski and Baskin [55].
The Wigner path distribution provides another approach

to compute the traversal time. Jensen and Buot [71] used it
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to calculate the time for stationary waves, and Muga et al.
[72] for wavepackets.

Yamada [73] claimed that the probability distribution of
the tunnelling time cannot be properly defined. He arrived
at this conclusion from the fact that Gell-Mann and Hartle’s
weak decoherence condition [74] does not hold for the tun-
nelling time due to the absence of a classical, dominant
Feynman path. Yamada defined a range of values of the time
and concluded that it is the only “speakable” magnitude.

Sokolovski [75] criticized the previous results on the
grounds that the weak decoherence criterion is too restric-
tive. He showed that the probabilities for the outcomes of
tunnelling time measurements can be described in terms of
positive-operator-valued measurements, related to the inter-
action between the system and its environment.

3.3.1. Complex Time
and Kramers-Kronig Relations

As it has just been shown, the concept of a complex time
in the theory of the traversal time problem of electrons
and electromagnetic waves (EMWs) has arisen in many
approaches [4, 11, 37, 65]. In [37] was obtained, with the
Faraday rotation scheme, a very similar result to Eq. (25)
for the characteristic interaction time � of an EMW. The
Faraday rotation in the finite system, which is our magnetic
clock, plays for light the same role as the Larmor preces-
sion for electrons [34, 36]. The emerging EMW is elliptically
polarized and the major axis of the ellipse is rotated with
respect to the original direction of polarization. All relevant
information about both the angle of rotation and the degree
of ellipticity is contained in a complex angle whose real part
corresponds to the Faraday rotation, and whose imaginary
part corresponds to the degree of ellipticity. This motivated
us to associate a complex interaction time of the light in the
region with magnetic field which can be written in terms of
derivatives with respect to frequency as [37]

��
� = −i
[
! ln t
!


− r + r ′
4


]
= �1�
�− i�2�
� (79)

As was shown by Ruiz et al. [15], this is a general expression
for the interaction time of an EMW with a one-dimensional
region with an arbitrary index of refraction distribution,
independent of the model considered. It can be rewritten
in terms of the GF for photons analogously to Eq. (25),
because all the general properties of the GF formalism
for electrons which lead us to Eq. (25) are valid for any
wave (sound or electromagnetic), whenever its propagation
through a medium is described by a differential equation of
second order [45].

Thus, most approaches indicate that the characteristic
time associated with any wave (classical or quantum-
mechanical) is a complex magnitude; which of the two com-
ponents of this complex time is the most relevant depends
on the experiment. It was shown in [15] that the real compo-
nent �1�
� corresponds to the traversal time, and the main
effect of the imaginary component �2�
� is to change the
size of the wavepacket. Balcou and Dutriaux [16] experimen-
tally investigated the tunnelling times associated with frus-
trated total internal reflection of light. They have shown that
the real and imaginary parts of the complex tunnelling time

correspond, respectively, to the spatial and angular shifts of
the beam. Note that in most tunnelling experiments, instead
of electrons, electromagnetic waves were used to exclude
interaction effects (see, e.g., [10–23]).

It is known that the frequency dependence of the real
and imaginary parts of certain complex physical quantities
are interrelated by the Kramers-Kronig relations, for exam-
ple, the real (dispersive) part of the complex dielectric
function =�
� to its imaginary (dissipative) part, the
frequency-dependent real and imaginary parts of an electri-
cal impedance, etc. [76]. The derivation of these relations
is based on the fulfillment of four general conditions of the
system: causality, linearity, stability, and that the value of
the physical quantity considered is assumed to be finite at
all frequencies, including 
→ 0 and 
→ �. If these four
conditions are satisfied, the derivation of Kramers-Kronig
relations is purely a mathematical operation which does not
reflect any other physical properties or conditions of the
system. These integral relations are very general and have
been used in the theory of classical electrodynamics, particle
physics, and solid-state physics as well as in the analysis of
electrical circuits and electrochemical systems.

It is straightforward to show that the complex interaction
time, ��
�, Eq. (79), is an analytical function of frequency
in the upper half of the complex 
-plane (see, e.g., [76]).
In other words, the four conditions mentioned above are
fulfilled for the complex time (79) and the following rela-
tionship between the ��
� and its complex conjugate �∗�
�
holds on the real axis (see Eq. (79)):

��
� = �∗�−
� (80)

which means that the complex interaction time ��
� has the
following properties:

�1�
� = �1�−
�% �2�
� = −�2�−
� (81)

Therefore, the real part �1�
� is an even function of fre-
quency and can have a finite value at zero frequency (for
the slab we have � sl1 �0� = L/vA). As for the imaginary part
�2�
�, it is an odd function and must vanish in the limit of
zero frequency: �2�0� = 0. These conditions imply that the
real and imaginary components of the time likewise obey
Kramers–Kronig integral relations, and so we may write

�1�
�− �0 =
2
'
P
∫ �

0

y�2�y�

y2 − 
2
dy (82)

�2�
� = −2

'

P
∫ �

0

�1�y�− �0
y2 − 
2

dy (83)

where P means principal part and �0 = Ln/c, that is, the
crossing time in the dielectric system, without any boundary.
In particular, if we make 
 = 0 in Eq. (83), we arrive at the
so-called “macroscopic sum rule” for the complex interac-
tion time

�1�0�− �0 =
2
'

∫ �

0

�2�y�

y
dy (84)

Thus we see from Eq. (84) that in general if no imaginary
component �2�
� exists at any frequency, then �1 = �0 always
holds. In the case of the interaction time in the dielectric
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slab, the integral relations (82)–(84) can be verified, using
the explicit expressions for the components of time (see
Eqs. (85) and (86)).

The validity of the Kramers-Kronig relations for the com-
plex interaction time has a rather deep significance because
it may be demonstrated that these conditions are a direct
result of the causal nature of physical systems by which the
response to a stimulus never precedes the stimulus. It can
serve also as a starting point to understand the origin of
the complex time, and state that the interaction time for
any classical or quantum-mechanical wave will always have
two components: the real part �1�
� and the imaginary part
�2�
�. At this point it is worth mentioning that the exper-
iments with, for example, undersized waveguides [23, 24]
or periodic dielectric heterostructures [9, 10], where the so-
called “superluminal velocities” have been observed for the
barrier tunnelling time, need to be interpreted carefully.

For the dielectric slab, Eq. (79) leads us to the following
expressions for the two time components [37]:

� sl1 �
� =
T� sl0
2A

{
�1+A2�+ �1−A2�

sin 2	
2	

}
(85)

and

� sl2 �
�=
T� sl0
2A

1−A2

2A

{
�1−A2�

sin2	
2

+�1+A2�
sin2	

	

}
(86)

where � sl0 = L/v is the time that light with velocity v = c/n0
would take to cross the slab, when reflection in the bound-
aries is not important, 	 = 
� sl0 , A = n1/n0, n0 is the refrac-
tion index of the slab, and n1 is the refraction index of the
two semi-infinite media outside the slab. T is the transmis-
sion amplitude for the slab in the absence of a magnetic
field and is given by [63]

T =
{
1+

(
1−A2

2A
sin	

)2}−1

(87)

The complex time components � sl1 �
�, Eq. (85), and � sl2 �
�,
Eq. (86), are plotted against one another in the complex
plane (see Fig. 6). We see that for small frequencies we have
a skewed arc. With increasing frequency, the influence of the
second terms in Eqs. (85) and (86), due to boundary effects,
becomes less important and the curve, in the limit 
→ �,
approximates to an ideal circle.

Note that in the case of the Debye dispersion relations
for the complex dielectric function =�
�, an ideal semicircle
in the complex plane means that we deal with a single relax-
ation time. In our case it means that for high frequency or
short wavelength, we deal with the classical crossing time,
taking into account multiple reflection in the slab [15].

It is not difficult to show that in the limit 
→ � we have(
� sl2
)2 + {

� sl1 −
[
� sl0
2A
�1+A2�− r

]}2

= r2 (88)

which is the equation of a circle in the complex plane of −� sl2
and � sl1 with the center 9� sl0 /2A�1 + A2� − r% 0: and with a
radius given by

r = � sl0
4A

�1−A2�2

1+A2
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Figure 6. Complex plane interaction time diagram for a dielectric slab.
The arrow indicates the direction of increasing frequency. Reprinted
with permission from [86], V. Gasparian et al., “Handbook of Nano-
structured Materials and Nanotechnology” (H. S. Nalwa, Ed.), Vol. 2,
Chapter 11, 1999. © 1999, Elsevier Science.

Thus the two components, the real part �1�
� and the
imaginary part �2�
�, of the complex barrier interaction time
for EMW are not entirely independent quantities, but con-
nected by Kramers-Kronig relations. This means that the
response to a stimulus never precedes the stimulus and
thus the experiments [9, 10, 23, 24], where the so-called
“superluminal velocities” have been observed need to be
interpreted with respect to the fact that any classical or
quantum-mechanical wave will always have two components;
which of the two components is the most relevant depends
on the experiment.

The validity of the Kramers-Kronig relations was only
checked analytically for EMW, but in general this implies
that they are also valid for all quantum particles represented
by a differential equation of second order as indicated by
the numerical calculations for the complex tunnelling time
for electrons.

3.4. Escape Time of Electrons
from Localized States

As we have seen in most approaches of the tunnelling time
problem, only the scattering configuration in which the free
electron (or wavepacket) is coming from the left (right) on
a 1D arbitrary potential barrier has been considered. More
than one tunnelling time is involved in this time problem,
no matter whether we deal with the Büttiker-Landauer �BL

or complex � = �1 − i�2 characteristic times (see Eqs. (12)
and (24)). Furthermore, this seems not to be a peculiarity
of a quantum-mechanical wave, but a general result, as the
characteristic time associated with a classical wave is also a
complex magnitude [37]. Which of the two components of
this complex time is the most relevant depends on the exper-
iment. For photons [37], the real part is proportional to the
Faraday rotation or the density of optical modes, while the

Proof's Only
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imaginary part gives the degree of ellipticity. In [16] the tun-
nelling times associated with frustrated total internal reflec-
tion of light were experimentally investigated, and the real
and imaginary parts of the complex tunnelling time were
shown to correspond to the spatial and angular shifts of the
beam, respectively.

On the other hand, it is clear that there are other simi-
lar situations of practical interest which should be discussed
in the same context of two time components as was done
in the scattering problem. One of these situations is the
escape of an electron from localized states in a quantum
well with one or several surrounding barriers. The escape of
an electron from a localized state in the quantum well con-
nected to a continuum by a small barrier only by one side
(Fig. 7) can be found, for instance, in miniaturized metal-
oxide-semiconductor transistors, in which electrons arrive to
the quantized accumulation or inversion layers after scat-
tering and subsequently they can tunnel to the metal gate
through a very narrow oxide layer which acts as the barrier
[77]. Physically, this implies that the particles entering the
quantum well region remain there for some time before
being allowed to escape outside. Tunnelling escaping time
has also been studied by transient-capacitance spectroscopy
[78], where electrically injected electrons undergo an escap-
ing process out of the quantum well, for example, in a three-
barrier, two-well heterostructure [79, 80].

Let us consider a potential shape that includes a well and
one surrounding barrier (see Fig. 7). A hard wall condition
at x = −w reduces the problem to escape to only one open
channel, that is, transmission to the right.

To calculate the escape time �esc�k� of an electron from
a quantum well when boundary effects can be neglected, we
closely followed [81] and introduced the following complex
quantity �k = √

E�:

�esc�k� = −i d ln t
2k dk

(89)

where t = T 1/2ei@ is the complex amplitude of transmission
of the electron through only the right barrier taking into
account the hard wall condition at x = −w.

Using standard methods of quantum mechanics, it is easy
to show that the Re and Im parts of the complex escape time

U2

U1

E1

–w 0 d

Figure 7. Schematic representation of the simplified potential profile,
with a hard wall condition at −w.

�esc�k� = �esc1 �k� − i�esc2 �k� of an electron from a quantum
well when boundary effects can be neglected and near the
resonance energy E1 and in the limit of an opaque barrier
�Ad � 1� are given by [81]

�esc1 �k1� =
��1+ Aw��1+ 32�

2k2�1+ �2�
exp�2Ad� (90)

�esc2 �k1� =
�1+ Aw��1+ 32��1− �2�

4k2�1+ �2�
exp�2Ad� (91)

where � = A/k3, A = √
E1 − U2, 3 = k1/A, and w, d, U1, U2

are defined in Figure 7.
Let us examine the relationship between the two compo-

nents we have defined above and the lifetime expression

�LT�k1� =
�1+ Aw��1+ 32��1+ �2�

16 · k2
1 · �

exp�2Ad� (92)

which follows from an approximate perturbative approach
based on Bardeen’s perturbation Hamiltonian [82].

Despite the similarity between Eqs. (90), (91), and (92),
they only allow a qualitative comparison at the bound level
E1. Since components �esc1 and �esc2 show a sharp variation
around this energy, a comparison with Eq. (92) as a function
of energy is interesting in order to study their behavior at the
quasi-bound level, which is shifted with respect to E1. Such
comparison is shown in Figure 8 for the following parameter
values: U1 = 1, U2 = −1, w = 3, for two d values (d = 5 in
Fig. 8a, and d = 2 in Fig. 8b). An opaque barrier has been
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Figure 8. The time components as a function of energy for the poten-
tial profile depicted in Figure 7, with U1 = 1, U2 = −1, and w = 3,
for two different d values: (a) d = 5, and (b) d = 2. The vertical line
corresponds to the ground energy level when the barrier width is infi-
nite. Reprinted with permission from [81], J. A. Lopez Villanueva and
V. Gasparian, Phys. Lett. A 260, 286 (1999). © 1999, Elsevier Science.
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chosen in Figure 8a to ensure the accuracy of the lifetime
expression, but in Fig. 8b the estimated relative error for
the lifetime expression is about 16%. The vertical line corre-
sponds to the ground energy level when the barrier width is
infinite. It is seen that the maximum of component �esc2 coin-
cides with the �LT lifetime expression (92) at an energy very
close to the bound level in the opaque barrier case (Fig. 8a).
With the narrow barrier (Fig. 8b) both results deviate, but in
this case the lifetime expression overestimates the lifetime
by about 16% while the maximum of component �esc2 still
provides an accurate value. Furthermore, this maximum is
produced at an energy lower than the bound level, as pre-
dicted by the first-order perturbation theory.

Let us represent the complex time components �esc1 �k�
and �esc2 �k� in the complex E plane. They are plotted against
one another in Figure 9 and as it is seen, provide ellipse.
This is what we expected, as the maxima of �esc1 �k� and
�esc2 �k� are not the same. Nevertheless, there is a property
of an ellipse that could be interesting: it is symmetric with
respect to its main axis. Therefore, the maximum (and the
minimum) of �esc2 �k� are found at the points where �esc1 �k�
has a value of half its maximum. As this value is used to
compute lifetime (width of the �esc1 �k� peak at half height),
this width must be exactly the difference in energies between
the maximum and minimum of �esc2 �k�. It is easy to check
that we have the following condition:

�Emin − Emax��
esc
2 = 1

which confirms our previous conclusion concerning the fact
that �esc2 at an energy close to the bound level in the well,
coincides with the lifetime expression.

3.5. Wavepacket Approach

The delay time of a particle through a region can be directly
calculated by following the behavior of its wavepacket.
This approach has been criticized from different points of
view, mainly due to the lack of causal relationship between
the peaks or the centroids of the incident and transmit-
ted wavepackets, and also because of the difficulties of an
experimental setup to measure delay times. The dispersive
character of electron propagation has been claimed as
responsible for the acceleration of wavepackets under
appropriate circumstances. High-energy components of the
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Figure 9. Complex plane escape time diagram for the quantum well
used in this chapter.

packet travel faster and are transmitted more effectively
than the other components, and so the transmitted packet
comes almost entirely from the front of the incident packet.
However, similar results were also obtained for dispersive-
ness electromagnetic waves [15]. The fact that the transmit-
ted wavepacket comes from the beginning of the incident
wavepacket is mainly a consequence of interference effects.
The results obtained from the wavepacket approach are sim-
ilar to the results obtained with other approaches, and can
be easily generalized to include finite size effects. In this
section we review how to obtain delay times from the trans-
mission coefficients.

Let us assume a region of interest, which in principle can
be of any dimensionality, coupled to the outside by two 1D
leads with a constant potential that we will assume equal to
zero. We choose a coordinate system such that the incident
lead extends from −� to 0, and the other lead from L to
+�. A gaussian wavepacket of spatial width &1 is incident
from the incoming lead on the region of interest. This packet
is characterized by a wave function of the form

"�y% t� =
∫ �

−�
C exp)−�k − k0�

2/2�	k�2+

× exp)iky − i
t+ dk (93)

where C is a normalization constant, k0 is the central
wavenumber, 
 = E/�, and 	k = 1/

√
2&1 is the spread of

the packet in the wavenumber domain. The time evolution
of this wavepacket is governed by the Schrödinger equation,
although the results are directly applicable to any other type
of wave, including classical electromagnetic waves. Part of
the packet is transmitted and continues travelling outward
along the second lead. Its wave function is given by

"t�y% t� =
∫ �

−�
C�t�k��ei��k� exp)−�k − k0�

2/2�	k�2+

× exp)iky − i
t+ dk (94)

t�k� is the amplitude of transmission and ��k� is its phase,
which here we prefer to write as functions of the wavenum-
ber k. The functions t�k� and ��k� contain all the relevant
information to calculate the delay time of the electronic
wave function due to the region of interest.

The general solution for finite size wavepackets has to be
obtained numerically, but we can get close expressions for
the delay time in the limit of very long wavepackets from
a series expansion along the central wavenumber k0. Let us
assume that the wavepacket is so long (and so 	k so small)
that t�k�, ��k�, and 
�k� only change smoothly on the scale
of 	k. Then, in evaluating �"t�y% t��2, where "t�y% t� is given
by Eq. (94), we can expand t�k�, ��k�, and 
�k� to sec-
ond order in k− k0. We write the phase of the transmission
amplitude as

��k� = ��k0�+ �1�
− 
0�+
1
2
�̃1�
− 
0�

2 (95)

where 
0 is the frequency corresponding to the cen-
tral wavenumber, �1 is the first derivative of the phase
�1 = d��
�/d
, which roughly corresponds to the compo-
nent �y of the Büttiker-Landauer time, and �̃1 is its second
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derivative �̃ = d2��
�/d
2. Analogously, we write the mod-
ulus of the transmission amplitude as

� log t�k�� = � log t�k0�� + �2�
− 
0�+
1
2
�̃2�
− 
0�

2 (96)

where �2 = d� log t�
��/d
, and �̃2 = d2� log t�
��/d
2. We
can also expand the frequency 
 in terms of k:


 = 
0 + vg�k − k0�+
1
2
ag�k − k0�

2 (97)

vg is the group velocity vg = d
/dk, and ag is its derivative
with respect to k, ag = d2
/dk2. For electrons, the group
velocity is equal to vg = �k/m, while the group acceleration
is ag = �/m.

If we keep terms up to second order in k− k0, we can do
analytically all the integrals appearing in the expression of
the average value and the variance of y. After some trivial
calculations we obtain that the average position 
y� of the
transmitted wavepacket as a function of time is given by


y� = �t − �1�vg
[
1+ �2ag

b

]
− �2�̃1v

3
g

b
(98)

where b is equal to

b = 1
�	k�2

− �2ag − �̃2v2g (99)

We have chosen the phase of the incident wavepacket so
that its peak is at the origin of coordinates in t = 0, in the
absence of perturbations due to the presence of the bar-
rier, that is, 
yi��t = 0� = 0. The peak of the transmitted
wavepacket would be at the same position at a time � implic-
itly defined by

� = t�
yt� = 0� (100)

The barrier delays the gaussian wavepacket by an amount of
time � , which according to Eqs. (100) and (98) is equal to

� = �1 + �2�̃1v2g�	k�2 (101)

This equation constitutes a useful tool for calculating the
tunnelling time of an electron that has transversed a (rect-
angular) barrier as a function of the width of the incident
wavepacket, 	k.

We can express Eq. (101) in terms of Büttiker–Landauer’s
times and their first derivatives. If we neglect the terms pro-
portional to the reflection amplitudes in the expressions for
Büttiker–Landauer’s times, we have �1 = �y and �2 = �z.
Taking into account the dispersion relation for electrons, we
also have

�̃1 =
1
vg
�̃y (102)

and a similar expression for �2 and �z. Thus Eq. (101) can
be rewritten in the form

� = �y + �z�̃yvg�	k�2 (103)

This is the main result of the long wavepacket approximation
up to second order in 	k. We will check the limit of validity
of this expression in the section on numerical results.

3.6. Time-of-Arrival Operator Approach

A direct attempt to obtain an observable for the time
runs into the problem pointed out by Pauli [83] that the
existence of such an operator would imply an unbounded
energy spectrum, given the uncertainty relation between
time and energy. The time-of-arrival is the natural candidate
to become a property of the system, rather than an external
parameter, and it plays a role similar to our traversal time.

Leon et al. [84, 85] have recently developed an interesting
time-of arrival formalism, which we briefly describe. Classi-
cally, the time-of-arrival of a particle with coordinate q and
momentum p at a point x is given by the expression

tx�q% p� = sgn�p�
√
m

2

∫ x
q

dq′√
H�q′% p�− V �q′� (104)

where H�q% p� is the classical hamiltonian. Leon et al.
(1996) showed that tx�q% p� is canonically conjugate to the
hamiltonian 9tx�q% p�%H�q% p�: = −1, where {} are the
Poisson brackets, but were unable to quantize this magni-
tude directly. Instead they considered first the time-of arrival
for a free particle tx0�q% p� = m�x − q�/p, which after sym-
metrization is quantized as

tx0�q% p� = −e−ipx
√
m

p
q

√
m

p
eipx (105)

This operator is not self-adjoint, a difficulty related to the
Pauli theorem. The measurement problem associated to the
time-of-flight operator can be solved by means of a positive-
operator-valued measure.

As a second step, Leon et al. [84] considered the canonical
transformation that connects the free particle system with
the general system including a potential V �q�. The Möller
operators perform this canonical transformation. They are
normally used to connect the free particle wavefunctions
with the scattering and bound states of a given potential. In
their formalism, Leon et al. applied these unitary operators
to the time-of-arrival operator of the free particle in order
to produce the corresponding operator in the presence of an
arbitrary potential. Given this operator, one can then obtain
the full distribution for the time-of-arrival of a particle at a
position.

We believe that an especially interesting result of their
approach is the average value of the time-of-arrival for a
particle originally in state #�k� which traverses a barrier
with amplitude t̂�k�. The expected average value is equal to

� =
∫�
−� dk�t̂�k�#̃�k��2�y�k�∫�

−� dk�t̂�k�#̃�k��2
(106)

where #̃�k� is the Fourier transform of #�k�. This expres-
sion has a very intuitive interpretation. The time corre-
sponds to an average of the characteristic time �y over the
transmitted components of the wavepacket. It is very easy
to calculate this expression and can be applied to packets of
any size. In the section on numerical results we will estimate
the validity of this expression.
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4. NUMERICAL RESULTS
The long wavepacket limit, when the spread of the wave
function is longer than the size of the system, is well
understood [86]. In all cases studied, the traversal and the
reflection times correspond to the real component of time,
�y . In this limit, the numerical problem reduces to the
evaluation of the transmission and reflection amplitudes
and their energy derivatives, which can be conveniently
achieved through the use of the characteristic determinant
method, introduced by Aronov et al. [45] and explained in
Appendix A. Different similar mathematical methods, allow-
ing us to take into account multiple interfaces consistently
and exactly without the use of perturbation theory, have
been proposed [87–91].

Numerical simulations are needed to clarify finite size
effects. In this case we have to consider a specific wave-
packet and evaluate its probability amplitude at different
values of the time in order to calculate the amount of time
taken to cross the system. In this section, we first review the
results for periodic structures which, due to their complexity,
are treated as nondispersive media, and so the conclusions
are directly applicable to electromagnetic waves. Second,
we consider the case of resonant tunnelling and we finish
by presenting the results for finite size effects in electron
tunnelling.

4.1. Periodic Structure

Let us consider a periodic arrangement of layers with poten-
tial V1 and thickness d1 alternating with layers with potential
V2 and thickness d2. We assume that the energy is higher
than max 9V1% V2:, and so the wavenumber in the layers of
the first and second type is ki = )2m�E−Vi�+1/2/��i = 1% 2�.
In this case, the results for long wavepackets apply equally
well to electromagnetic waves considering ki = 
ni/c, where
ni is the index of refraction of the two types of layers.
We concentrate on the simplest periodic case, which corre-
sponds to the choice k1d1 = k2d2. This case contains most
of the physics of the problem and is also used in most exper-
imental setups [9]. Let us call a the spatial period, so a =
d1 + d2. The periodicity of the system allows us to obtain
analytically the transmission amplitude using the character-
istic determinant method [40]:

t = e−ik1d1
cos�N3a/2�− i sin�N3a/2�

sin3a

×
√

sin2 3a+
[
k2

1 − k2
2

2k1k2
sin k2d2

]2


−1

(107)

where 3 plays the role of quasi-momentum of the system,
and is defined by

cos3a = cosk1d1 cosk2d2 −
k2

1 + k2
2

2k1k2
sin k1d1 sin k2d2

(108)

When the modulus of the RHS of Eq. (108) is greater than
1, 3 has to be taken as imaginary. This situation corre-
sponds to a forbidden energy band. The term within brack-
ets in Eq. (107) only depends on the properties of one
barrier, while the quotient of the sine functions contains
the information about the interference between different
barriers. The transmission coefficient is equal to 1 when
sin�N3a/2� = 0 and 3 is different from 0. This condition
occurs for

3a = 2'n
N

�n = 1% 8 8 8 %N/2 − 1� (109)

and we say that it corresponds to a resonant frequency.
For the reflection amplitude we have

r = te−ik1d1 k
2
1 − k2

2

2k1k2
sin k2d2

sin�N3a/2�
sin3a

(110)

With these expressions for the transmission amplitude,
Eq. (107), and for the reflection amplitude, Eq. (110), we
can calculate the traversal time through Eq. (25) and the
reflection time via Eq. (31). From Eqs. (107) and (110),
Ruiz et al. [15] calculated numerically the traversal time
for electromagnetic waves considering a system of 19 layers
�N = 20� with alternating indices of refraction of 2 and 1,
and widths of 0.6 and 1.2, respectively. Their main conclu-
sions are also applicable to the problem of an electron in
a periodic potential. In Figure 10 we represent �1 and �2
for electromagnetic waves in a periodic system as a function
of k1. In the energy gaps, the traversal times are signifi-
cantly smaller than the crossing time at the vacuum speed
of light (horizontal line). The average of �1 with respect to
wavenumber is equal to 22.8, and coincides with the classi-
cal crossing time, that is, for very short wavepackets, without
including multiple reflections. It corresponds to the horizon-
tal straight line in Figure 10.

The kinetic approach is suitable to study numerically the
evolution of wavepackets with sizes of the order of the width
of the region of interest. We will describe the numerical
simulations of the time evolution of finite size wavepackets
that cross the region of interest and measure the delay of the
peak of the transmitted wave as a function of the size of the
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Figure 10. Traversal times versus the size of the wavepacket for a peri-
odic system. The solid line corresponds to �1, and the dashed line to �2.
The values of the parameters are N = 20, n1 = 2, n2 = 1, d1 = 086, and
d2 = 182.
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original packet. The simulations also calculate the change in
size of the packets. First we consider the results for periodic
structures without including dispersion effects, so we will
use a nomenclature most appropriate for electromagnetic
waves, although the results are equally valid for electrons, in
the absence of dispersion, provided that we translate indices
of refraction into their corresponding potentials. Later we
will also present results about finite size effects in electron
tunnelling.

Let us consider a three-dimensional layered system with
translational symmetry in the Y -Z plane, consisting of N
layers labelled i = 1% 8 8 8 %N between two equal semi-infinite
media with a uniform dielectric constant n0. The boundaries
of the ith layer are given by yi and yi+1, with y1 = 0 and
yN+1 = L, so that the region of interest corresponds to the
interval 0 ≤ y ≤ L. Each layer is characterized by an index
of refraction ni. In the case of electrons, we assume that
the energy E of the electron is higher than the potentials of
the different layers and that the wavenumbers are inversely
proportional to the indices of refraction; so the potential Vi
in layer y is equal to Vi = E�1− �n0/ni�

2�.
One calculates the position of the packet at different

times and from this information one extracts the time taken
by the packet to cross the region of interest. In particular,
neglecting dispersion, one can measure the average positions
ȳ1 and ȳ2 of the square of the modulus of the wavepacket
at two values of t, t1 and t2, such that the packet is very far
to the right of the structure at t1 and very far to the left at
t2. These average positions are defined as

ȳ�t� =
∫ �

−�
y�"�y% t��2 dy (111)

The traversal time of the wavepacket through the region of
interest is given by

� = t2 − t1 −
�ȳ2 − ȳ1 − L�n0

c
(112)

Although we refer to this time as a traversal time, it is
learned that, strictly speaking, it is a delay time. Part of the
interest of this type of simulations is to study how delay
times relate to the previously obtained expressions for the
traversal time.

Figure 11 represents the delay time versus the size of
the wavepacket for two values of the central wavenumber,
k0 = 38927 and k0 = 48306, which correspond to the center
of the gap and to a resonance, respectively. There is again
a strong similarity in the behavior of the traversal time and
of the transmission coefficient [15]. The long wavepacket
limit of the traversal time coincides with the characteris-
tic time �1, while the short wavepacket limit is independent
of wavenumber and equal to 29. The speed of the wave
is greater than in vacuum for a wide range of sizes. The
minimum size of the packets that travel faster than in vac-
uum is about 9, so that the corresponding width 2&I is very
much the same as the size of the system. Velocities larger
than in vacuum occur when the transmission coefficient is
very small. In regions with a very small density of states, the
traversal time is very short and, at the same time, transmis-
sion is very difficult due to the lack of states at the corre-
sponding energies.
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Figure 11. Traversal time versus the size of the wavepacket for a peri-
odic system. The solid line corresponds to a central wavenumber k =
38927, and the dashed line to k = 483.

The width of the transmitted packet &T is slightly smaller
than the width of the incident packet &I. According to the
results in the subsection on the wavepacket approach, we
obtain that, in the absence of dispersion and up to second
order in perturbation theory, this change in width depends
on the derivatives with respect to frequency of �1 and �2. As
the first of these derivatives is equal to zero in the center of
the gap, one arrives at

&2
T = &2

1 − v2g

2
d�2
d


(113)

In order to check up to which sizes second-order pertur-
bation theory is valid, Ruiz et al. [15] plotted &2

1 − &2
T as

a function of the size of the packet and compared it with
the value of �1/2��d�2/d
� obtained from the character-
istic determinant. Second-order perturbation theory works
adequately for a wide range of sizes and, in particular, for
the sizes for which one obtains velocities larger than in vac-
uum. The error in the measurement of the traversal time of
a single wavepacket is its width divided by its velocity. All
the packets that travel faster than in vacuum are so wide
that their uncertainty in the traversal time is larger than the
traversal time itself and even larger than the time it would
take a wave to cross the structure travelling at the same
speed as in the vacuum.

4.2. Resonant Tunnelling

A double-barrier structure is a special case of a periodic
system consisting of N = 4 interfaces with two evanescent
regions separated by a propagating one. In the evanes-
cent layers, the potential energy V2 is larger than the
energy of the electron E. The results of the previous part
also applied to this case where one type of layers are
evanescent. We merely have to replace k2 by −iG where
G = )2m�V2 −E�+1/2/�. (Correspondingly, sin k2d2 becomes
sinh Gd2.) Double-barrier potential structures present reso-
nant tunnelling, which has been studied for electrons since
the early days of quantum mechanics [56]. Resonant tun-
nelling for electromagnetic waves is easier to carry out than
corresponding experiments on electrons [24].

The traversal time � for electromagnetic waves through a
double-barrier structure was calculated by Cuevas et al. [40]
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using the previous equations for the transmission and reflec-
tion amplitudes, Eqs. (107) and (110) with N = 4. They
considered the finite resolution of the experimental devices
by convoluting these expressions with a gaussian distribu-
tion function with a standard deviation of 6 MHz, which
reproduces the same average height of the peak of the trans-
mission coefficient as the corresponding experiments [24].
They found that at each resonance the Büttiker-Landauer
traversal time is basically double the lifetime.

The dependence of the traversal time with frequency at a
resonance is fairly universal. The phase of the transmission
amplitude changes by an angle of ' at each resonance, as
predicted by Friedel’s sum rule. Its frequency dependence
can be fitted quite accurately by an arc tangent function.
The time, proportional to the derivative of this phase, is a
Lorentzian with the same central frequency and width as the
Lorentzian corresponding to the transmission coefficient. As
the lifetime �l of the resonant state is the inverse of the
width of the transmission coefficient at half maximum, we
conclude that it must be equal to half the traversal time at
the maximum of the resonant peak:

�l =
1
2
�res (114)

This result was obtained by Gasparian and Pollak [43] by
considering the traversal time for an electron tunnelling
through a barrier with loses, that is, with a decay time.

4.3. Finite Size Effects in Tunnelling

We have simulated the evolution of a finite wavepacket tun-
nelling across a rectangular barrier of height V0 and length
L and we have measured the delay of the peak of the trans-
mitted wave as a function of the size of the original packet.
The results are used to establish the limit of validity of the
long wavepacket approach up to second order and of the
time-of-arrival operator approach, previously analyzed.

As we have explained at the beginning of this section, one
calculates the position of the packet at different times and
from this information one extracts the time taken by the
packet to cross the region of interest. Part of the interest of
this type of simulations is to study how this time relates to
the previously obtained expressions for the traversal time.
In Figure 12 we represent the tunnelling time, � , versus the
width of the wavepacket in k-space, 	k, for an incident elec-
tron with a momentum p0 = 286. The units are set by the
choice � = me = 1. The barrier parameters are V0 = 6 and
L = 15 (squares), 30 (circles). The numerical results are rep-
resented by geometrical figures, each one corresponding to
a different barrier length L. The continuous curves repre-
sent the results obtained in the large wavepacket approach
up to second order, Eq. (103). In the limit 	k→ 0 the tun-
nelling time tends to �y and is independent of L, in agree-
ment with the so-called Hartman effect [19]. The continuous
curves fit the numerical results relatively well up to values
of 	k of the order of 3/L. This limit of validity is quite
general and has been checked for many different values of
p0, V0, and L.

The width of the transmitted packet &T is slightly smaller
than the width of the incident packet &I. According to
the results in the subsection on the wavepacket approach,
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Figure 12. Tunnelling time � versus the size of the wavepacket 	k for
an incident electron with momentum p = 286 and barrier parameters
V0 = 6 and L = 15 (squares), 30 (circles). The curves represent the
results for the long wavepacket approach up to second order.

we obtain that, up to second order in perturbation theory,
this change in width depends on the derivatives with respect
to frequency of �2. Second-order perturbation theory works
adequately for a wide range of sizes.

We now want to analyze the applicability of the time-
of-arrival operator approach previously studied. The aver-
age traversal time in this method is given by Eq. (106). Up
to second order of approximation, this method coincides
with the long wavepacket approach except for a term which
depends on the second derivative of the Büttiker time �y
with respect to the wavenumber k:

˜̃�y ≡
!2�y

!k2
(115)

This term is negligibly small in most practical situations.
Then it is feasible that the time calculated via Eq. (106) (to
all orders in 	k) constitutes a very good approximation to
the exact results.

In Figure 13 we show the tunnelling time � versus 	k for
an incident electron with momentum p0 = 285 and rectan-
gular barrier parameters V0 = 5 and L = 85. The numer-
ical results are represented by circles and the continuous
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Figure 13. Tunnelling time � versus 	k for an incident electron with
momentum p = 285 and barrier parameters V0 = 5 and L = 85. The
numerical simulations (circles) and the results of the time-of-arrival
approach (continuous curve) are similar up to sizes 	k = 385/L.
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curve corresponds to Eq. (106), while the dashed curve cor-
responds to the wavepacket approach up to second order.
We note that the weighting method fits the numerical results
for a larger range of sizes. We estimate that it can be con-
sidered an excellent approximation for values of 	k smaller
than 385/L. The weighting method is also very practical since
it only requires the evaluation of an integral in k and it can
be applied to all kind of wavepackets.

5. CONCLUSIONS AND OUTLOOK
In this review we have discussed the topic of tunnelling
time in mesoscopic systems including nanostructures, par-
ticularly in 1D systems with arbitrary shaped potential. But
the treatment of tunnelling time in “nanostructured mate-
rials” approaching the molecular and atomic scales is still
open. In the field of tunnelling time, there are problems in
any of the existing approaches, and we do not have a clear
answer for the general question “How much time does tun-
nelling take?”. Unfortunately no one of these approaches is
completely adequate for the definition of the time in QM.
Nevertheless, we note that all these different approaches can
be consistently formulated in terms of Green’s function, and
their main differences can be fairly well understood.

For 1D systems we obtained closed expressions for the
traversal and reflection times, Eqs. (25) and (31), in terms of
partial derivatives of the transmission and reflection ampli-
tudes with respect to energy. Results of other approaches
can be related to these expressions and the main differences
can be grouped into two categories: the complex nature of
time and finite size effects.

Our conclusion about the complex nature of time is the
following. It is clear that there are two characteristic times
to describe the tunnelling of particles through an arbi-
trarily shaped barrier. (Similar conclusions can be reached
for reflecting particles.) These two times correspond to
the real and imaginary components of an entity, which we
can choose as the central object of the theory. They are
not entirely independent quantities, but are connected by
Kramers-Kronig relations. Different experiments or simula-
tions will correspond to one of their components or to a
mixture of both. Büttiker and Landauer argue that these
two times always enter into any physically meaningful exper-
iment through the square root of the sum of their squares,
and so claim that the relevant quantity is the modulus of the
complex time.

As regards finite size effects, we believe that Eqs. (25)
and (31) are exact, and adequately incorporate finite size
effects. These effects correspond to the terms which are not
proportional to derivatives with respect to energy. They are
important at low energies and whenever reflection is impor-
tant (as compared to changes in the transmission ampli-
tude). Several approaches do not include finite size terms,
since they implicitly consider very large wave functions.
The WKB approximation, the oscillatory incident ampli-
tude approach, and the wavepacket analysis, for example, do
not properly obtain finite size effects. On the other hand,
our GF treatment, based on the Larmor clock, the gener-
alization of the time-modulated barrier approach, and the

Feynman path-integral treatments arrived at exact expres-
sions. In order to see that these expressions are all equiva-
lent, one has to transform the derivative with respect to the
average barrier potential, appearing in the time-modulated
barrier approach, into an energy derivative plus finite size
terms. The same has to be done with the functional deriva-
tive with respect to the potential appearing in the Feynman
path-integral techniques.

Finite size effects can be very important in mesoscopic
systems with real leads with several transmitting modes per
current path. The energy appearing in the denominator of
the finite size terms, Eqs. (25) and (31), corresponds in this
case to the “longitudinal” energy of each mode, and so there
is a divergence whenever a new channel is open. In the exact
expressions there are no divergences; the problematic con-
tributions of the finite size terms is cancelled out by the
terms with energy derivatives.

GLOSSARY
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