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Green’s function formulation of the traversal time and 
nature of the complex time 

v. GASPARIANt  

Department of Physics, California State University, Bakersfield, 
California 9331 1. USA 

and M. O R T U ~ ~ O  
Departamento de Fisica, Universidad de Murcia, Murcia, Spain 

AESTRACT 
We develop a Green’s function formalism and with it we are able to obtain 

close expressions for the tunnelling and for the reflection times. For each problem. 
there appear two characteristic times which correspond to the real and imaginary 
parts of the integral of the Green’s function at coinciding coordinates. The time 
related to the iiiiagiiiary part represents the minimum uncertainty of the 
measurement. A strong analogy between the results of the different existing 
approaches is established, and we show that their main differences are due to 
finite-size effects. 

9 1. INTRODUCTION 
The question of the time spent by a particle in a given region of space is not new, 

but it has recently attracted much interest (see Hauge and Stmneng (1989). Leavens 
and Aers (1990), Landauer and Martin (1994) and Gasparian C t  al. (1999a, b), and 
rekrences therein). The problem has been approached from many different points of 
view, and there exists a huge literature on the tunnelling problem of electrons 
through a barrier, although tunnelling times have continued to be controversial 
even until now. There is no clear consensus about simple expressions for the time 
in quantum mechanics, where there is not a Hermitian operator associated with it 
(Landauer and Martin 1994). 

One can associate the traversal time with the time during which a transmitted 
particle interacts with the region of interest, as measured by some physical clock, 
which can detect the particle’s presence after leaving the region. For electrons, this 
approach can utilize the Larmor precession frequency of the spin produced by a 
weak magnetic field hypothetically acting within the barrier region (Baz’ 1967, 
Rybachenko 1967, Buttiker 1983). Gasparian et ul. (1995) have developed similar 
procedures for electromagnetic waves. They proposed a clock based on the Faraday 
effect to measure the interaction time of electromagnetic waves in a slab. Another 
approach is to calculate the traversal time of a particle through a barrier by follow- 
ing the behaviour of a wave packet and to determine the delay due to the structure of 
the region. Martin and Landauer (1992) used this approach to study the traversal 
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1192 V. Gasparian and M. Ortuiio 

time of classical evanescent electromagnetic waves, and Ruiz et ul. (1997) analysed 
the behaviour of these waves in the optical gap of a periodic structure. 

We first study the Larinor clock approach to tunnelling time, and we then re- 
express the results in terms of Green’s functions (GFs). For one-dimensional (1D) 
systems we obtained closed expressions for the traversal and reflection times (equa- 
tions ( 2 3 )  and (24)), in terms of partial derivatives of the transmission and reflection 
amplitudes with respect to energy. The results of other approaches can be related to 
these expressions and the main differences can be grouped into two categories: the 
complex nature of time and finite size effects. We shall try to give a coherent expla- 
nation of these differences, concentrating mainly on the meaning of the two compo- 
nents of the complex time. 

$2. LARMOR CLOCK APPROACH 
Baz’ (1967) proposed the use of the Larmor precession as a clock ticking off the 

time spent by a spin 4 particle inside a sphere of radius Y = ci. His idea was to 
consider the effect of a weak homogeneous magnetic field B on an incident beam 
of particles. Let us suppose that inside the sphere Y = a there is a weak homogeneous 
magnetic field B directed along the z axis and which is zero for Y > a. The incoming 
particles have a mass m and a kinetic energy E = h2k2/2rn and they move along the y 
axis with their spin polarized along the x axis (so that their magnetic moments p are 
aligned along the x axis). As long as a particle stays outside the sphere, there are no 
forces acting on the magnetic moment and its direction remains unchanged. 
However, as soon as the particle enters the sphere, where a magnetic field is present, 
its magnetic moment will start precessing about the field vector with the well-known 
Larmor frequency 

2pB 
h 

wL=- .  

The precession will go on as long as the particle remains inside the sphere. The 
polarization of the transmitted (and reflected) particles is compared with the polar- 
ization of the incident particles. The angle O1 in the x-y plane, perpendicular to the 
magnetic field, between the initial and final polarizations is assumed to  be given, to 
lowest order in the field, by the Larmor frequency wL multiplied by the time 7,. spent 
by the particle in the sphere 

The change in polarization thus constitutes a Larinor clock to measure the interac- 
tion time of the particles with the region of interest. 

Rybachenko ( 1967), following the method of Baz’, considered the simpler pro- 
blem of the interaction time of particles with a 1D rectangular barrier of height Vo 
and width L, for which everything can be calculated analytically. For energies smal- 
ler than the height of the barrier, E < Vo, and for the important case of an opaque 
barrier, where there is a strong exponential decay of the wavefunction, the following 
result was found for the expectation value of the spin components of transmitted 
particles, to lowest order in the field B: 
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Transversal time and nature of coniples time 

wh.ere ry is a characteristic interaction time given by 

hk 
rl, = -, 
. Vo€ 

and < is the inverse decay length in the rectangular barrier given by 

1193 

(3) 

(4) 

with ko = (2n1Vo)1’2/h. Here we have assumed that the direction of the field and the 
direction of propagation of the particles are the same as defined at the beginning of 
the section. This means that the spin, to first order in the field, remains in the 
plane and so (S,) = 0. 

Note that the characteristic time rl, is independent of the barrier thickness L. 
Instead of being proportional to the length, L is proportional to the decay length. 
For an opaque barrier this decay length can become very short and so T ~ .  can be very 
small, in fact, smaller than the time that would be required for the incident particle to 
travel a distance L in the absence of the barrier. A similar result was found by 
Hartman (1962) aiialysing the tunnelling of a wave packet through a rectangular 
potential barrier. Thus so-called ‘superluminal velocities’ can be measured in some 
cases such as in experiments where electromagnetic waves pass through a barrier 
(Enders and Nimtz 1992, Mugnai et al. 1994) or through an optical gap (Steinberg cjt 
af .  1993, Spielman et a/. 1994, Balcou and Dutriaiux 1997). Recently the possibility 
of observing ‘superluminal’ behaviour in the propagation of localized microwaves 
have been demonstrated by Mugnai et a/. (2000). Gain-assisted ‘superluminal’ light 
propagation was experimentally realized by Wang et a/. (2000) in atomic caesiuni 
gar;. 

Buttiker (1983) presented a detailed analysis ofthe Larmor clock for the case of a 
1Dl rectangular barrier. His conclusion was that the main effect of the magnetic field 
is to tend to align the spin parallel to the magnetic field in order to minimize its 
energy (the Zeeman effect). This means that a particle tunnelling through a barrier in 
a magnetic field performs not only a Larmor precession but also a spin rotation 
produced by the Zeeman effect, which necessarily has to be included in the formal- 
ism. 

The idea behind this Zeeman rotation is the following. A beam of particles 
pollarized in the s direction can be represented as a mixture of particles with their 
2 component equal to f7/2 with probability f and equal to -h/2 with probability $. 
Outside the barrier the particles have an energy E independent of the spin, but in the 
barrier the energy differs by the Zeeman contribution f h 4 2 ,  giving rise to a 
different exponential decay of the wave function depending on its spin component 
along the direction of the magnetic field. 

Buttiker assumed that the relevant interaction time depends on the times asso- 
ciated with both effects, the Larmor precession and the Zeeman splitting, and is 
given by 
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1194 V. Gasparian and M. Ortuiio 

Here 011 is the angle through which the expectation value of the spin in the trans- 
mitted beam is turned towards the magnetic field direction because of the difference 
in transmission probabilities for spin up and spin down particles. The traversal time 
defined by the previous equation is the so-called Buttiker-Landauer (BL) time for 
transmitted particles. Although it was obtained in the context of tunnelling, it is a 
general definition which applies for the traversal time of a particle through any given 
region of space. 

4 3. FORMALISM I N  TERMS OF GREEN’S FUNCTIONS 
Let us now derive a general expression for the BL traversal (and reflection) time 

using the GF method developed by Gasparian and Pollak (1993) and Gasparian et 
al. (1995b). We shall consider a 1D system with an arbitrary potential V ( u )  confined 
to a finite segment 0 < y < L. We shall call this region ‘the barrier’, and we shall 
assume that scattering in it is purely elastic. As in the case of a rectangular barrier, 
we apply a weak magnetic field B in the z direction and confined to the barrier. 

If we concentrate in the motion of an electron, with spin S = i, we have to 
consider its two wavefunctions Yl and Y2,  corresponding to the two spin projections 
of + f and - i along the z axis. The column wavefunction Y ( y )  represents compactly 
bothspin states: 

Our electron is incident on the barrier from the left with an energy E and with its 
spin polarized along the x direction, so its wavefunction before entering the barrier is 
given by 

We are considering a plane wave for the wavefunction, but our results are valid 
for any wave packet provided that it is much longer than the size L of the barrier. 

In the presence of a magnetic field, the Schrodinger equation takes the form 

( O)P(I). (10) 
Y(y) = - p  * SY(y )  = -pB 

0 -1 

The term on the right-hand side describes the interaction -p  - B, since by assump- 
tion the vector B is directed along the z axis and the magnetic moment p is of the 
form p = 2pS, where S is the particle spin vector. We have 

where oZ is a Pauli matrix. 
The problem is solved by perturbation theory. To the lowest order in B. the 

spinor Y(L) of the electron on the right end of the barrier is given by (Gasparian 
and Pollak 1993): 
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Trans~~ersal time and nature of complex time 1195 

Here $(y) is the solution of the spatial part of the Schrodinger equation in the 
absence of the magnetic field. This spatial part of the wavefunction can be written 
in terms of the GF of the system as 

$(y)  = exp (iky) - G(y,j)’) V ( y ’ )  exp (iky’) dy’, (13) 1: 
where G(y,y’) is the retarded GF, whose energy dependence is not written explicitly. 
It zihould satisfy Dyson’s equation 

(14) 

where Go(y,y’) = i(n1//ch2) exp (ikly - y’l) is the free-electron GF. We can obtain all 
the relevant properties of the problem in terms of the GF,  solution of the previous 
equation. 

We shall first concentrate on the calculation of the traversal time. The expecta- 
tion value of the component of the spin along the direction of the magnetic field of 
the transmitted electron is, up to second order in B, 

h 
(SJ = - 2 (Y(L)l&v)) 

We want to express the wavefunction $(I)) appearing inside the integral in the pre- 
vious equation in terms of the GF. In order to do so, we take into account the 
folllowing relationship between the wavefunction and the GF of a I D  system: 

For ID systems also, we can further simplify the problem by writing the general 
expression for the GF, namely G(y,y’), in terms of its own expression at coinciding 
coordinates y = y’ (Aronov et al. 1991): 

= [G(J~,Y)G(Y’,!”)]I’~ exP [il@(.~) - @(Y’ ) \ ] ,  

where the phase factor B(y), which implicitly depends on energy, is defined as 

Finally one finds the spin component along the direction of the magnetic field: 
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1196 V. Gasparian and M. Ortufio 

A similar procedure for the spin component along the y and .u directions leads to 

and 

The BL characteristic traversal times for the z and 1' directions are proportional 
to the corresponding spin components (equations (20) and (21)), and we finally 
arrive at: 

7,"" = h Re (1; G(y, y )  dy) , 

7;" = h In1 (1; G(y ,  y )  dy) . 

Instead of defining the modulus of 7BL and 7,"" as the central magnitude of the 
problem, we prefer to define a complex traversal time T as 

a(1nt) r + r l  
T = TB" + i.:" = h G(y,y )  dy = h [= + -1 

4E 

This is a general expression, independent of the model considered, and t and r are the 
transmission and reflection amplitudes from the finite system. r' is the reflection 
amplitude of the electron from the whole system, when it falls in from the right. It 
is also valid for electromagnetic waves (Ruiz et a/ ,  1997). 

The term proportional to a(ln r)/aE in equation (23) mainly contains infornia- 
tion about the region of the barrier. Most of the information about the boundary is 
provided by the reflection amplitudes r and Y' and is of the order of the wavelength X 
over the length of the system L,  that is O(X/L).  Thus, it becomes important for low 
energies and/or short systems. We believe that equation (23) is exact for wave pack- 
ets larger than the system size and adequately incorporates finite(-sample)-size 
effects, which correspond to the terms that which are not proportional to derivatives 
with respect to energy. Finite-size effects can be very important in niesoscopic sys- 
tems with real leads with several transmitting modes per current path. The energy 
appearing in the denominator of the finite-size terms (equation (23)) corresponds in 
this case to the 'longitudinal' energy of each mode, and so there is a divergence 
whenever a new channel is open. In the exact expressions there are no divergences; 
the probleinatic contributions of the finite-size terms are cancelled out by the terms 
with energy derivatives (Gasparian et LII. 1996). 

Several approaches do not include finite size terms, since they implicitly consider 
very large wavefunctions. For instance, the Wentzel-Kramers-Brillouin approxima- 
tion (Buttiker and Landauer 1985), the oscillatory incident amplitude approach 
(Buttiker and Landauer 1986, Leavens and Aers 1987) and the wave-packet analysis 
(for example Hauge and St~rvneng (1989) and Landauer and Martin (1994)) do not 
properly obtain finite-size effects. On the other hand, our GF treatment, the general- 
ization of the time-modulated barrier approach (Jauho and Jonson 1989) and the 
Feynman path-integral treatments (Sokolovski and Baskin 1987) arrived at  exact 
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Transversal time and nature of complex time 1197 

expressions. In order to see that these expressions are all equivalent, one has to 
transform the derivative with respect to the average barrier potential appearing in 
the time-modulated barrier approach into an energy derivative plus finite size terms. 
The same has to be done with the functional derivative with respect to the potential 
appearing in the Feynman path-integral techniques. 

For reflected particles we can proceed in the same way as for transmitted parti- 
cles. The change in orientation of the spin of reflected waves and so the reflection 
time TR from an arbitrary 1D barrier can be calculated in the same way as we have 
done for transmitted waves. We shall use the subscript R to indicate that the mag- 
nitude corresponds to reflection, and we understand that similar magnitudes related 
to transmission will have no equivalent subscript. Proceeding as above, we find that 
the two characteristic reflection times r,!; and rBk can be written as the complex 
refkction time TR, in analogy with the complex traversal time 7 given in equation 
(23):  

This is again a general equation, independent of the model used. 
We note that for an arbitrary symmetric potential V ( L / 2  + y) = V ( L / 2  - y ) ,  the 

total phases accumulated in a transmission and in a reflection event are the same and 
so the characteristic times for transmission and reflection corresponding to the direc- 
tion of propagation are equal: 

as immediately follows from equations (23) and (24) (see also the review article by 
Hauge and Stavneng (1989)). For the special case of a rectangular barrier, equation 
(25) was first found by Biittiker (1983). Comparison of the equations (23) and (24) 
shows that, for an asymmetric barrier, equation (25) breaks down (Leavens and Aers 
1987). 

As a consequence of the conservation of angular momentum we can write the 
following identity between the characteristic times for transmission and reflection 
corresponding to the direction of the magnetic field (Buttiker 1983, Sokolovski and 
Baskin 1987): 

which can be checked directly using equations (23) and (24). T and R = 1 - T are 
the transmission and reflection probabilities respectively. 

To close this section note that the G F  method was generalized to the problem of 
an electron escaping from a 1D disordered region by Lopez Villanueva and 
Gasparian (1999). based on the local version of the Larmor clock, that is when an 
infinitesimal magnetic field B is localized inside the barrier (Leavens and Aers, 1988). 
It was shown that, in the case of a quantum well surrounded by right and left 
arbitrary barriers, and an additional weak magnetic field B oriented in the z direction 
arid finite only in the interval ivo, L ] ,  the coordinate-dependent complex escape time 
r,‘”,”(~y,, L;  E )  has two components, that is both a precession and a rotation of spin. 
For instance, the ,I’ component can be defined as 
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1198 V. Gasparian and M. Ortuiio 

Here t ,  = t r (vo,  L; E )  is the complex amplitude of transmission only through the 
right barrier (see equation (23)). Fr = Fr(yo, L; E )  has a slightly different meaning; 
the tilde signifies that the given quantity is calculated in the presence of the left and 
right barriers (Aronov et al., 1991). Thus Fr is the complex amplitude of reflection 
from the right barrier in the presence of the left barrier, when the electron falls in this 
barrier from the left. 

Note that the integral in equation (27) runs from yo to L, instead of from 0 to L, 
as occurred in the case of a free incident electron and obviously, for yo = 0, coincides 
with equation (23). 

S 4. COMPLEX TIME AND UNCERTAINTY 
Although the tunnelling time must be a real time, the concept of complex time in 

the theory of the traversal time problem of electrons and of classical electromagnetic 
waves has arisen in many approaches (see Martin (1996), and references therein). 
Pollak and Miller (1984), while studying the average tunnelling time in classical 
chemical systems, arrived at the concept of an imaginary time through the flux- 
flux correlation function. Leavens and Aers (1987) also arrived at the idea of a 
complex barrier interaction time, by studying the shape distortion of the transmitted 
wave by the barrier using the oscillatory incident amplitude approach. We saw, with 
the help of the G F  formalism, that the two characteristic times appearing in the 
Larmor clock approach correspond to the real and imaginary components of a single 
quantity, which we define as a complex traversal (or reflection) time. 

In the Feynman path-integral approach the concept of a complex time also arises 
naturally. Sokolovski and Baskin (l987), using this kinematic approach to quantum 
mechanics found the following complex time: 

where 6/6 V(J.)  represents the functional derivative with respect to the barrier poten- 
tial. 

The result in equation (28) is strictly equivalent to equation (23) for the inte- 
grated density of states, and so we can emphasize that this coincidence is quite 
natural. because in the tunnelling time problem we always deal with an operz and 
,finite system. The functional derivative with respect to the potential appearing in 
equation (28) is equivalent to a derivative with respect to energy plus a correction 
term proportional to the reflection coefficient. 

The optical analogue of the Larmor clock for classical electromagnetic waves 
based on the Faraday effect leads us also to a complex time (Gasparian et ( I / .  1995a). 
The two time components are calculated using the expression for the complex 
traversal time in terms of derivatives with respect to frequency w (Ruiz et al. 1997): 

. a(lnt) 
~ ~ ( w )  = -r1 (w)  - iTA( ) - - - - ' W  - - I (  aw I> (29) 
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Trunsversal time and nature of coniples time 1199 

Gasparian et al. (1999a,b) have shown that the two components ~ ~ ( w )  and T ~ ( w )  
of the complex traversal time ~ ( w )  are not independent quantities but are connected 
by Kramers-Kronig relations. The validity of the Kramers-Kronig relations is a 
direct result of the causal nature of physical systems by which the response to a 
stimulus never precedes the stimulus. 

Many experimental and theoretical investigators analyse only the behaviour of 
the r, (w) component of evanescent modes, which is not necessarily Einstein causal 
(Nirntz 1999), and obtain in this way superluminal velocities. The signal or wave 
packet spends a very short time in the evanescent region, and so the delay time is 
smaller than the crossing time at the vacuum speed of light. From extensive numer- 
ical simulations we have found that the component r2 is directly connected to the 
niiniimum possible error in the traversal time. Let us explain this in more detail. If we 
start. with a very long wave packet and obtain a very short traversal time, there is no 
problem with causality since the uncertainty in the measurement is much larger than 
the traversal time itself. The question is how short can we make the initial wave 
packet and still have a very short traversal time. The answer to this question lies in 
the imaginary component of time T ~ ;  we obtain very short times for packets larger 
than 7 2  multiplied by the group velocity. As this component is large in the situations 
where causality seemed to be violated, the possible paradox is solved. We believe that 
the solution to this paradox is via uncertainty and not because the relevant time is 
the modulus of the complex time. 

‘The association of 7-2 with the uncertainty in the time not only arises from our 
numerical results but also can be deduced from the formulation of the problem itself. 
This is easier to appreciate in the case of electromagnetic waves where we start with 
linearly polarized waves and measure the angle of rotation, proportional to r I ,  and 
the ellipticity, proportional to T?. The amount of ellipticity represents an uncertainty 
in the measurement of the rotation angle. A similar situation occurs for electrons. 
We have to measure the component of spin along the y axis, which is proportional to 
71. We cannot measure simultaneously the other component, but we know that the 
average value of the other component, owing to the Zeeman effect, produces an 
uncertainty in the expectation value of rl. 

4 5. CONCLUSIONS 
We have discussed the topic of tunnelling time in mesoscopic systems, particu- 

larly in 1D systems with an arbitrarily shaped potential. All the existing different 
approaches can be consistently formulated in terms of GFs, and their main differ- 
ences can be fairly well understood. 

As regards the complex nature of time our conclusion is the following. It is clear 
that there are two characteristic times to describe the tunnelling of particles through 
barriers (similar conclusions can be reached for reflecting particles). These two times 
correspond to the real and imaginary components of an entity, which we can choose 
as the central object of the theory. We propose that the quantity that is always 
measured is the real component of time rl ,  while the uncertainty in the traversal 
time. as well as the minimum size of the wave packet where ultrashort times can be 
achieved, is controlled by the imaginary component r2. 
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