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The two components of the complex escape time tesc�k� � tesc
1 �k� ÿ itesc

2 �k� for an electron from a
localised state in a one-dimensional disordered system are shown to be connected by Kramers±
Kronig integral relations. In the complex k plane, t1 and t2 form an elliptic contour. Component
tesc

2 �k�, in the case of an opaque barrier at an energy close to the bound level in the well, coincides
with the lifetime expression.

Let us consider a potential shape that includes a well and one surrounding barrier (see
Fig. 1). A hard wall condition at x � ÿw reduces the problem to escape to only one
open channel, i.e., transmission to the right.

To calculate the escape time tesc�k� of an electron from a quantum well when bound-
ary effects can be neglected, we closely followed Ref. [1] and introduced the following
complex quantity (k � ����

E
p

):

tesc � ÿi
d ln t

2k dk
; �1�
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Fig. 1. Schematic representation of
the simplified potential profile, with a
hard wall condition at ÿw
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where t � T� �1=2 eij is the complex amplitude of transmission of the electron through
only the right barrier taking into account the hard wall condition at x � ÿw.

Using standard methods of quantum mechanics and dropping all terms apart from
the leading term in Eq. (1), we find for the Re and Im parts of the complex escape
time the following asymptotic expressions near the resonance energy E1 and in the
limit of an opaque barrier:

tesc
1 �k1� � x1 1� g1w� � �1� b2

1�
2k2

1�1� x2
1�

exp �2g1d� ; �2�

tesc
2 �k1� � �1� g1w� �1� b2

1� �1ÿ x2
1�

4k2
1�1� x2

1�
exp �2g1d� ; �3�

where x � g=k3; g � �����������������
U1 ÿ E1
p

; k3 �
�����������������
E1 ÿU2
p

; b � k=g, and w, d, U1;U2 are defined
in Fig. 1.

At this point, let us examine the relationship between the two components we have
defined above and the lifetime expression

tLT�k1� � �1� g1w� �1� b2
1� �1� x2

1�
16k2

1x1
exp �2g1d� ; �4�

which follows from an approximate perturbative approach based on Bardeen's pertur-
bation Hamiltonian [2].

Despite the similarity between Eqs. (2), (3) and (4), they only allow a qualitative
comparison at the bound level E1. Since components tesc

1 and tesc
2 show a sharp varia-

tion around this energy, a comparison with Eq. (4) as a function of energy is interest-
ing in order to study their behaviour at the quasibound level, which is shifted with
respect to E1. Such comparison is shown in Fig. 2 for the following parameter values:
U1 � 1; U2 � ÿ1; w � 3; for two d values (d � 5 in Fig. 2a, and d � 2 in Fig. 2b). An
opaque barrier has been chosen in Fig. 2a to ensure the accuracy of the lifetime
expression, but in Fig. 2b the estimated relative error for the lifetime expression is
about 16%. The vertical line corresponds to the ground energy level when the barrier
width is infinite.

In Ref. [3], the logarithm of the complex transmission amplitude, i.e. ln t, was shown
to be an analytic function of the wave function k, in the entire complex k plane, and
linear dispersion relations between the real and imaginary parts of ln t were found.
Using these dispersion relations, and the fact that the complex escaping time (1) can be
derived in terms of derivatives with respect to the potential barrier height, V�x�, rather
than with respect to the particle energy [1], it is straightforward to show that the real
and imaginary components of t�k� verify the Kramers-Kronig integral relations

tesc
1 �k� � ÿ

1
p

P
�1
ÿ1

tesc
2 �k0�
k0 ÿ k

dk0 ; �5�

tesc
2 �k� �

1
p

P
�1
ÿ1

tesc
1 �k0�
k0 ÿ k

dk0 ; �6�

where P signifies that the integral is taken in the sense of the principal value.
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Let us represent, in the complex E plane, the Re and Im parts of the complex escape
time (1) for the potential shape discussed in this paper. They are plotted one against
the other in Fig. 3 and, as is seen, form an ellipse. This is what we expected, as the
maxima of tesc

1 �k� and tesc
2 �k� are not the same. Nevertheless, there is a property of an

ellipse that could be interesting: it is symmetric with respect to its main axis. Therefore,
the maximum (and the minimum) of tesc

2 �k� are found at the points where tesc
1 �k� has a

value of half its maximum. As this value is widely used to compute the lifetime (width
of the tesc

1 �k� peak at half height), this width must be exactly the difference in energies
between the maximum and minimum of tesc

2 �k�. It is easy to check that we have the
following condition:

�Emin ÿ Emax� tesc
2 � 1 ;

which confirms our previous conclusion concerning the fact that tesc
2 coincides with the

lifetime expression at an energy close to the bound level in the well.
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Fig. 2. The time components as a function of energy for the potential profile depicted in Fig. 1,
with U1 � 1, U2 � ÿ1, and w � 3, for two different d values: a) d � 5, and b) d � 2. The vertical
line corresponds to the ground energy level when the barrier width is infinite
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Fig. 3. Complex plane escape time
diagram for the quantum well,
used in this paper
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