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Abstract

The escape of an electron from a localized state in a quantum well with one or several surrounding barriers is analyzed
using the local Larmor clock approach. We show that two time scales can be involved in the escape time problem, such as in
the case of a scattering configuration. The particular example of a potential well with a hard wall condition on one side, i.e.
escaping through only one open channel, is investigated, and the two time components are calculated analytically. One of the
time components is shown to coincide with the lifetime expression obtained with a different approach, in the case of an
opaque barrier, at an energy close to the bound level in the well. q 1999 Published by Elsevier Science B.V. All rights
reserved.

1. Introduction

The calculation of the time interval during which
a particle interacts with a barrier of arbitrary shape
has raised great interest recently, being studied both

Ž w xtheoretically and experimentally see e.g. Refs. 1,2
.and references therein , especially in nanostructures

or in mesoscopic systems smaller than 10 nm. In
these systems the tunnelling time will eventually
play an important role in determining transport prop-
erties, for example in the frequency-dependent con-

w xductivity response of mesoscopic conductors 3 and
in the phenomenon of an adiabatic charge transport
w x4,5 .

In most approaches to the tunnelling time prob-
lem, only the scattering configuration is considered,

Ž .where the free electron or wavepacket comes from

) Corresponding author. E-mail: vgaspar@quijote.ugto.mx

Ž . Ž .the left right of a one-dimensional 1D arbitrary
potential barrier. More than one tunnelling-time
component is involved in this time problem, regard-
less of whether we deal with the so-called Buttiker–¨

Ž . BL w xLandauer BL t 6 or complex t characteristic
Ž < < BL . w xtimes note that t st 7,8 . Furthermore, this

does not seem to be a peculiarity of quantum me-
chanical waves, but a general result, as the character-
istic time associated with a classical electromagnetic

w xwave is also a complex magnitude 9 and the two
components of this magnitude are not entirely inde-
pendent quantities, but are connected by Kramers–

w xKronig relations 10 .
On the other hand, it is clear that there are other

similar situations of practical interest that should be
discussed in the same context of two time compo-
nents, as was done for the scattering problem. One of
these situations is the escape of an electron from
localized states in a quantum well with one or sev-

0375-9601r99r$ - see front matter q 1999 Published by Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00412-0



( )J.A. Lopez VillanueÕa, V. GasparianrPhysics Letters A 260 1999 286–293´ 287

eral surrounding barriers. The escape of an electron
from a localized state in a quantum well connected
to a continuum by a small barrier only on one side
Ž .Fig. 1a can be found, for instance, in miniaturized
metal-oxide-semiconductor transistors, in which elec-
trons arrive at the quantized accumulation or inver-
sion layers after scattering and can subsequently
tunnel to the metal gate through a very narrow oxide

w xlayer that acts as the barrier 11 . Physically, this
implies that the particles entering the quantum well
region remain there for some time before being
allowed to escape outside. Tunnelling escape time
has also been studied by transient-capacitance spec-

w xtroscopy 12 , where electrically injected electrons
undergo an escape process out of the quantum well,
such as in a three-barrier, two-well heterostructure
w x13 .

In the present work the tunnelling escape time
with the local Larmor clock approach is reconsidered
and an analytical expression for the escape time of
an electron from a finite 1D disordered region is
derived in terms of partial scattering matrix ele-
ments. We show that the coordinate dependent es-

Ž .cape time CDET from the quantum well has two
components, both a precession and a rotation time
scales. We investigated a particular example of a

Fig. 1. Schematic representation of the quantum well connected to
Ž .a continuum by a barrier on only one side. a General potential

Ž .profile. b Simplified potential profile, with a hard wall condition
at yw, used in this paper.

Ž .potential schematically shown in Fig. 1b and ex-
plicitly calculated the two components of the escape
time, using the squared wavefunction in the well as
the weight function.

Before proceeding, we should remark that a mag-
nitude similar to the CDET, a set of local partial

Ž . Ž .density of states DOS dn y rdE and a set ofab

Ž . w xsensitivities h y , were introduced in Ref. 3ab

considering the response of the system to a small
Ž .perturbation of the potential V y . It was shown that

Ž . Ž . Žthe dn y rdE and h y the spin precessionab a b

and rotation in the Larmor clock approach, respec-
.tively are connected to the scattering matrix ele-

ments and are based on both a preselection and
postselection of carriers, i.e., the carriers are grouped
according to the asymptotic region from which they

Ž .arrive b and according to the asymptotic region
Ž .into which they are scattered a . The decomposi-

tion of the local DOS on a next-higher level, based
Ž .only on a preselection termed an injectivity or only

Ž .on a postselection called an emissivity leads in the
Larmor clock approach to a single spin precession
w x3,14 . For instance, the emissivity is the local DOS
generated by carriers incident from the asymptotic
region a regardless into which region the carriers
are finally scattered.

Note that in the case of CDET, with the electron
initially localized in the quantum well, the momen-
tum acts like an additional channel index. This means
that we can specify the incident channel and also the

Ž .momentum sign positive or negative of the parti-
cles whose contribution to the local density of states
we want to consider. This then leads to a local partial
DOS and a sensitivity which, in addition to the usual
channel indexes, also has a momentum index. The

ŽCDET is very sensitive to the initial position y at0

least it has a singularity in the quantum well, as
.discussed below . In order to obtain a result that is

independent of the initial position of the electron, we
averaged the different CDET inside the well by
using an appropriate weighting function.

2. Lifetime calculation procedures

According to the general theory of quasistationary
w xstates 15 , it is possible to reduce the time-depen-
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dent Schrodinger equation to the time-independent¨
ordinary differential equation only if we select a

˜discrete complex value of energy E. The energy
level of the particle state inside the well is connected
with the real part of this complex energy, and the
lifetime of this state is related to the imaginary part.
Thus, the standard method for calculating the escape

˜time is to expand the complex energy E in the
immediate neighbourhood of any resonance energy

˜ Ž .level, e.g. E , as EsE y iGr2 G<E , where G1 1 1
Ž .is the level width the resonance width connected

with the lifetime by t sG y1. Moreover, as life-LT

time refers to the probability of an electron leaving
the potential well per unit time, it is directly related
to the electric current through the structure. To ob-
tain the lifetime we can calculate the LDOS in the
well and measure the width at half height of the
peaks found at the quasibound levels. To do so, we
can assume a wavefunction of fixed amplitude for
y)d, solve the Schrodinger equation throughout the¨

Ž .whole structure see Fig. 1a and evaluate LDOSs
0 < Ž . < 2H c y dy within the well. This procedure be-yw

haves well provided the peaks in the LDOS have a
lorentzian-like shape, so that the width at half height
can be accurately obtained. This approach also poses
computational limitations for opaque barriers, in
which the peaks are very narrow, as the step used in
the energy sweep must be extremely small. In such a
case it is better to use an approximate perturbative
approach based on Bardeen’s perturbation Hamilto-

w xnian 16 . First, we must obtain the unperturbed
Žbound levels, E , for an infinite-width barrier Fig.1

. Ž2a , that fulfil the following condition we chose the
parameters such that only a single bound state E1

.exists :

k1
sin k w q cos k w s0, 1Ž . Ž . Ž .1 1

g

Žwhere k s E and gs U yE "s2ms1, m( (1 1 1 1
.is the electron free mass .

Second, the lifetime is obtained as follows:

1
sW E r E ,Ž . Ž .12 1 2 1

t EŽ .LT 1

Fig. 2. Schematic representation of the simplified potential pro-
Ž .files used in the perturbative approach: a quantum-well with an

Žinfinite-width barrier; E is the single bound state defined in the1
. Ž .text ; b step profile used to obtain the wave function in the

continuum.

Ž .where r E sLr2p k is the density of states for2 1 3

y)d, and

2
dc dc2 1

W s2p c yc .12 1 2dy dy

Ž . Ž .c y and c y are the normalized wavefunctions1 2

obtained with the potential profiles shown in Fig. 2a
and b, respectively, and L is a normalization length
for y)d. The result is

1qg w 1qb 2 1qj 2Ž . Ž . Ž .
t s exp 2g d , 2Ž . Ž .LT 216Pk Pj1

where k s EyU , bsk rg , jsgrk . A simi-(3 2 1 3
Ž .lar expression to Eq. 2 can be found, for suffi-

ciently high and wide barriers, using also a scattering
Ž w x.matrix approach see e.g. 17 . But the validity

conditions for these expressions are the same ones
that make a calculation based on the LDOS difficult.
That is to say, the narrower the resonance, the more
valid the perturbative approach. It should be pointed

Žout that the standard phase shift calculation see Eq.
Ž . Ž ..8 or Eq. 17 , also can identify and localize sharp



( )J.A. Lopez VillanueÕa, V. GasparianrPhysics Letters A 260 1999 286–293´ 289

resonance in the limit of an opaque barrier, as it is
Ž .plotted in Fig. 3b solid line . But as we see the

² esc:maximum of t does not coincide, with the ty1 LT
Ž .lifetime expression 2 at an energy very close to the

bound level in the opaque barrier case. For this
reason we use the above procedure as it provides a
simple expression for an opaque barrier, and the
error produced with respect to the LDOS procedure
is very small for reasonably high values of the
barrier strength, g d. For example, with a barrier
height of U s1, the relative error for the ground1

Žlevel is less than 1% for g d)1.7, if ws5 E s1
.0.270 , while it is greater than 5% for g d-2.6, if
Ž .ws2 E s0.899 . The error is very small in im-1

portant practical cases since, for example, even in

Fig. 3. The time components as a function of energy for the
potential profile depicted in Fig. 1b, with U s1, U sy1, and1 2

Ž . Ž .ws3, for two different d values: a ds5, and b ds2. The
Ž .different curves are labelled in a .

the narrowest oxide layers used in silicon devices,
g d)9. However, in other materials with smaller
barrier heights the error can be too high.

3. Local Larmor clock

The Larmor clock approach, based on an idea by
w xBaz’ et al. 17 to utilize the Larmor precession

frequency of the spin produced by a weak magnetic
field confined to the barrier and acting within the

BL w xbarrier region, leads us to the BL time t 6 . In
this method, which is the most extensively studied,
the spin is thought to be initially polarized perpen-

Ždicular to the direction of the electron’s motion y
.direction . The rotation of the spin, as it traverses the

barrier, is then studied by determining the time
evolution of its z component along the magnetic
field perpendicular to y, and along the y direction.
Two times, t BL and t BL , are determined as they z

inverse expectation values of the y and z compo-
nents, respectively, of the Larmor frequency.
Buttiker’s analysis of the Larmor clock has been¨
extended to the 1D arbitrary barrier, using the sur-

w xface GF method in Ref. 18 . The two characteristic
times appearing in the magnetic clock approach were
shown to correspond to the real and imaginary com-
ponents of a single quantity, defined as an integral of

Ž .the GF G y, y; E for an open and finite 1D arbi-
trary system confined to the segment 0FyFL. The
final result for the complex traversal time t can be
expressed in terms of partial derivatives with respect
to energy E

L
tst q it s G y , y ; E dyŽ .Hz y

0

E ln t rqrX

s q 3Ž .½ 5E E 4E

where r and rX are the reflection amplitudes from
the left and from the right, respectively. t is the
transmission amplitude of the region considered and
is independent of the incident direction.

The GF method was generalized to the electron
w xescape problem from 1D disordered regions in 19 ,
w xbased on the local version of the Larmor clock 20 .

It was shown that, in the case of a quantum well
surrounded by right and left arbitrary barriers, and an
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additional weak magnetic field B oriented in the z
w xdirection and finite only in the interval y , L , the0

right-hand side and the left-hand side CDET have
two components, i.e. both a precession and rotation
of spin. For instance, the right-hand side CDET

escŽ .t y , L; E is given byr 0

Lesc esc esct y , L; E st q it s G y , y ; E dyŽ . Ž .Hr 0 r , z r , y
y0

E ln t r qrX˜r r
s q½ E E 4E

1 E 1y r̃r
q 1yr ln . 4Ž .Ž .r̃ 52 E E 1q r̃r

Ž .Here, t ' t y , L; E is the complex amplitude ofr r 0

transmission only through the right barrier and rX is
the reflection amplitude of the electron from the

Žwhole system, when it falls in from the right see Eq.
Ž .. Ž .3 . r 'r y , L; E has a slightly different mean-˜ ˜r r 0

ing: the tilde mark signifies that the given quantity is
calculated in the presence of the left and right barri-

w xers 19 . Thus, r is the complex amplitude of reflec-r̃

tion from the right barrier in the presence of the left
barrier, when the electron falls into this barrier from
the left.

Note that the first term on the right-hand side of
the above equations mainly contains information
about the region of the barrier, while most of the
information about the boundary is provided by the

Ž .second and third terms. The integral in Eq. 4 runs
from y to L, instead of 0 to L as in the case of a0

free incident electron and obviously, for y s0,0
Ž .coincides with Eq. 3 . For the special case of a

L Ž .rectangular barrier, the integral H G y, y; E dy leadsy0

w xus to the results of Ref. 20 . Analogous expressions
hold for the particles escaping to the left-hand side
of the disordered region.

We have thus arrived at a simple relationship
between the two CDET components of an electron
from a finite disordered region and the local scatter-

Ž .ing-matrix elements. Eq. 4 makes it evident that the
time required by an electron to cover a distance L in
the disordered region is extremely sensitive to the
boundary conditions and to its initial position y .0

escŽ .We will see below that t y , L; E in a quantumr, y 0

well has a singularity at the initial position y .0

To obtain manageable analytical expressions for
Ž .two time components of Eq. 4 , we have applied

this formalism to the simplified structure depicted in
Fig. 1b. A hard wall condition at xsyw reduces
the problem to escape to only one open channel:
transmission to the right. Using standard methods of
quantum mechanics it is easy to show that the
straightforward calculations of the quantities in Eq.
Ž .4 lead to the result:

t esc y , L; EŽ .r 0

d
s ln t yŽ .r 0dE

y A y q ij B yŽ . Ž .0 0 0
y

2k sin k y Aq ij B1 1 0

1 Ay ij B 1
q 2½4 Aq ij B k3

1 A y q ij B yŽ . Ž .0 0
y 1y22 Aq ij Bk1

=cos k y , 5Ž .1 0 5
where w, d, U and U are defined in Fig. 1b, and1 2

k sin k y1 1 0
t y s2 6Ž . Ž .r 0 ( k Aq ij B3

Assin k w cosh g dqb cos k w sinh g d1 1

Bssin k w sinh g dqb cos k w cosh g d1 1

A y ssin k wyy cosh g dŽ . Ž .0 1 0

qb cos k wyy sinh g dŽ .1 0

B y ssin k wyy sinh g dŽ . Ž .0 1 0

qb cos k wyy cosh g d.Ž .1 0

By writing
1r2 iwt y s T y eŽ . Ž .r 0 r 0

we obtain for Re and Im parts of the first term on the
Ž . Ž .right-hand side of Eq. 5 , i.e., for dln t y rdE ther 0
Ž 2 2 2 .following expressions G'A qj B :

1 d ln T y 1 yŽ .r 0 0esct s sz1 2 dE 2k tan k yŽ .1 1 0

1 d
y1q bPjPG , 7Ž .

2 dE
dw d j B

esc y1t s sy tan . 8Ž .y1 ž /dE dE A
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As for the Re and Im parts of the second and third
Ž . ² esc: ² esc:terms of Eq. 5 , noted below as t and tz 2 y2

respectively, we will only write averaged expressions
Ž Ž . Ž ..see Eq. 12 and 13 .

Note that the first term in t esc contains a diver-z1

gency. In order to avoid divergences in calculating
t esc, and to obtain a result independent of the initialr

position of the electron, we will average the different
time components by using the squared wavefunction
in the well as the weight function, according to

w
2t sin k y dyH 1 0 0

0esc² :t s . 9Ž .r w
2sin k y dyH 1 0 0

0

The resulting averaged time components are

1 sin 2k w y2k w cos 2k wŽ . Ž .1 1 1esc² :t sz1 2 2k wysin 2k w4k Ž .1 11

1 d
y1q bPjPG 10Ž .

2 dE

² esc: esct st 11Ž .y1 y1

F 11esc y1 2 2 2² :t sy qG A yj BŽ .z 2 2 2½4k 4k1 3

F2 2q ACqj BD 12Ž .Ž .2 54k1

y2 AB F2esc y1² :t sj G q ADyBC ,Ž .y2 2 2½ 54k 4k3 1

13Ž .

with

F1

1
Ž . Ž . Ž .k wy sin 4k w ysin 2k w q2k w cos 2k w1 1 1 1 14s1y

Ž .2k wysin 2k w1 1

14Ž .

F sk wysin k w cos k w 15Ž . Ž . Ž .2 1 1 1

and

Cscos k w cosh g dyb sin k w sinh g d1 1

Dscos k w sinh g dyb sin k w cosh g d.1 1

² :Note that the first term in t , which correspondsz1

to the initial position of the electron, cancels out with

the two last terms in F . Nevertheless, we will keep1

these terms since we are interested in studying the
four time components separately.

For further discussion of the results in detail, let
² esc: ² esc:us write explicit expressions for t and t inz1 y1

Ž .the limit of an opaque barrier g d41 and near the
Ž Ž ..resonance see Eq. 1 . Since the large contributions

² esc:to the t near the resonance come from thez1
Ž .second term, we approximately have from Eq. 10

1qg w 1qb 2 1yj 2Ž . Ž . Ž .
esc² :t s exp 2g d .Ž .z1 2 24k 1qjŽ .1

16Ž .

² esc:The expression for t isy1

j 1qg w 1qb 2Ž . Ž .
esc² :t s exp 2g d . 17Ž . Ž .y1 2 22k 1qjŽ .1

We have thus arrived for the tunnelling escape time
of an electron from a localized state in quantum well
at two expressions. Comparison of these two compo-

Ž . Ž .nents, i.e. Eq. 16 and Eq. 17 with the lifetime
Ž . Žexpression 2 will be done in the next section see

.Fig. 3 . Note that the curves as a function of energy
Ž . Ž .corresponding to Eq. 16 and 17 are very similar

and show a sharp resonance in the immediate neigh-
bourhood of the ground energy level. The only major
difference between these two time components is the
shift and magnitude of the maxims.

Ž . Ž . Ž .It is easy to check from Eqs. 2 , 16 and 17
Ž . Ž .that at the specific energy Es U qU r2 js1 ,1 2

² esc: ² esc:we have t s0 and t s2t , i.e. the phasez1 y1 LT

time is twice as long as the lifetime of the electron.
Concluding this section, note that the conserva-

tion of angular momentum, similar to the case of the
scattering process, also holds in the case of one open
channel:

esc ˜ escTt qRt s0, 18Ž .˜r , z r , z

˜ Uwhere Rsrr is the coefficient of reflection from˜˜
the right barrier in the presence of the left barrier,
when the electron falls into this barrier from the left
Ž Ž .. escsee Eq. 4 . t is the reflection time from ther̃, z

Žsame right barrier an explicit expression will be
.given elsewhere .

This result indicates that summing the positive
and negative momentum index for the escaping elec-
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w xtrons leads us to the results in Ref. 14 , where it was
shown that for a single contact there is no spin

Ž .rotation. In terms of the sensitivities h y , men-ab

Ž .tioned in the Introduction, this means that h y q21
Ž .h y s0.11

4. Results

At this point, let us examine the relationship
between the five time components we have defined:

Žthe four components of the complex time see Eqs.
Ž . Ž .. Ž .10 – 13 and the lifetime 2 . This comparison is
shown in Fig. 3 for the following parameter values:

ŽU s1, U sy1, ws3, for two d values ds5 in1 2
.Fig. 3a, and ds2 in Fig. 3b . An opaque barrier has

been chosen in Fig. 3a to ensure the accuracy of the
lifetime expression, but in Fig. 3b the estimated
relative error for the lifetime expression is about
16%. The vertical line corresponds to the ground
energy level when the barrier width is infinite. The
modulus of the total time is plotted in Fig. 4 in the
two cases. The following conclusions can be drawn
from to these figures:

Ž .a The two real parts of the complex time have a
similar shape but opposite signs. The same applies to
the two imaginary parts. So, the resulting real and
imaginary times are lower than those predicted by
only the transmission coefficient.

Ž . ² esc:b The maximum of component t coincidesz1

with the lifetime expression at an energy very close

esc Ž . ŽFig. 5. Comparison between t solid line and lifetime dashedz1
.line in a case with ds3 and ws20, so that several quasibound

levels are found with energies lower than the barrier maximum.

Žto the bound level in the opaque barrier case Fig.
. Ž .3a . With the narrow barrier Fig. 3b both results

deviate, but in this case the lifetime expression over-
estimates the lifetime by about 16% while the maxi-

² esc:mum of component t still provides an accuratez1

value. Furthermore, this maximum is produced at an
energy lower than the bound level, as predicted by
the first-order perturbation theory.

Ž .c The maximum of the total tunnelling-time
modulus is slightly higher than the lifetime, but the
values of this total time modulus at the bound-level
energy, which is where lifetime is calculated, are
slightly lower than the lifetime.

Ž .Fig. 4. Modulus of the total time full line for the two cases represented in Fig. 3. The vertical line corresponds to the ground energy level
when the barrier width is infinite.
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Obtaining the lifetime through the maximum of a
magnitude is useful, as it is computationally easier to
detect a maximum than a width at half height. Fig. 5

² esc: Ž .shows a comparison between t solid line andz1
Ž .the lifetime dashed line in a case with ds3 and

ws20, so that there are several quasibound levels
with energies lower than the barrier maximum. As
shown, a good agreement is found between the two
magnitudes.

To conclude, we have shown that the escape time
of an electron from quantum well is a complex

escŽ .quantity. The t y ; E component, even in thez 0

case of escaping through only one open channel,
always exists. In the case of a potential well with a
hard wall condition on one side this time component,
exactly coincides with the lifetime expression ob-
tained with a different approach. The standard phase

escŽ .shift calculation, i.e. the t y ; E component ofy 0

the escaping time, in the same limit of an opaque
barrier leads us to the relatively big error. Note that

² esc:in this paper coincidence of the t with thez1
Ž .lifetime expression 2 was only checked analytically

for the simplified structure depicted in Fig. 1b, but it
should be clear that the concepts discussed in this
article apply also for more complicated cases and

² esc:thus the maximum of t provides the lifetime forz1

any potential shape.
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