
Tunneling time in nanostructures

V. Gasparian1, M. Ortuño2, G. Schön3 and U. Simon3

1Departamento de Electrónica, Universidad de Granada, Spain
2Departamento de F́ısica, Universidad de Murcia, Spain

3Institut für Anorganische Chemie, Universität–GH Essen, Germany

We review existing approaches to the problem of tunneling time, focussing on the Larmor clock
approach. We develop a Green’s function formalism and with it we are able to obtain close
expressions for the tunneling and for the reflection times. A strong analogy between the results
of the different approaches is established, and we show that their main differences are due to
finite size effects. Furthermore we study the dwell time, and check that it can be exactly written
as an average of one of the components of the traversal and the reflection times.We apply the
results to a rectangular barrier, a periodic system and resonant tunneling, and we analyze the
dependence of the tunneling time with the size of the wavepacket.

We also discuss the recharging time in chemical nanostructures like ligand stabilized micro-
clusters. We show that for nanoparticles with very small tunneling resistance RT ≤ 105 Ω it
becomes to the same order of magnitude with tunneling time.
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I. INTRODUCTION

During the last few years key subjects and, conse-
quently, terms in materials research have been contin-
uously changing, indicating a tendency towards smaller
and smaller scales. The physics of “low dimensional
structures” was replaced by the discipline of “submicron
physics”, emphasizing the effects due to a reduction of
size. Then the term “mesoscopic systems” was intro-
duced referring to typical length–scales ranging from a
few nanometers up to a few micrometers. More recently
still, the terms “nanophase–” or “nanostructured materi-
als” have become popular, indicating that scientists had
learned to manipulate, synthesize, analyze and observe
objects approaching the molecular and atomic scales.

Usually in the literature it was distinguished between
“physical–” and “chemical nanostructures”. Under the
term “physical nanostructures” are classified all artifi-
cially built up structures, as obtained, for example, by
evaporation and subsequent deposition of materials. On
the other hand, the term “chemical nanostructures” com-
prises all those nanophase materials that can be obtained
by methods of chemical synthesis, such as the chemical
compounds with chain–like or layer type–structures, as
well as the cluster compounds. A review of the electronic
properties of nanophase materials obtained from chemi-
cal synthesis was recently given by de Jongh [1]. A sur-
vey of chemically synthesized metal clusters was edited
by Schmid [2]. And the prospect of the applications of
metal and semiconductor clusters in inorganic host struc-
tures was presented by Simon [3].

The question of the time spent by a particle in a given
region of space is not new and has recently attracted a
great deal of interest [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16]. The problem has been approached from many
different points of view, and there exists a huge liter-
ature on the tunneling problem of electrons through a
barrier, although tunneling times have continued to be
controversial even until now. As pointed out by Lan-
dauer and Martin [11], there is no clear consensus about
simple expressions for the time in quantum mechanics
(QM), where there is not an Hermitian operator asso-
ciated with it. The problem of the tunneling time of
single electrons (SE) in nanostructures or in mesoscopic
systems smaller than 10 nm becomes even more compli-
cated, due to the Coulomb blockade effects [17] on small
amounts of electrons and discreteness of electric charge.

In the present paper we intended to review the theoret-
ical approaches for tunneling times to illustrate the prob-
lems involved in nanostructures. But this plan proved to
be more difficult than expected: although there exists
an extended literature on tunneling times (see Landauer
an Martin [11] and Hauge and Støvneng [4] and refer-
ences therein), quantum-mechanical treatments mostly

deal with propagating wavepackets in a more or less gen-
eral way and they do not concentrate on tunneling times
in nanostructures. As far as we know, there is not yet
a proper treatment about tunneling times in very small
nanostructures with single, localized electrons, where the
radius of ”localization” is in the same order of magnitude
as the length of the barrier L. On the other hand, materi-
als research and rapid systems development with nanos-
tructures, particularly for microelectronic (ME) purposes
(see Simon and Schön [18]), are claiming for an under-
standing of time constants or operation times [19] and
the tunneling times involved.

Thus it proved to be necessary not simply to present
the existing models and theories on tunneling time but
to review them with respect to these necessities together
with possible alternatives and to estimate future devel-
opments. In this context some original works will be
analyzed from this point of view. We will be particu-
larly concern with the closed analytical treatment based
on Green’s function formalism. With respect to ME, the
very short recharging times for the most promising class
of chemically size tailored nanoclusters will be included
into the time discussion including possible consequences
with superluminal velocities.

In this Introduction we will first recall some results
about tunneling including consequences of ”superluminal
” speed. After reporting on SE–tunneling in nanostruc-
tures we are explaining usual terms related to tunneling
times and the problem of defining velocities. Then we
deal with the wavepacket approach and its limits. An
introductory section about phase time and superluminal
velocity in periodic nanostructures will be followed by
remarks to time in Heisenberg’s uncertainty relation.

In the main part of the paper we study the Larmor
clock approach to tunneling time, based on measuring
the spin rotation of an electron under a weak magnetic
field acting on the region of interest. In section 3, we de-
velop a Green’s function formalism for the traversal and
reflection times, based on the previous approach. We
review the rest of the existing major approaches to the
time problem in section 4. In section 5, the dwell time,
which corresponds to the amount of time that a particle
spend in a region independently of whether later is trans-
mitted or reflected, is analyzed. Section 6 is devoted to
the study of recharging time in nanostructures. In sec-
tion 7, we present numerical results about the traversal
time in rectangular barriers, periodic systems and reso-
nant tunneling. We finally extract some conclusions and
present open questions. We end with three technical ap-
pendices about Green’s functions in layered systems, the
corresponding transmission coefficients and the integrals
of the Green’s functions.
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A Historical background on tunneling time

As mentioned above, tunneling refers to the classically
impossible process of a particle or wave to penetrate an
energy barrier when its energy is smaller than the max-
imum of the potential of the barrier. The main magni-
tudes involved in the problem are the height V0 and the
length L of the potential barrier. If they are large the
probability to penetrate the barrier is very small and we
say that it is an opaque barrier (for ME purposes). Ex-
amples of tunneling processes are α–decay, transmission
of electromagnetic waves in undersized waveguides and
tunneling of electrons. A quantum particle usually is said
to have an intrinsic ”wave nature”, often paraphrased
by ”wave functions” or ”wavepackets”. The probabil-
ity to penetrate a barrier, which is quantified through
the transmission coefficient (probability) T , strongly de-
pends on the nature of the exponential decay of the wave
function under the barrier.

For many tunnel effects, the tunneling time is not of
great practical interest, as for example in the case of ra-
dioactive decay. Likewise –until recently the tunneling
of electromagnetic waves was not of great importance
for ME. On the other hand, tunneling of electrons has
been of utmost importance for all fast effects in ME. The
first device used as a fast switch was the semiconductor
tunnel-diode which was commercially introduced in the
late fifties [20]. But again, only its total relaxation time
was of interest and not the pure tunneling time through
the bounding barrier.

Until relatively recently, little attention was paid
to Hartman’s theoretical work on tunneling time of
wavepackets in the sixties [21]. His main striking result
was that under certain circumstances (opaque barrier)
the tunneling time is independent of L and the traversal
time can be less than the time that would be required
to travel a distance equal to L in vacuum. Similar re-
sults were found by Rybachenko [22] for electrons in a
rectangular barrier. Although these were excellent pi-
oneer works, 30 years ago time was not ripe for a fur-
ther evaluation with respect to practical consequences in
ME or even to philosophical ones. Additionally, many
physicists hesitated to deal with Hartman’s results since
a very fast tunneling, or a zero tunneling time holds a
serious consequence: the tunneling velocity or the aver-
age velocity may become higher than the light velocity
c. Thus superluminal speed can be expected [23, 24] or
measured in some cases like in experiments where electro-
magnetic waves pass through a barrier [25, 26, 27, 28, 29]
or through an optical gap [9, 10, 16]. But superluminal
speed goes beyond the limits of causality given by Ein-
stein’s relativity theory with its principle of constant of
light velocity which in vacuum defines the simultaneity
of time[118].

So far, the knowledge of different clocks in Macrocosm
had no really important practical consequences on every
day life. However superluminal tunneling speed affects

causality in Microcosmos and the consequences are still
unknown. In Microcosmos the possibility of quanta prop-
agating with superluminal speed may have the following
consequences:

• causality may be broken and, in theory, this makes
more difficult Einstein’s vision of a “unifying field
theory”, which even was deterministic.

• there are many philosophical and theoretical impli-
cations. In practice, we must analyze whether a
signal transmitted by a superluminal microscopic
channel, e.g., a nanostructure, still makes macro-
scopic sense.

• for nanoelectronics this problem will become a real
one when dealing with single particles like electrons
with, say, one de Broglie wavelength.

B Tunneling in nanostructures

Since SE tunneling processes could be evaluated in
many nanostructures [31, 32, 33, 34], it provided a strong
motive for advancing nanofabrication technologies and
research on tunneling, which become important even at
room temperature, since the operating temperature of
single electron devices is directly related to the geometri-
cal size of the electron localization. In SE the discreteness
of the electric charge becomes essential and a quantum
mechanical tunneling of electrons in a system of rather
opaque junctions can be much affected by Coulomb inter-
actions. For ME purposes the electron interactions, the
barrier height and shape and thus the tunneling proba-
bility can be varied at will by externally applied voltages
or by injected charges.

Many attempts have been made to advance lithogra-
phy technology in the sub-10 nm range. But at present,
the progress guided by the miniaturization of conven-
tional electronic circuits has come to a standstill at the
100 nm range and fails to fully satisfy the requirements
of SE [35]. Instead, quantum dots fabricated by physi-
cal or chemical methods are favored at present, mainly
in hybrid-elements where sub-10 nm objects, chains or
layers can be captured in gaps or grooves on the sur-
face of conducting and non-conducting wafers, formed
by the combination of electron beam lithography with
the shadow evaporation or by spin coating [36, 37].

The possible electronic applications of chemically syn-
thesized metal and/or semiconductor clusters in the sub-
10 nm range surrounded by a protecting shell of organic
ligands has been first discussed by Schön and Simon [33].
These ligand stabilized microclusters (e.g.Au55 with a
diameter D ≈ 2 nm, see fig.6b) can operate as quan-
tum dots in so called building blocks for devices up to
room temperatures. After their introduction, research on
chemically size tailored nanostructures took a fast world-
wide evolution (see Simon and Schön [18]) recently lead-
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ing to the development of a single electron transistor us-
ing a molecularly linked gold colloidal particle chain [38].
In this technology the organic ligand molecules together
with suitable spacer molecules [39] act as a chemically
size tailored electron tunneling barrier and the cluster
core as an electron localization site. Besides, there are at-
tracting ideas how to exploit principles of SE for making
logic and memory cells which in perspective could lead
to assembling the computer ”working ”on single electrons
[40].

With the above nanostructures, tailored chemically to
our liking, ultrashort recharging times down to 10−15 sec
are within reach (see 6.2.1). With all of these struc-
tures the problem of ultrashort tunneling times cannot
be avoided any longer since operation times involve sub-
barrier tunneling and the wave nature of the electrons
becomes an important property.

C Tunneling times and velocities

Usually in QM we can only measure quantities for
which we have introduced a Hermitian operator, e.g.,
energy E, momentum p, coordinate y and so on. For
these quantities, expectation values can be calculated
and checked experimentally. However, time appears in
the standard quantum mechanical approach only as a
parameter and therefore its expectation value is not de-
fined. Since the beginning of QM, people has been aware
of the conceptual problem of how to introduce a time
operator with an appropriate classical analog, and there
have been different theoretical approaches to find a con-
sistent description of this problem [4, 11, 41].

Moreover, according to QM a particle under a barrier,
with energy E smaller then V0, can only be observed with
a strong inelastic influence. If we fix its coordinate with
an accuracy of ∆y smaller than the length of the bar-
rier L, it necessarily results in a variation of momentum,
caused by the measurement, and correspondingly in a
change of the kinetic energy of the particle. This change
in energy must be greater than the energy difference be-
tween the barrier height V0 and the energy of the particle
E [42]. If such a measurement would be carried out by
a light quanta then we would have h̄ω ≥ V0 − E. The
latter result demonstrates impressively that it is practi-
cally impossible to measure the propagation time from
one coordinate (position) to the next under a barrier.
This means that in practice one must try to observe the
particle outside the barrier, say left or right of the re-
gion of interest. For short wavepackets, where the length
of the wavepacket approaches the barrier length L this
means ”far” left and ”far” right (see 7.2).

One can associate the traversal time with the time
during which a transmitted particle interacts with the
region of interest, as measured by some physical clock
which can detect the particle’s presence after leaving the
region. For electrons, this approach can utilize the Lar-

mor precession frequency of the spin produced by a weak
magnetic field hypothetically acting within the barrier
region [22, 43, 44, 45]. Similar procedures has been de-
veloped for electromagnetic waves in Ref. [46], where was
proposed a clock based on the Faraday effect to measure
their interaction time in a slab. Another approach is to
calculate the traversal time of a particle through a barrier
by following the behavior of a wavepacket and determine
the delay due to the structure of the region. In this ap-
proach one has to be careful with the interpretation of
the results, since, for example, an emerging peak is not
necessarily related to the incident peak in a causative
way [47]. For more discussions on this problem see e.g.
Ref. [11] and references therein. Martin and Landauer
[48] studied the problem of the traversal time of clas-
sical evanescent electromagnetic waves by following the
behavior of a wavepacket in a waveguide, and Ruiz et al.
[15, 49] analyzed their behavior in the optical gap of a
periodic structure.

The above preliminary considerations show that it is
difficult to write or talk with a well-defined meaning
about the concept of tunneling time and that it is still
an open question which definition of a delay time corre-
sponds to the tunneling time of a photon or an electron.
These difficulties have contributed to increase the num-
ber of terms related to “times” that have been introduced
in the specialized literature, with more or less the same
meaning. In what follows we review the terms we have
encountered in the literature and we try to clarify their
meaning and, sometimes subtle, differences. The first
8 terms are very similar and refer to the time it takes
a wave to cross a barrier. In this article their use will
slightly differ, depending on the theoretical and physical
context.

1. Phase Time. It emphasizes that it is obtained from
the phase of the transmission amplitude. It does
not correspond to a time related to the phase ve-
locity.

2. Delay Time. It focuses on the kinematic aspects
of wavepacket propagation, rather than on interac-
tions with the barrier.

3. Tunneling Time. It is the crossing time for ener-
gies below the barrier potential, i.e., for evanescent
waves.

4. Traversal Time. General expression of the crossing
time of a given region.

5. Transmission Time. The same as above.

6. Barrier Interaction Time. It emphasizes the fact
that tunneling also means interaction with the bar-
rier.

7. Sub–Barrier Tunneling Time. It reminds us the
fact that we must always make comparisons with
the time that a particle would need when propa-
gating above the barrier or in free space.
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8. Büttiker-Landauer Time. We will see that then
the tunneling time has two components, one τy de-
pending of the density of states and the other τz
related to the resistance. The Büttiker-Landauer
time refers to the square root of the sum of the
squares of both components. It also denotes that,
for the calculation of tunneling times, one needs
physical and mathematical models, like the above
explained clocks.

9. Dwell Time. It is widely accepted as the average
time spent by a particle in a given region of space.
It tells us how many electrons are ‘dwelling’ at the
same time under a barrier. It is important for ap-
plications in ME since the number of electrons in
SE is small.

10. Reflection Time. It plays the same role as the
traversal time, but for electrons reflected at the bar-
rier. It can be calculated analogously to the tun-
neling time by means of spin orientation with the
Larmor clock method, etc. Reflection times may
become an important quantity for applications in
nanoelectronics, since there we find an architecture
of arrangements of quantum wells for electron local-
ization by pairs, chains or layers of quantum dots
with tunneling barriers in between. If then, work-
ing electrons will be reflected from the barriers and
back into the quantum well, the reflection time be-
comes important for recharging.

11. Recharging Time. This and the next two times
must be discussed together, because in nanostruc-
tures all these three times –although being qualita-
tively different– may be of the same order of mag-
nitude, approximately 10−15 sec, and in practice it
is difficult to distinguish between them.

12. Ultrashort or Fast Tunneling Time.

13. Uncertainty Time. Looking for example at the
smallest possible switch built up of a pair of two
quantum dots by gold-clusters (see 6.2.3, fig.11)
with relatively low tunneling resistance in between,
the above, extremely fast ”Recharging Time” can
be determined. On the other hand, since within
this time interval one electron tunnels between the
two quantum dots, the concept of ”Ultrashort Tun-
neling Time” must be involved. Since ”Uncer-
tainty Time” denotes electron fluctuations within
the cluster core or between the two clusters when
the tunneling resistance amounts to the resistance
quantum, it must be included into the discussion.
The problem is that at present nobody can separate
these three times (e.g., as a sum) and it is an open
question which time scale is relevant for ultrashort
tunneling in nanostructures. Moreover, the smaller
the structure and the barrier region, the more in-
fluence present the boundary conditions. We will

FIG. 1: One–dimensional stationary problem with a gen-
eral barrier V (y). A plain wave incident from the left is
partly transmitted and partly reflected.

show that for low energies the time components are
mainly governed by boundary region terms (see also
fig.4)). But again one cannot separate or calcu-
late for a given nanostructure the boundary region
times.

The problem of defining velocities is equally compli-
cated as that of determining the time. One cannot use
just one definition for the velocity both inside and outside
the barrier at the same time. Usually, for a quantum par-
ticle when going from sub-barrier region to above-barrier
region one can do analytical continuation of the wave
function. But in the first case there is an exponential de-
cay of the wave function and in the second case we deal
with a free propagation of the electron and so a wave
function with oscillations. This analytical continuation
is not correct for the velocity under the barrier, because
one gets an imaginary velocity. So there is no definition
of velocity for sub–barrier regions and as a consequence,
in the limit of an opaque barrier or in the forbidden gap
of a periodic systems, it may be observed a ”superluminal
” speed.

D Wavepacket approach and limits

The simplest model which illustrates the tunneling
problem for a quantum particle is a plane wave incident
on a one–dimensional (1D) barrier (see fig.1). Part of
the plane wave is reflected and part is transmitted. The
above plane wave, which represents the electron in our
model, is by nature infinitively large in space. The dis-
cussion of whether wavepackets with an infinite exten-
sion model the wave function of single photons or elec-
trons and of whether they might be interpreted as sig-
nals is complicated [4, 11] and important for ME with
nanostructures. Therefore it is better to consider a finite
wavepacket and to look at its peak evolution in time (see
fig.2).

Thus the phase time is the time which elapses between
the peak of the wavepacket entering the barrier and leav-
ing it and can be defined as the energy derivative of the
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FIG. 2: a) The initial wavepacket incides from the left
onto the barrier. b) Transmitted and reflected wavepack-
ets are moving away from the barrier in opposite direc-
tions.

phase:

τϕ = h̄
dϕ

dE
. (1)

In some cases this time can be easily calculated but as
was mentioned before it will lead us to Hartman’s effect.
We will see (section 2) that, in general, more than one
tunneling time are involved in the problem: τy, τz and
the so–called Büttiker–Landauer τBL =

√
(τy)2 + (τz)2.

Unfortunately this time is not additive in the sense, that
when dividing the length of the barrier L(y) arbitrarily
into different parts, the total τBL tunneling time is not
the sum of the individual tunneling times.

To illustrate consequences from the above wavepacket
model let us consider a sharply peaked Gaussian
wavepacket in space which starts to incide very far from
the barrier to exclude any interaction. A wavepacket
is an overlap of many plane waves with different wave
numbers k. Hence, one may imagine the wavepacket as
something like a group of electrons with different ener-
gies and velocities. The propagation will be dispersive
and as a consequence the high-energy components of the
packet will reach the barrier first. Due to the fact that
higher energies can be transmitted more effectively than
the low-energy components, the peak of the transmitted
packet can leave the barrier long before the peak of the
incident packet has arrived [50].

But what is really surprising is that even for the sub-
barrier tunneling, i.e., when the wavepacket contains no
energy components with energies above the rectangular
barrier of height V0, the transmitted packet will have a
higher mean velocity than the free space propagation ve-
locity. Numerical simulations show that one obtains very
short tunneling times when the spread of the Gaussian
wavepacket is larger than the barrier width L. Within

these restrictions even the simple rectangular barrier is
an “electron accelerator”. This is a manifestation of the
before mentioned Hartman effect (see section 2) which
was treated by Rybachenko [22] for spin particles with
analogous results. As we will show (section 2), the tun-
neling time component τy is independent of L and can
be less than the time that would be required for a free
particle to travel a distance equal to the barrier thickness
L.

As a matter of principle, in ME for high information
data rate, the spread of the Gaussian wavepacket must
be small. Tunneling time(s) then will depend to a higher
degree on the size of the incident wavepacket and the
shape of the barrier: tunneling will become more sensi-
tive to boundary effects at the barrier. For this reason
we include a section about short wavepackets (see 7.2).

For the future SE logics in nanostructures, ”pure ”
quantum mechanical properties of monochromatic sin-
gle electrons with an energy less than 1 eV will be pre-
dominant. For such particles the de Broglie wavelength
λB = h̄/p will be in the same order of magnitude as the
length of the barrier. At the same time, this wavelength
will be comparable to the radius of localization (e.g. for
electrons confined in the core of ligand stabilized micro-
clusters) in switches or mass memories (stores). Physi-
cally speaking this means that the picture of a dispersive
wavepacket is now failing. As far as we know, fast tunnel-
ing for this case has not been treated theoretically until
now.

E Phase time and superluminal velocity in periodic
nanostructures

In ME the simultaneous transmission of electrons and
of microwavepackets of selected optical signals between
integrated microchips on wafers are of great importance
and today much attention is paid to optoelectronics.
Since on the way to future ultimate miniaturization, the
present generation of devices hopefully will be replaced
by nanostructured systems.

While at the end of the preceding section we sketched
the problems with localized electrons for the future SE
logics in nanostructures, in the present section we first
pay attention to microwaves in undersized waveguide
barrier-systems and then to photons propagating in 1D
periodic and quasiperiodic Fibonacci and Thue–Morse
systems. We briefly report about the former first ”su-
perluminal ” experiment, but we are mainly interested
into the latter as there exists a considerable analogy be-
tween these periodic systems and e.g. chains of the above
chemical nanostructures. So there also must exist for-
bidden band gaps where electrons may propagate with
”superluminal ” speed. It must be noted that periodic
structures can be easily built up in crystals of ligand-
stabilized microclusters or likewise in chains or layers of
supported cluster arrangements on structured wafers or
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other substrates or even in channels or layer spaces of
porous chemical nanostructures (see Simon and Schön
[18]; see also fig.10). Some of these cluster arrangements
are discussed in section 6.

In order to avoid the problems involved with the dis-
persive nature of the electron’s wavepacket and the in-
vasive measuring process in QM, it was easier to look at
a gaussian wavepacket of classical electromagnetic waves
and to try to measure the delay time at a barrier. In-
deed, in most of the past tunneling experiments, instead
of electrons, electromagnetic waves were used [8, 25], to
exclude any electronic interaction with the tunneling bar-
rier. The analogy between the time independent forms of
the Schrödinger and the Maxwell equations confronts us
again with Hartman’s case: the possibility of achieving
extremely high tunneling velocities, even superluminal
velocities.

Thus looking back, it was not so surprising that the
actual discussion on ”superluminal ” speed started al-
most at the same time with the series of microwaves ex-
periments by transmission through systems consisting of
undersized waveguides [7, 8, 25, 26, 27, 28, 29]. Stein-
berg et al. [9] found ”superluminal” velocities for electro-
magnetic waves in the photonic band gap of multilayer
dielectric mirrors. Spielman et al. [10] observed that
the barrier traversal time of electromagnetic wavepacket
tends to become independent of the barrier thickness for
opaque barriers. This phenomena is closely related to
Hartman’s theoretical prediction for electron tunneling
[21]. The theoretical explanation of this phenomena can
be found in the framework of classical Maxwell equations
by following the time evolution of the wavepacket in time,
as it was mentioned above (see e.g. Refs.[24, 45, 49]). It
was clear that parts of the microwavepacket were able to
propagate with ”superluminal ” speed, proving the prac-
tical use of Hartman’s effect.

The propagation of electromagnetic waves in 1D
quasiperiodic Fibonacci and Thue–Morse systems was
studied in [14]. It was shown, that, under certain condi-
tions, again the phase time becomes independent of the
system size and so ”superluminal ” group velocities can
be obtained for very–narrow frequency band wavepack-
ets.

With respect to the introductory remarks about the
similarity between chains of multilayer dielectric systems
and chemical nanostructures, the GF approach also will
be used to study the tunneling time problem in func-
tional systems approaching the molecular and atomic
scales [51].

F Remarks to time in Heisenberg’s uncertainty
relation

An infinitely short tunneling time, corresponding to
the Hartman’s case or to a gap in a periodic structure,
would imply a huge energy uncertainty according to the

Heisenberg uncertainty relation applied to time and en-
ergy:

∆E∆t ≥ h̄

2
. (2)

There is a clear contradiction if in the tunneling process
one associates the energy uncertainty with the change in
energy. For elastic tunneling (T +R = 1), where the en-
ergy loss for each component of the electron’s wavepacket
is zero, one would then gets infinitively long times! So
what is the answer for the old question of “How much
time does tunneling take”? Is it anywhere between zero
and infinity or does it depend on the quantity one mea-
sures in an experiment?

As mentioned at the beginning (see 1.3), usually in
QM one can measure only quantities for which exists a
Hermitian operator like energy, momentum and so on.
For these, expectation values can be calculated and ex-
perimentally verified. However within conventional in-
terpretations of QM concepts, time appears only as a
parameter and thus an expectation value of time is not
defined [41]. It is interesting to note that Heisenberg did
not derive the previous uncertainty relation, but found
it from complementarity in optics, where ∆ν∆t ∼ 1 (see
Born [52]). From E = hν, he deduced the above for-
mulation, Eq. (2), of the uncertainty principle. Later
Schrödinger derived it for any orthogonal functions, e.g.,
∆p∆y ≥ h̄/2 . In general uncertainty relations can be
derived for operators (belonging to physical quantities)
which are not commutative. They follow from the ex-
istence of wave functions and average values defined by
them. Furthermore they are independent of the special
form of the Hamiltonian operator (see [53]). So, strictly
speaking, nothing about tunneling time can be said from
Heisenberg’s uncertainty relation, since one only can con-
sider relations like Eq.(2), but without time. Instead we
can discuss relation with average kinetic energy and the
square of locus. The latter results from a preliminary
stage which one gets for the average kinetic energy Ēkin

when deriving Heisenberg’s relation:

Ēkin ≥
h̄2

8m(∆y)2
(3)

One may use this equation to explain the stability of the
hydrogen atom, which follows the differential equation of
the harmonic oscillator.

Since in nanoelectronics single electrons mostly are
starting out of quantum wells, e.g. when they are lo-
calized in microclusters, similar explanations as for the
hydrogen atom may become important as well for the
pure tunneling problem and for the tunneling of elec-
trons from (out of) clusters. The only difference with
respect to an atom is that now the electrons are not lo-
cated in atomic orbitals but in cluster orbitals [33], and
we have now the problem of harmonic oscillators without
a central force.
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We will shortly sketch the line of thought: the greater
the average kinetic energy, the smaller the average square
of variation ∆y, which refers to the scope of motion of the
electron. If D is the diameter of the nanoparticle (smaller
than 2 nm for Au55-clusters) then ∆y is in the same
order of magnitude and so Ēkin ≈ D−2 and the average
potential energy Ēpot ≈ D−1. For small D the kinetic
energy outweighs the potential energy, thus resulting in
a “repulsion” from potential force: the confinement e.g.
in a microcluster core will loosen, the electron knocks
at the walls of the quantum well which may represent
a tunnel barrier to a neighboring cluster (see fig.12 of
the two cluster switch). In other words, the nearer an
electron approaches the barrier, the higher the kinetic
energy and thus the greater the chance to pass.

II. LARMOR CLOCK APPROACH

In 1967, Baz’ [43, 44] proposed the use of the Larmor
precession as a clock ticking off the time spent by a spin
1/2 particle inside a sphere of radius r = a. His idea
was to consider the effect of a weak homogeneous mag-
netic field B on an incident beam of particles. Following
the idea of Baz’ let us suppose that inside the sphere
r = a there is a weak homogeneous magnetic field B di-
rected along the z axis and which is zero for r > a. The
incoming particles have a mass m and a kinetic energy
E = h̄2k2/2m and they move along the y axis with their
spin polarized along the x axis (so that their magnetic
moments µ are aligned along the x axis). As long as a
particle stay outside the sphere, there are no forces act-
ing on the magnetic moment and its direction remains
unchanged. However, as soon as the particle enters the
sphere, where a magnetic field is present, its magnetic
moment will start precessing about the field vector with
the well-known Larmor frequency

ωL = 2µB/h̄. (4)

The precession will go on as long as the particle remains
inside the sphere. The polarization of the transmitted
(and reflected) particles is compared with the polariza-
tion of the incident particles. The angle θ⊥ in the plane
xy, perpendicular to the magnetic field, between the ini-
tial and final polarizations is assumed to be given, in the
lowest order in the field, by the Larmor frequency ωL

multiplied by the time τy spent by the particle in the
sphere

θ⊥ = ϕLτy. (5)

The change in polarization thus constitutes a Larmor
clock to measure the interaction time of the particles with
the region of interest.

Rybachenko [22], following the method of Baz’, con-
sidered the simpler problem of the interaction time of
particles with a one-dimensional (1D) rectangular bar-
rier of height V0 and width L, for which everything can

be calculated analytically. For energies smaller than the
height of the barrier, E < V0, and for the important case
of an opaque barrier, where there is a strong exponential
decay of the wave function, Rybachenko found for the
expectation value of the spin components of transmitted
particles, to lowest order in the field B, the following
result:

〈Sx〉 ∼=
h̄

2
, (6)

〈Sy〉 ∼= −
h̄

2
ωLτy (7)

where τy is a characteristic interaction time given by

τy =
h̄k

V0ξ
, (8)

and ξ is the inverse decay length in the rectangular bar-
rier

ξ = (k2
0 − k2)1/2 (9)

with k0 = (2mV0)1/2/h̄. Here we have assumed that the
direction of the field and of propagation of the particles
are the same as defined at the beginning of the section.
Rybachenko thought that the spin, in first order in the
field, remains in the xy plane and so 〈Sz〉 = 0.

Note that the characteristic time τy is independent of
the barrier thickness L. Instead of being proportional to
the length L is proportional to the decay length. For an
opaque barrier this decay length can become very short
and so τy can be very small, in fact, smaller than the
time that would be required for the incident particle to
travel a distance L in the absence of the barrier. A similar
result was found by Hartman [21] analyzing the tunneling
of a wavepacket through a rectangular potential barrier,
which is known as Hartman’s effect.

Hagmann [54] also arrived to the previous result, Eq.
(8), by a curious argument related to the uncertainty
principle. He assumed that the particle cross the barrier
by borrowing certain energy ∆E during a time interval τ .
Eq. (8) precisely corresponds to the time that minimizes
the product τ∆E.

In the method proposed by Baz’ [43, 44], and in the
one wort out by Rybachenko [22], the change in energy
of the particle, due to the interaction −µB, is assumed
negligible for a small magnetic field B and there is no
induced spin component parallel to the field. However,
as we will see, the particles also acquire a spin component
parallel to the field, even to first order in the field, due to
the fact that particles with spin parallel to the field have
a higher transmission probability than particles with spin
antiparallel to the field.

A Büttiker analysis

Büttiker [45] presented a detailed analysis of the Lar-
mor clock for the case of a 1D rectangular barrier. He
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concluded that the main effect of the magnetic field is to
tend to align the spin parallel to the magnetic field in or-
der to minimize its energy (Zeeman effect). It means that
a particle tunneling through a barrier in a magnetic field
does not only perform a Larmor precession, but also a
spin rotation produced by the Zeeman effect, which nec-
essarily has to be included in the formalism.

The idea behind this Zeeman rotation is the following.
A beam of particles polarized in the x direction can be
represented as a mixture of particles with their z compo-
nent equal to h̄/2 with probability 1/2 and equal to −h̄/2
with probability 1/2. Outside the barrier the particles
have a kinetic energy E independent of the spin. But in
the barrier the kinetic energy differs by the Zeeman con-
tribution ±h̄ωL/2, giving rise to a different exponential
decay of the wave function depending on its spin com-
ponent along the direction of the magnetic field. In the
limit of small fields we have

ξ± =
(
k2

0 − k2 ∓ mωL

h̄

)1/2 ∼= ξ ∓ mωL

2h̄ξ
(10)

where the sign indicates whether the z component of the
spin is parallel (+) or antiparallel (−) to the field. Since
ξ+ < ξ−, the particles with spin h̄/2 will penetrate the
barrier more easily than the particles with spin −h̄/2,
and so the transmitted particles will have a net z compo-
nent of the spin. This net component of the spin along
the direction of the field defines a second characteristic
time τz of the particle in the barrier.

Büttiker assumed that the relevant interaction time de-
pends on the times associated to both effects, the Larmor
precession and the Zeeman splitting, and is given by

τBL =
{

(τBL
y )2 + (τBL

z )2
}1/2

=
{θ2
⊥ + θ2

‖}1/2

ωL
. (11)

Here θ‖ is the angle through which the expectation value
of the spin in the transmitted beam is turned towards
the magnetic field direction because of the difference in
transmission probabilities for spin up (Sz = +h̄/2) and
spin down (Sz = −h̄/2) particles. The traversal time
defined by the previous equation is the so called Büttiker–
Landauer (BL) time for transmitted particles. Although
it was obtained in the context of tunneling, it is a general
definition which applies for the traversal time of a particle
or an electromagnetic wave through any given region of
space.

The mathematical analysis of the problem is based on
the standard expressions for the spin expectation values
〈Sx〉, 〈Sy〉 and 〈Sz〉 of a transmitted particle for arbitrary
field strength B and potential barrier V (y) confined to a
finite segment 0 < y < L [45]:

〈Sx〉 =
h̄

2

〈
Ψ̂ |σx| Ψ̂

〉
=
h̄

2
t+t
∗
− + t∗+t−

|t+|2 + |t−|2
(12)

〈Sy〉 =
h̄

2

〈
Ψ̂ |σy| Ψ̂

〉
= i

h̄

2
t+t
∗
− − t∗+t−

|t+|2 + |t−|2
(13)

〈Sz〉 =
h̄

2

〈
Ψ̂ |σz| Ψ̂

〉
=
h̄

2
|t+|2 − |t−|2

|t+|2 + |t−|2
(14)

where σx, σy, and σz are the Pauli spin matrices and the
spinor Ψ̂ corresponds to (see the next section):

Ψ̂ =
(
|t+|2 + |t−|2

)−1/2
(
t+
t−

)
. (15)

where

t± ≡
√
T±e

iϕ± (16)

is the transmission amplitude for particles with Sz =
±h̄/2, and T± and ϕ± are the corresponding transmis-
sion coefficient and phase, respectively. For each of the
spin components Büttiker defined a characteristic time
describing the interaction of the tunneling particle with
the barrier for an infinitesimal magnetic field:

lim
ωL→0

〈Sx〉 =
h̄

2

[
1−

ω2
L

(
τBL
x

)2
2

]
, (17)

lim
ωL→0

〈Sy〉 = − h̄

2
ωLτ

BL
y , (18)

lim
ωL→0

〈Sz〉 =
h̄

2
ωLτ

BL
z . (19)

Only two of these characteristic times are independent.
τBL
x , for example, can be obtained from τBL

y and τBL
z

through the expression τBL
x

2 = τBL
y

2 + τBL
z

2, which can
be deduced from the following relation between the spin
components:

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 =
h̄2

4
, (20)

Below, we calculate τBL
y and τBL

z for a rectangular bar-
rier, and in the next section we obtain their general ex-
pressions with the formalism of Green functions.

1 Rectangular barrier

For the special case of a 1D rectangular barrier, given
by V (y) = V0θ(y)θ(L − y), it is possible to find exact
analytical expressions for the time. For energies smaller
than the height of the barrier, E < V0, Büttiker [45]
obtained the following expression for the characteristic
time associated with the direction parallel to the field
τBL
z :

τBL
z = −m

h̄ξ

∂ lnT 1/2

∂ξ
(21)

=
mk2

0

h̄ξ2

(
ξ2 − k2

)
sinh2 (ξL) +

(
ξLk2

0/2
)

sinh (2ξL)

4k2ξ2 + k2
0 sinh2 (ξL)

.
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For the time τBL
y associated with the direction of propa-

gation, perpendicular to the field, he found:

τBL
y = −m

h̄ξ

∂ϕ

∂ξ
=
mk

h̄ξ

2ξL
(
ξ2 − k2

)
+ k2

0 sinh (2ξL)

4k2ξ2 + k2
0 sinh2 (ξL)

.

(22)
Here T and ϕ are, respectively, the transmission coeffi-
cient (probability) and the phase accumulated by trans-
mitted particles due to the rectangular barrier in the ab-
sence of the magnetic field. These magnitudes are given
by:

T =

{
1 +

(
k2 + ξ2

)2 sinh2 (ξL)
4k2ξ2

}−1

(23)

and

tanϕ =
k2 − ξ2

2ξk
tanh (ξL) . (24)

The total BL time, defined by Eq. (11), and which
corresponds to the characteristic time for the spin com-
ponent along the direction of the original polarization, is
then given by:

τBL =
m

h̄ξ

{(
∂ lnT 1/2

∂ξ

)2

+
(
∂ϕ

∂ξ

)2
}1/2

. (25)

This is the BL traversal time for a rectangular barrier.
It is not difficult to check that when the energy E of

an incident particle is well below the barrier height V0 of
an opaque rectangular barrier θ2

‖ � θ2
⊥ and Büttiker’s

result (25) is approximately equal to

τBL ' mL

h̄ξ
(26)

which is very different from the result of Rybachenko, Eq.
(8). It is, however, in exact agreement with the traversal
time obtained by Büttiker and Landauer [55] based on
the transition from adiabatic to sudden limits for a time–
modulated rectangular opaque barrier (see the subsection
on the Time-Modulated Barrier Approach).

III. FORMALISM IN TERMS OF GREEN’S
FUNCTIONS

Let us now derive a general expression for the
Büttiker-Landauer traversal (and reflection) time using
the Green’s Function (GF) method [56, 57]. We will
consider a 1D system with an arbitrary potential V (y)
confined to a finite segment 0 < y < L, as represented in
fig. 1. We will call this region “the barrier”, and we will
assume that scattering in it to be purely elastic. As in the
case of a rectangular barrier, we apply a weak magnetic
field B in the z direction and confined to the barrier:

B = Bθ(y)θ(L− y)ẑ (27)

FIG. 3: General potential barrier restricted to the inter-
val 0 < y < L with a magnetic field applied.

here θ(y) is the step function (later theta will refer to a
completely different function).

If we concentrate in the motion of an electron, with
spin S = 1/2, we have to consider its two wave functions
Ψ1 and Ψ2, corresponding to the two spin projections
of +1/2 and −1/2 along the z axis. The column wave
function Ψ̂(y) represents compactly both spin states:

Ψ̂(y) =
(

Ψ1

Ψ2

)
. (28)

Our electron is incident on the barrier from the left with
an energy E and with its spin polarized along the x di-
rection, so its wave function before entering the barrier
is given by:

Ψ̂(y) =
(

1
1

)
exp(iky). (29)

where k0 = (2mE)1/2/h̄. We are considering a plane
wave for the wave function, but our results are valid for
any wavepacket provided it is much longer than the size
of the barrier L.

In the presence of a magnetic field, Schrödinger equa-
tion takes the form:(

− h̄2

2m
d2

dy2
+ V (y)− E

)
Ψ̂(y) = −µB Ψ̂(y)

= −µB
(

1 0
0 −1

)
Ψ̂(y). (30)

The term on the right–hand side describes the interaction
−µB; since by assumption the vector B is directed along
the z–axis and the magnetic moment µ is of the form µ
= 2µS, where S is the particle spin vector. We have:

µB = 2µSzB =µσzB = µB

(
1 0
0 −1

)
, (31)

where σz is a Pauli matrix.
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The problem is solved by perturbation theory. In the
lowest order in B, the spinor Ψ̂(L) of the electron on the
right end of the barrier is given by [56]:

Ψ̂(L) = (32)(
1
1

)
ψ(L) +

eh̄B

2mc

(
1
−1

)∫ L

0

ψ(y)G(y, L) dy.

Here ψ(y) is the solution of the spatial part of the
Schrödinger equation in the absence of the magnetic field.
This spatial part of the wave function can be written in
terms of the GF of the system as:

ψ(y) = exp(iky)−
∫ L

0

G(y, y′)V (y′) exp(iky′) dy′, (33)

where G(y, y′) is the retarded GF, whose energy depen-
dence is not written explicitly. It should satisfy Dyson’s
equation:

G(y, y′) = G0(y, y′) +
∫ L

0

G0(y, y′′)V (y′′)G(y′′, y′) dy′′,

(34)
where G0(y, y′) = i

(
m/kh̄2

)
exp(ik|y − y′|) is the free-

electron GF. We can obtain all the relevant properties of
the problem in terms of the GF, solution of the previous
equation.

A Traversal Time

We will first concentrate on the calculation of the
traversal time. The expectation value of the component
of the spin along the direction of the magnetic field of
the transmitted electron is, up to second order in B:

〈Sz〉 =
h̄

2

〈
Ψ̂(L) | σz | Ψ̂(L)

〉
(35)

= −eh̄
2B

mc
Re

[
ψ∗(L)

∫ L

0

ψ(y)G(L, y) dy

]
We want to express the wave function ψ(y) appearing
inside the integral in the previous equation in terms of the
GF. In order to do so, we take into account the following
relationship between the wave function and the GF of a
1D system:

ψ(y) = − ih̄
2k

m
G(0, y). (36)

For one-dimensional systems also, we can further simplify
the problem by writing the general expression of the GF,
G(y, y′), in terms of its own expression at coinciding co-
ordinates y = y′ [58]:

G(y, y′) = (37)

[G(y, y)G(y′, y′)]1/2 exp

{
−
∫ max(y,y′)

min(y,y′)

m

h̄2

dy1

G(y1, y1)

}
=

[G(y, y)G(y′, y′)]1/2 exp [i |θ(y)− θ(y′)|] ,

where the phase factor θ(y), which implicitly depends on
energy, is defined as:

θ(y) =
∫ y

0

im

h̄2

dy′

G(y′, y′)
. (38)

In Appendix B we will use the relation (37) to calcu-
late the transmission coefficient of an electron through a
layered system.

Substituting expression (37) for the GF into Eq. (36)
and making use of the relation between the wave function
and the GF, Eq. (36), one finds the spin component along
the direction of the magnetic field:

〈Sz〉 =
eh̄2B

mc
|ψ(L)|2 Re

∫ L

0

G(y, y) dy, (39)

A similar procedure for the spin component along the y
and x directions leads to

〈Sy〉 = −eh̄
2B

mc
|ψ(L)|2 Im

∫ L

0

G(y, y) dy. (40)

and

〈Sx〉 =
h̄

2
|ψ(L)|2

1− 1
2

∣∣∣∣∣2eh̄Bmc

∫ L

0

G(y, y) dy

∣∣∣∣∣
2
 .

(41)
Büttiker–Landauer characteristic traversal times for

the z and y directions are proportional to the correspond-
ing spin components, Eqs. (19) and (18), and we finally
arrive at:

τBL
z = h̄Re

∫ L

0

G(y, y) dy,

τBL
y = h̄ Im

∫ L

0

G(y, y) dy, (42)

So, the Büttiker–Landauer traversal time, Eq. (11), is
given by:

τBL = h̄

∣∣∣∣∣
∫ L

0

G(y, y) dy

∣∣∣∣∣ . (43)

Instead of defining the modulus of τBL
z and τBL

z as the
central magnitude of the problem, we prefer to define a
complex traversal time τ as:

τ = τBL
z + iτBL

y = h̄

∫ L

0

G(y, y) dy. (44)

As we will see, other approaches also get a complex time.
All we are saying is that the two characteristic times of
the problem can be written in a compact form as the
real an imaginary parts of a single well-defined magni-
tude. Besides, these two time components may be sepa-
rately relevant to different experimental results, and do
not have to necessarily enter into the problem through
the modulus, Eq. (43). We will come back to this ques-
tion in the next section.
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FIG. 4: Traversal time for a rectangular barrier according
to expressions (47) and (80).

1 Expression in terms of transmission and reflection
amplitudes

The final result, Eq. (43) or Eq. (44), only depends
on the integral of the GF at coinciding coordinates. For
practical purposes and in order to compare this result
with those of other approaches, it is interesting to rewrite
it in terms of the transmission t and reflection r ampli-
tudes, or, alternatively, in terms of the transmission T
and reflection R = 1 − T probabilities and the phases ϕ
and ϕ± ϕa of the scattering-matrix elements sαβ

s(E) =
(
r t
t r′

)
(45)

=
(
−i
√
R exp(iϕ+ iϕa)

√
T exp(iϕ)√

T exp(iϕ) −i
√
R exp(iϕ− iϕa)

)
.(46)

This scattering matrix is assumed to be symmetric, which
holds in the absence of a magnetic field. ϕa is an extra
phase accumulated by reflected particles incident from
the left, with respect to transmitted particles. Reflected
particles incident from the right accumulate the opposite
phase. For a spatially symmetric barrier V ((L/2) + y) =
V ((L/2)− y) the phase asymmetry ϕa vanishes and one
has additionally r = r′.

The integral of the GF at coinciding coordinates can
be calculated quite generally in a finite region in terms
of t and r (Aronov et al. [58], Gasparian et al. [57]).
In appendix C we show how to perform this calculation.
Making use of the Eqs. (C4), (C7) and (C8), it is straight-
forward to show that the spatial integral, over the length
of the barrier, of the GF at coinciding coordinates can
be expressed in terms of partial derivatives with respect
to energy E:

τ = h̄

∫ L

0

G(y, y) dy = h̄

{
∂ ln t
∂E

+
1

4E
(r + r

′)
}

(47)

This is a general expression, independent of the model
considered.

For an arbitrary 1D potential profile, the two compo-
nents of the tunneling time τz and τy, can be written in
general as the real and imaginary parts of Eq. (47). Us-
ing the explicit expression of the matrix element of the
scattering matrix, Eq. (45), we find

τBL
z ≡ h̄Re

∫ L

0

G(y, y) dy (48)

= h̄

(
d lnT
2dE

+

√
R

2E
sin(ϕ) cos(ϕa)

)
, (49)

τBL
y ≡ h̄ Im

∫ L

0

G(y, y) dy (50)

= h̄

(
dϕ

dE
−
√
R

2E
cos(ϕ) cos(ϕa)

)
(51)

The term proportional to ∂ ln t/∂E in Eq. (47), or
equivalently the first term on the RHS of Eqs. (48) and
(50), mainly contains information about the region of the
barrier. Most of the information about the boundary is
provided by the reflection amplitudes r and r′, and is
on the order of the wavelength λ over the length of the
system L, i.e. 0(λ/L). Thus, it becomes important for
low energies and/or short systems. This term can be
neglected in the semiclassical WKB case and, of course,
when r (and so r′) is negligible, e.g., in the resonant
case, when the influence of the boundaries is negligible.
Certain approaches share this feature of only obtaining
the contribution to the time proportional to an energy
derivative, missing the terms proportional to the reflec-
tion amplitudes. We will discuss this point in more detail
later on. The same type of problem arises when calculat-
ing densities of states or partial densities of states [59].

2 Properties of the traversal time

The integral of the GF at coinciding coordinates, and
so the components of the traversal time, can be related to
the density of states and the resistance. It is well known
that the imaginary part of G(y, y) is proportional to the
local density of states at the corresponding energy. So,
τBL
y can also be written in terms of the average density of

states of the electron in the system per unit energy and
per unit length νL(E):

τBL
y = πh̄LνL(E). (52)

Landauer’s conductance for a 1D structure coupled to
two perfect leads G(E) is related to the transmission co-
efficient T by the expression [60]

G(E) =
2e2

h̄
T (53)
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Substituting this result in Eq. (48) we obtain the follow-
ing expression for the characteristic time τBL

z :

τBL
z = h̄

(
d lnG(E)

2dE
+

√
1− h̄/2e2G(E)

2E
sin(ϕ) cos(ϕa)

)
(54)

Thouless has shown [61] the existence of a dispersion
relation between the localization length and the density
of states. This relationship can be expressed (Gaspar-
ian et al., [62]) in the form of a linear dispersion rela-
tion between the real part, Re ln t, and the imaginary
part, Im ln t, of the transmission amplitude. The self–
averaging property of τBL

z and of τBL
y is therefore an im-

mediate consequence of self-averaging of the localization
length and of the density of states [62]. If one calcu-
lates the transmission time through a barrier by dividing
the barrier arbitrarily into two parts, the total tunneling
time τBL, given by Eq. (43), is not the sum of the indi-
vidual transmission times, as one could expect. On the
contrary, one can easily deduce from Eqs. (48) and (50)
that τz and τy are additive, in the sense that

τBL
z (0, L) = h̄Re

∫ L

0

G(y, y) dy (55)

= h̄Re

[∫ y

0

G(y, y) dy +
∫ L

y

G(y, y) dy

]
= τBL

z (0, y) + τBL
z (y, L)

τBL
y (0, L) = h̄ Im

∫ L

0

G(y, y) dy (56)

= h̄Im

[∫ y

0

G(y, y) dy +
∫ L

y

G(y, y) dy

]
= τBL

y (0, y) + τBL
y (y, L)

This property has also been pointed out by Leavens
and Aers [63] when they discussed the local version of
the Larmor clock with an arbitrary barrier potential and
a localized magnetic field inside the barrier. It is a con-
sequence of the fact that for an infinitesimal B the inter-
ference between the effects the of magnetic field in the
separate regions [0; y] and [y;L] is of higher order than
linear and does not contribute to the local times (Leavens
and Aers [63]). Mathematically speaking, we say that the
BL time, Eq. (43), adds as the absolute value of complex
additive numbers, and so it is not additive.

B Reflection Time

For reflected particles we can proceed in the same way
as for transmitted particles. The change in orientation
of the spin of reflected waves and so the reflection time
τR from an arbitrary 1D barrier can be calculated in
the same way as we have done for transmitted waves.
We will use the subindex R to indicate that the magni-
tude corresponds to reflection, and we understand that

similar magnitudes related to transmission will have no
subindex. Proceeding as above, we find for the expecta-
tion values of the spin components of the reflected wave:

〈Sz〉R =
h̄

2

〈(
Ψ̂(0)− 1

)
| σz |

(
Ψ̂(0)− 1

)〉
(57)

=
eh̄2B

mc
|ψ∗(0)− 1 |2 Re

∫ L

0

ψ(y)G(0, y) dy

〈Sy〉R = −eh̄
2B

mc
|ψ∗(0)− 1 |2 Im

∫ L

0

ψ(y)G(0, y) dy

(58)
and

〈Sx〉R = (59)

h̄

2
|ψ∗(0)− 1|2

1− 1
2

∣∣∣∣∣2eh̄Bmc

∫ L

0

ψ(y)G(0, y) dy

∣∣∣∣∣
2


Following Büttiker [45] we can again define three new
characteristic times, τBL

z,R, τBL
y,R and τBL

x,R, each of them
associated with a component of the spin through the ex-
pressions

lim
ωL→0

〈Sz〉R =
h̄

2
ωLτ

BL
z,R, (60)

lim
ωL→0

〈Sy〉R = − h̄

2
ωLτ

BL
y,R, (61)

lim
ωL→0

〈Sx〉R =
h̄

2

[
1−

ω2
L

(
τBL
x,R

)2
2

]
(62)

Only two of these times are independent. Invoking Eqs.
(57–59) and the relationship (36) between the wave func-
tion and the GF of a one-dimensional system we arrive
at:

τBL
y,R = h̄ Im

1 + r

r
e−i2θ(0)

∫ L

0

G(y, y)ei2θ(y) dy (63)

τBL
z,R = h̄Re

1 + r

r
e−i2θ(0)

∫ L

0

G(y, y)ei2θ(y) dy (64)

where θ(y) is the phase function given by Eq. (38). The
characteristic times τBL

y,R and τBL
z,R are the real and imag-

inary components, respectively, of a complex quantity.
This quantity is proportional to a new integral of the GF
at coinciding coordinates, which in this case involves the
phase function also.

The previous integral can be expressed in terms of the
transmission and reflection amplitudes. In appendix C
we show how to perform this integral exactly. Making
use of the integral relations (C5) and (C11) of the GF at
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coinciding coordinates we finally obtain for the reflection
times (Gasparian [64]):

τBL
y,R = h̄ Im

{
∂ ln r
∂E

− 1
4Er

(
1− r2 − t2

)}
(65)

and

τBL
z,R = h̄Re

{
∂ ln r
∂E

− 1
4Er

(
1− r2 − t2

)}
(66)

These equations are correct for any arbitrary 1D poten-
tial V (y). These two characteristic reflection times τBL

y,R

and τBL
z,R can be written as the complex reflection time

τR, in analogy with the complex traversal time τ , Eq.
(44):

τR = τBL
z,R + iτBL

y,R ≡ h̄
{
∂ ln r
∂E

− 1
4Er

(
1− r2 − t2

)}
(67)

This is again a general equation, independent of the
model used.

We note that for an arbitrary symmetric potential,
V ((L/2) + y) = V ((L/2) − y), the total phases accu-
mulated in a transmission and in a reflection event are
the same, as can be deduced from the form of the scatter-
ing matrix elements, Eq. (45)), and so the characteristic
times for transmission and reflection corresponding to the
direction of propagation are equal

τBL
y = τBL

y,R (68)

as it immediately follows from Eqs. (50) and (65) (see
also the review article by Hauge and Støvneng [4]). For
the special case of a rectangular barrier, Eq. (68) was
first found by Büttiker [45]. Comparison of the Eqs. (50)
and (65) shows that for an asymmetric barrier Eq. (68)
breaks down (Leavens and Aers [65]).

As a consequence of the conservation of angular mo-
mentum we can write the following identity between the
characteristic times for transmission and reflection corre-
sponding to the direction of the magnetic field (Büttiker
[45], Sokolovski and Baskin [66])

RτBL
z,R + TτBL

z = 0 (69)

which can be checked directly using Eqs. (48) and (66).

IV. OTHER APPROACHES

We now review other approaches to the problem of the
traversal and reflection times. We would like to show that
most results, obtained from very different points of view,
are almost compatible and coincide with Eq. (47) for the
traversal time and with Eq. (67) for the reflection time.
Often, these approaches only obtain the contributions
to the time proportional to the energy derivative of the
logarithm of the transmission amplitude.

We start with the oscillatory incident amplitude and
with the time-modulated barrier approaches. Then we
review the Feynman path-integral approach, where the
idea of a complex time arises more naturally. And we
finish with the kinetic approach, which is very convenient
to study finite size effects and so the standard errors in-
herent to the problem.

A Oscillatory incident amplitude

Let us now assume an incident wave of oscillatory am-
plitude interacting with a time–independent potential,
and let us study the shape distortion of the transmit-
ted wave by the barrier. This method was proposed by
Büttiker and Landauer [67, 68] and analyzed by Leav-
ens and Aers [65] and Martin and Landauer [69]. The
incident wave consists of two interfering plane waves:

Ψ(y, t) = exp
{
i

[
ky − Et

h̄

]}
(70)

+ exp
{
i

[
(k + ∆k)y − (E + ∆E)t

h̄

]}
= 2 exp

{
i

[
(k + ∆k/2)y − (E + ∆E/2)t

h̄

]}
cos
(

∆ky
2
− ∆Et

2h̄

)
The energy difference between the two plane waves char-
acterizes the oscillations in amplitude of the incident
wave. In the region to the right of the barrier we have
the sum of two transmitted plane waves which can be
written in the form

Ψ(y, t) = t(E)
{
i

[
ky − Et

h̄

]}
+ (71)

t(E + ∆E) exp
{
i

[
(k + ∆k)y − (E + ∆E)t

h̄

]}
.

It is clear that the shape distortion produced by the
barrier on the transmitted wave will strongly depend on
∆E. If ∆E is small, the incident wave is modulated very
slowly and in that case the transmitted wave (71) will re-
produce the incident wave (70), in the sense that the de-
structive and constructive interferences will occur at the
same time for both of them. As we increase ∆E, t(E)
and t(E + ∆E) will increasingly differ and the trans-
mitted wave (71) will no longer reproduce the incident
wave. We can assume that appreciable shape distortion
will take place when a characteristic time delay, or dis-
persion in transit time, becomes comparable or larger
than the modulation period [67, 68]. Thus we define a
new traversal time τ as h̄/∆E, where ∆E is the energy
difference which establishes the onset of significant dis-
tortion of the transmitted wave, i.e., the energy such that
∆E |dα(E)/dE| ≈ 1.
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The analysis of this approach based on the WKB ap-
proximation lead Büttiker and Landauer [67] to the fol-
lowing results. For E < V (y) the phase of the transmis-
sion amplitude is of secondary importance as compare
with the exponential decay of the modulus of t(E). We
can write the transmission amplitude in the form

tWKB(E) = exp
[
−
∫ y2

y1

ξ(y) dy
]

(72)

where ξ is the inverse decay length, given by Eq. (9),
and y1 and y2 are the classical turning points. From this
expression of the transmission amplitude, Büttiker and
Landauer obtained for the traversal time for tunneling

τWKB(E) =
m

h̄

[
−
∫ y2

y1

dy

ξ(y)

]
(73)

In the case of transmission over a barrier, when E >
V (y), the energy dependence of t(E) comes primarily
from the dependence of the phase (|t(E)| = 1), and then
we can assume that t(E) is of the form

tWKB(E) = exp

[
−i
∫ L

0

K(y)dy

]
(74)

with K(y) = iξ(y). For this case, in which the phase
dominates we have

τWKB(E) =
m

h̄

[∫ L

0

dy

K(y)

]
(75)

It is easy to check that for a rectangular barrier the
traversal time τWKB is equal to mL/h̄ξ for energies bel-
low the barrier height and equal to mL/h̄K for ener-
gies above the barrier. As it was shown by Martin and
Landauer [69] the general analysis of this two interfering
incident waves approach yields characteristic times that
depend on energy derivatives of the transmission coeffi-
cient

τ = h̄
∣∣t−1
E

∣∣ ∣∣∣∣dtEdE
∣∣∣∣ = h̄

{(
dϕ

dE

)2

+
(
d lnT
dE

)2
}1/2

.

(76)
As in Büttiker and Landauer approach to the Larmor
clock, the time is equal to the square root of the sum of
the squares of two characteristic times, one involving en-
ergy derivatives of the phase and the other energy deriva-
tives of the logarithm of the modulus of the transmission
amplitude. The same result for the traversal time is also
obtained in the modulated barrier approach (Martin and
Landauer [69]).

It is interesting to note that this oscillatory amplitude
approach without resort to the WKB approximation lead
Leavens and Aers [65] to complex times. Let us write the
transmission amplitude as:

t(E) = exp [iβ(E)] (77)

where β(E) is in general complex. For sufficiently small
∆E we may expand t(E + ∆E) to lowest order in ∆E

t(E + ∆E) ∼= exp
[
i

(
β(E) + ∆E

dβ(E)
dE

)]
= t(E) exp

[
i∆E

dβ(E)
dE

]
. (78)

This expression should be substituted in Eq. (71) for the
transmitted packet. For sufficiently small ∆E the differ-
ence in exponents of the two components of the trans-
mitted wave at y = L and t = ∆t is greater than that of
the two components of the incident wave at y = 0 and
t = 0 by an amount

i

[
∆kL− ∆E

h̄∆k

(
∆t− h̄dβ(E)

dE

)]
∼= i∆k

[
L− v(k)

(
∆t− h̄dβ(E)

dE

)]
(79)

with v(k) ≡ h̄−1dE/dk = h̄k/m being the group velocity.
In the absence of the potential barrier the traversal time
associated with the propagation of the wavepacket from
y = 0 to y = L is the value of ∆t for which L−v(k)∆t =
0, i.e., τ = L/v(k). Formally, in the presence of the
potential, Leavens and Aers [65] obtained from Eq. (79)
the complex barrier interaction “time”

τE =
L

v(k)
+ h̄

dβ(E)
dE

≡ −ih̄∂ ln t
∂E

(80)

This final answer for the time is just proportional to
∂ ln t/∂E, and so is correct for infinitely large systems
only (L � λ). The difference between this expression
for the traversal time and our general expression (47) is
the term proportional to the reflection amplitude, which
cannot be obtained with this type of approach.

We can deduce explicit expressions for all these times,
and so see clearly the difference between Eq. (80) and
Eq. (47), obtained with the GF formalism, for the spe-
cial case of a rectangular barrier. Let us associate the
real and imaginary components of this complex time,
Eq. (80), with the previous characteristic times for the
y and z components, and let us denote them as τEy and
τEz . The explicit expressions for the two components of
the traversal time τEy and τEz for this special case of a
constant potential can be written, using the well known
expressions (23) and (24), in the form [65]:

τEz = −h̄∂ lnT 1/2

∂E
(81)

=
mk4

0

2h̄ξ2k2

2(ξ2 − k2) sinh2(ξL) + k2ξL sinh(2ξL)
4k2ξ2 + k2

0 sinh2(ξL)

τEy = h̄
∂ϕ

∂E
=

m

h̄kξ

2ξLk2(ξ2 − k2) + k4
0 sinh(2ξL)

4k2ξ2 + k2
0 sinh2(ξL)

(82)
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FIG. 5: For an oscillating barrier besides a main trans-
mission and reflection component at the initial energy E
there are two lateral components at energies E ± h̄ω.

After an obvious change of notation, it is easy to check
that the times τEy and τEz are related to the exact results
τBL
y and τBL

z through:

τEy = τBL
y +

1
2E

Im r,

−τEz = τBL
z +

1
2E

Re r. (83)

where τBL
z and τBL

y are given by Eqs. (21) and (22).
Fig.5 compares τEz with τBL

z , and also τEy with τBL
y for

a rectangular barrier. It can be seen that even for an
opaque barrier (ξL � 1) the differences between these
times can be very significant. This is particularly so at
very small energy E where τBL

y goes to zero as E1/2,
while τEy diverges as E−1/2, and, at the same time, τBL

z

is approximately equal to 0, while τEz diverges as E−1.
It is clear that the oscillatory amplitude approach in

general does not give the same answer as the GF for-
malism, based on the Larmor clock approach. As the
difference between the corresponding tunneling times is
proportional to the amplitude of reflection, we concluded
that it arises from boundary effects [57].

B Time–Modulated Barrier

The time–modulated barrier approach, which again
can be used to measure the traversal time, was introduced
by Büttiker and Landauer [55] (see also Refs. [67, 70]).
Its basic idea is simple and can be explained as follows.

Let us add to the static barrier potential which we
discussed before a time dependent potential which is zero
everywhere except in the region of interest. So the 1D
potential can now be written in the form

V (y, t) = V (y) + V1 cos(ωt) (84)

where V1 is the amplitude of the small modulation added,
and ω its corresponding frequency. For the sake of sim-
plicity it is more convenient in this approach to consider
the barrier restricted to the region −L/2 < y < L/2.

Suppose that there is a characteristic time τ during
which the particle interacts with the barrier. If the period

of the modulation T = 2π/ω is long compared to the
time τ , then the particle sees an effectively static barrier
during its traversal. In the opposite extreme, i.e., for
slowly tunneling electrons, for which ωτ > 1, the barrier
oscillates many times during the period of traversal of the
electron. There is thus a crossover from a low–frequency
behavior to a high–frequency behavior, and we expect to
occur two distinct types of electron–barrier interactions,
depending on the value of ωτ as compared with unity.

In this section we will use a rectangular barrier exten-
sively, for illustrative purposes, but in principle all the
results can be generalized to an arbitrary potential bar-
rier by considering the adiabatic limit, ω → 0, of this
inelastic scattering process [71]. The Hamiltonian for
the time–modulated rectangular barrier in the scattering
region is

H = − h̄

2m
d2

dy2
+V0 +V1 cos(ωt) ≡ H0 +V1 cos(ωt) (85)

As it is well known from the time–dependent pertur-
bation theory (Landau and Lifshits [72]), incident par-
ticles with energy E, interacting with the perturbation
V1 cos(ωt), will emit or absorb modulation quanta h̄ω. In
first–order corrections to the time–independent case, this
means that inside the barrier, for |y| > L/2, the reflected
and transmitted waves, used to represent the tunneling
electrons, we will now have a main feature at the initial
energy E and also side bands at the energies E+ h̄ω and
E− h̄ω, as it is schematically represented in fig.5. Taking
V1 as a perturbation the two independent eigensolutions
of the corresponding time–dependent Schrödinger equa-
tion, within the rectangular barrier, can be written as
(Landau and Lifshits [72])

Ψbar(y, t;E) = ϕE(y) exp
{
− iEt

h

}
exp

{
− iV1

h̄ω
sinωt

}
.

(86)
Here ϕE = e±ξy is a wave function solution of the time–
independent problem H0ϕE = EϕE , with the simpler
Hamiltonian H0.

As it was shown by Büttiker and Landauer [55], the
next stage to find the solution for the oscillating rectan-
gular barrier is to match Eq. (86) with the correspond-
ing solutions at the same energy outside the scattering
region. For an electron of energy E impinging on the
scattering region, there will be reflected and transmitted
waves at the three energies E, E + h̄ω and E − h̄ω. So,
if the electron is coming from the left, its wave function
in the region to the left of the barrier, y < −L/2, will be
of the form

Ψinc+ref = (eik(y+L/2) + re−ik(y+L/2))e−iEt/h̄ +

r+e
−ik+(y+L/2)e−i(E+h̄ω)t/h̄ + (87)

r−e
−ik−(y+L/2)e−i(E−h̄ω)t/h̄

where k± are the wavevectors corresponding to the side
energy bands, defined as k± = (2m/h̄2)1/2(E ± h̄ω)1/2.
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Equation (87) represents an incident plane wave of unit
amplitude and three reflected waves, one of amplitude
r at the incident energy and two of amplitudes r± at
energies E ± h̄ω. To the right of the barrier (y > L/2),
we have for the transmitted wave

Ψtra = teik(y−L/2)e−iEt/h̄ + t+e
ik+(y−L/2)e−i(E+h̄ω)t/h̄ +

t−e
ik−(y−L/2)e−i(E−h̄ω)t/h̄ (88)

where t is the transmission amplitude at the energy of the
incident wave and t± are the transmission amplitudes of
the sidebands.

In the barrier, for an infinitesimal amplitude of the
time–dependent potential, V1 � h̄ω, we can expand (86)
to lowest order in V1 and represent the wave function in
the form:

Ψbar =
[
Beξy + Ce−ξy

]
e−iEt/h̄[

1 +
V1

2h̄ω
e−iωt − V1

2h̄ω
eiωt

]
+
[
B+e

ξ+y + C+e
−ξ+y

]
e−i(E+h̄ω)t/h̄ (89)

+
[
B−e

ξ−y + C−e
−ξ−y

]
e−i(E−h̄ω)t/h̄

ξ± are the inverse decay lengths for the sidebands, de-
fined as ξ± = (2m/h̄2)1/2 (V0 − E ∓ h̄ω)1/2. The coef-
ficients r, r±, B, B±, C, C±, t, and t± are determined
by matching the wave functions and their derivatives at
y = −L/2 and at y = L/2 in the usual manner. Note
that the matching conditions must hold for all times;
therefore, we have to match each time Fourier compo-
nent separately. r and t play the role of the static reflec-
tion and transmission amplitudes, respectively. Using
the standard matching relations it is straightforward to
show that for an almost completely reflecting barrier in
the opaque limit, ξL � 1, the coefficient t of the static
barrier is given by the standard expression (Landau and
Lifshits [72])

t =
4kξ
k2

0

e−ξL exp
{
−i arctan

[
ξ2 − k2

2kξ

]}
exp

{
i

[
y − kL− Et

h̄

]}
(90)

For the transmitted waves at the frequencies (E/h̄) ±
ω, Büttiker and Landauer found that their transmission
coefficients are

t± = ∓t V1

2h̄ω
(e±ωτ − 1)

exp
{
i

[
k± ∓

mωL

2h̄
− (E ± h̄ω)t

h̄

]}
. (91)

τ = mL/h̄ξ is the time it would take a particle with the
velocity v = h̄ξ/m to traverse the opaque rectangular
barrier. To obtain Eq. (91) it was additionally assumed
that h̄ω � E, so that the wavevectors of the sidebands
are approximately equal to k± ∼= k ± mω/h̄k, and also
that h̄ω � V0 − E, so that the decay lengths satisfy
ξ± = ξ ∓mω/h̄ξ.

Note that for opaque barriers the traversal time τBL

obtained in the Larmor clock approach, Eq. (26), co-
incides with the expression considered in the previous
equation, τ = mL/h̄ξ. The classical time that one would
obtain in the WKB limit at energies below the peak of
the barrier is given by the integral

τ =
∫ y2

y1

m

h̄ξ(y)
dy =

∫ y2

y1

{
m

2 (V0(y)− E)

}1/2

dy (92)

where y1 and y2 are the classical turning points. This
result also reduces to the value appearing in Eq. (91) for
the case of a rectangular barrier, when V0(y) is constant.

The probability of transmission at the sideband ener-
gies, determined from Eq. (91), is

T± = |t±|2 =
(
V1

2h̄ω

)2

(e±ωτ − 1)2T (93)

where T is the transmission coefficient for the static bar-
rier, given by Eq. (23). For small frequencies, so that
ωτ � 1, the probabilities of transmission for the upper
and lower sidebands obtained from Eq. (93) are the same
and equal to

T± =
(
V1τ

2h̄

)2

T. (94)

Remember that τ is the approximate expression for the
Büttiker-Landauer time for an opaque barrier, given by
Eq. (26).

At high frequencies, the upper sideband is exponen-
tially enhanced, while the lower sideband is exponentially
suppressed. So for an opaque barrier we do indeed have
a rather well defined crossover between tunneling at high
frequencies and tunneling at low frequencies, with the
characteristic time corresponding to the value given by
Eq. (26). This characteristic crossover time is the same
one appearing in the expression of the transmission coef-
ficients of the sidebands in the adiabatic limit.

1 General barrier

Let us briefly discuss the results of the general oscil-
lating barrier problem following the papers of Hauge and
Støvneng [4] and [71]. It was shown that in the adiabatic
limit, ω → 0, the expression for the transmission coeffi-
cients for the sidebands, Eq. (93), can be generalized in
the form:

T± = |t±|2 →

V1

∣∣∣τV ∣∣∣
2h̄

2 ∣∣t(E, V )
∣∣2 (95)

where |t|2 = T and we have written explicitly the E and
V dependence of the transmission amplitude t. V is the
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average value of the barrier potential in the scattering
region, i.e.

V ≡ 1
L

∫ L/2

−L/2
V (y)dy. (96)

τV is a complex quantity, with the dimensions of time,
defined as:

τV = ih̄
∂ ln t(E, V )

∂V
(97)

This quantity characterizes the crossover from the adia-
batic to the high frequency limits, and we define it as the
traversal time in the time–modulated barrier approach.

The corresponding definition of the reflection time ap-
peals to the adiabatic limit of the reflected sidebands.
Their reflection coefficients R± = |r±|2 tend in the adia-
batic limit to a expression that can be written as

|r±|2 →

V1

∣∣∣τVR ∣∣∣
2h̄

2 ∣∣r(E, V )
∣∣2 (98)

where |r|2 = R is the static reflection coefficient. Again,
we have explicitly written the E and V dependence of
the reflection amplitude r. τVR is a new complex quantity,
playing the role of a reflection time, defined as:

τVR = ih̄
∂ ln r(E, V )

∂V
(99)

As shown in Appendix C, Eqs. (97) and (99), cor-
responding to the traversal and reflection times in the
time–modulated approach, are equivalent to Eqs. (47)
and (67), obtained with the GF formalism for the Lar-
mor clock approach. The derivative with respect to the
average height of the potential can be written in terms of
partial derivatives with respect to energy E (Gasparian
et al. [57]). Thus the complex times τV and τVR are re-
lated to the real quantities τBL

z , τBL
y , τBL

y,R and τBL
z,R (see

Eqs.(48), (50), (65) and (66), respectively) and therefore
the BL traversal time can be formally written in the form:

τBL ≡ h̄
∣∣∣∣∂ ln t(E, V )

∂V

∣∣∣∣ . (100)

It is still not so clear how this time, which was ob-
tained from an analysis of the time–modulated barrier
and which is valid for an arbitrary shaped potential V (y),
whose average is V , can be justified as a traversal time
for a general barrier (Jauho and Jonson [73]). In any
case note that Eq. (100) for an opaque barrier leads us
to Eq. (26), which was obtained by Büttiker’s analysis of
the Larmor clock [45].

The BL reflection time can be defined as in Eq. (100),
but replacing t(E, V ) by r(E, V ).

C Complex Time

Although common sense dictates us that the tunnel-
ing time must be a real time and that there are no clocks
that measure a complex time, nevertheless the concept
of complex time in the theory of the traversal time prob-
lem of electrons aroused in many approaches (see Martin
[74], and references therein). The optical analog of the
Larmor clock for classical electromagnetic waves based
on Faraday–effect lead us also to a complex time (Gas-
parian et al [46]).

Pollak and Miller [75] and Pollak [76], while studying
the average tunneling time in classical chemical systems,
arrived to the concept of an imaginary time through the
flux-flux correlation function. This imaginary time was
equal to

τ = −ih̄ Im
∂ ln t
∂E

, (101)

where t is the complex transmission amplitude.
We saw, with the help of the GF formalism, that the

two characteristic times appearing in the Larmor clock
approach correspond to the real and imaginary compo-
nents of a single quantity, which we define as a complex
traversal (or reflection) time. In the subsection on the os-
cillatory incident amplitude, we also discussed that Leav-
ens and Aers [65] arrived to a complex barrier interaction
time, Eq. (80), by studying the shape distortion of the
transmitted wave by the barrier.

Nevertheless, it is in the Feynman path–integral ap-
proach where the concept of a complex time arises more
naturally. Sokolovski and Baskin [66], using this kine-
matic approach to quantum mechanics, showed that a
formal generalization of the classical time concept to the
traversal time lead to a complex quantity.

The starting point for the Feynman path–integral ap-
proach [77] to the traversal time problem is the classical
expression for the time that the particle spend in an ar-
bitrary region [0, L], which can be calculated through the
expression

τ cl
0L =

∫ τ

0

θ(y(t′))θ(L− y(t′))dt′, (102)

where θ is here the step function, equal to 1 when its
argument is positive and zero otherwise. The two θ func-
tions ensure that we only count the time while the par-
ticle is in the barrier region. To use Eq. (102) in the
quantum regime one has to generalize the expression for
the classical time by replacing the classical trajectory y(t)
in the previous expression by a Feynman path and aver-
age Eq. (102) over all possible paths that start at po-
sition 0 on the left side of the barrier and end at posi-
tion L at time t. Each path is weighted by the quantity
exp (iS{y}), where

S{y(t)} =
∫ t

0

(
m

2

(
dy

dt′

)2

− V (y(t′))

)
dt′ (103)
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is the action associated with the path y(t). As we are
weighting each trajectory with a complex factor, it is
natural to obtain a complex result for the average value.
This weighting assumption has generated some contro-
versies [4, 11, 78, 79]. Sokolovski and Baskin [66] arrived
at the following complex time:

τ0L = ih̄

∫ L

0

δ ln t
δV (y)

dy, (104)

where δ/δV (y) represents the functional derivative with
respect to the barrier potential.

This result, Eq. (104), is strictly equivalent to expres-
sion (C16) for the integrated density of states, and so
to our expression of the traversal time, as it is shown
in Appendix C. Thus we can emphasize that this coin-
cidence is quite natural, because in the tunneling time
problem we always deal with an open and finite system.
The functional derivative with respect to the potential
appearing in Eq. (104) is equivalent to a derivative with
respect to energy plus a correction term proportional to
the reflection coefficient (see Eq. (47)).

The modulus of this expression, Eq. (104), is the time
that Büttiker [45] obtained for the tunneling time in a
square potential barrier and related to the Larmor clock
times via:

Re τ0L = τy (105)

− Im τ0L = τz. (106)

Sokolovski and Connor [80] extended the Feynman
path–integral approach to include the treatment of
wavepackets. In their method the complex tunneling for-
mally appears as a transition element τ0L = 〈ΨF|τ cl|ΨI〉
between the initial wavepacket ΨI and the final one ΨF.
Nevertheless, we have to note that Feynman and Hibbs
[77] themselves do not associate any physical significance
to transition elements.

Fertig [81, 82] avoided the problem of having to use
wavepackets by considering restricted operators, for a fix
energy or for a fix time. In this way, he was able to eval-
uate exactly the amplitude distribution for the traver-
sal time for a rectangular barrier. He assumed that the
weight of each path is proportional to exp (iS{y}), where
the action S is given by Eq. (103). He obtained the fol-
lowing amplitude distribution for the traversal time [82]:

F (τ) =
1

2πt(E, V0)

∫ ∞
−∞

e−iωtt(E, V0 − ω) dω (107)

where t(E, V0) is the transmission amplitude at energy
E through a barrier of height V0. With this probability
amplitude distribution for the average traversal time for
the square potential barrier he arrives:

〈τ〉 = − dϕ

dV0
+
i

2
d lnT
dV0

which is the result of Sokolovski and Baskin [66].
The Wigner path distribution provides another ap-

proach to compute the traversal time. Jensen and Buot
[83] used it to calculate the time for stationary waves,
and Muga et el. [84] for wavepackets.

Bohm’s interpretation of non-relativistic QM provides
another kinematic path approach to evaluate the time. It
is diametrically opposite to the fundamental concepts of
“classical” QM according to the Kopenhagen interpreta-
tion which leads to Heisenber’s uncertainty relation. In
his interpretation an electron has a well defined position
and velocity at each point in time, as in classical me-
chanics. But on the other hand, the electron’s motion is
described by a wave function, which satisfies the time-
dependent Schrödinger equation containing the action S.
Solving simultaneously the Schrödinger equation and the
Hamilton-Jakobi equation one finds the motion of the
classical particle in a modified potential, which is not the
potential of the original problem. The modification of
the potential and the fact that the classical paths in the
Bohm approach do not cross are the starting points for
the numerical simulation. The calculations have shown
that the results of the Bohm trajectory approach and of
the other approaches, e.g., the Larmor clock, are qualita-
tively different, even in the simplest case of a rectangular
tunneling barrier. Generally Bohm’s approach leads to
larger traversal times than other approaches (see Leavens
[6, 85]).

D Wavepacket Approach

The most direct method to calculate the delay time of
a particle through a region is to follow the behavior of
a wavepacket and determine the delay due to the struc-
ture of the region. This wavepacket approach has been
criticized from different points of view, mainly due to
the lack of causal relationship between the peaks or the
centroids of the incident and transmitted wavepackets,
and also because of the difficulties of an experimental set
up to measure delay times. These critics are specially
relevant for electronic waves. For example, the disper-
sive character of electron propagation has been claimed
as responsible for the acceleration of wavepackets under
appropriate circumstances. High–energy components of
the packet travel faster and are transmitted more ef-
fectively than the other components, and so the trans-
mitted packet comes almost entirely from the front of
the incident packet. However, similar results were also
obtained for dispersiveness electromagnetic waves (Ruiz
et al. [15]). The fact that the transmitted wavepacket
comes from the beginning of the incident wavepacket is
mainly a consequence of interference effects.

At the same time, the results obtained from the
wavepacket approach are similar to the results obtained
with other more sophisticated approaches, and they
present the advantage that can be easily generalized to
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include finite size effects. In this section we review how
to obtain delay times from the transmission coefficients.

Let us assume a region of interest, which in principle
can be of any dimensionality, coupled to the outside by
two 1D leads with a constant potential that we will as-
sume equal to zero. We choose a coordinate system such
that the incident lead extents from −∞ to 0, and the
other lead from L to +∞.

A gaussian wavepacket of spatial width σ1 is incident
from the incoming lead on the region of interest. This
packet is characterized by a wave function of the form:

Ψ(y, t) =
∫ ∞
−∞

C exp
[
−(k − k0)2/2(∆k)2

]
exp [iky − iωt] dk (108)

where C is a normalization constant, k0 the central
wavenumber, ω = E/h̄, and ∆k = 1/

√
2σ1 is the spread

of the packet in the wavenumber domain. The time
evolution of this wavepacket is governed by Schrödinger
equation. Nevertheless, the results are directly applicable
to any other type of wave, including classical electromag-
netic waves.

Part of the packet considered is transmitted and con-
tinues travelling outward along the second lead. Its wave
function is given by:

Ψ(y, t) =
∫ ∞
−∞

C|t(k)|eiϕ(k) exp
[
−(k − k0)2/2(∆k)2

]
exp [iky − iωt] dk (109)

t(k) is the amplitude of transmission and ϕ(k) its
phase, which here we prefer to write as functions of the
wavenumber k. The functions t(k) and ϕ(k) contain all
the relevant information to calculate the delay time of
the electronic wave function due to the region of interest.

While the general solution of the problem has to be ob-
tained numerically, one can get close expressions for the
time in the two extreme cases of very long and very short
wavepackets, as compared with L. Very short packets
travel as classical particles and their traversal times are
given by the group velocity at the different regions con-
sidered, and taking into account possible multiple reflec-
tions. The delay time of very long wavepackets can be ob-
tained from series expansions along the central wavenum-
ber, what we will do next.

Let us assume that the wavepacket is so long that t(k),
ϕ(k) and ω(k) only change smoothly on the scale of ∆k.
Then, in evaluating |Ψ(y, t)|2, where Ψ(y, t) is given by
Eq. (109), we can expand t(k), ϕ(k) and ω(k) to second
order in k − k0.

We write the phase of the transmission amplitude as:

ϕ(k) = ϕ(k0) + τ1(ω − ω0) +
1
2
τ̃1(ω − ω0)2 (110)

where ω0 is the frequency corresponding to the central
wavenumber k0, τ1 is the first derivative of the phase τ1 =
dϕ(ω)/dω, and τ̃1 its second derivative τ̃1 = d2ϕ(ω)/dω2.

Analogously, we write the modulus of the transmission
amplitude as:

| log t(k)| = | log t(k0)|+τ2(ω−ω0)+
1
2
τ̃2(ω−ω0)2 (111)

where τ2 = d| log t(ω)|/dω, and τ̃2 = d2| log t(ω)|/dω2.
We can also expand the frequency ω in terms of k:

ω = ω0 + vg(k − k0) +
1
2
ag(k − k0)2 (112)

vg is the group velocity vg = dω/dk, and ag its deriva-
tive with respect to k, ag = d2ω/dk2. For electrons, the
dispersion relation is given by:

ω =
h̄k2

2m
, (113)

so the group velocity is equal to vg = h̄k/m, while the
group acceleration is ag = h̄/m. For photons, the group
velocity is equal to the speed of light c and there is no
acceleration, ag = 0.

If we keep terms up to second order in k − k0 we can
do analytically all the integrals appearing in the expres-
sion of the average value and the variance of y. After
some trivial, but lengthy calculations we obtain that the
average position 〈y〉 of the transmitted wavepackets as a
function of time is given by:

〈y〉 = (t− τ1)vg

[
1 +

τ2ag

b

]
−
τ2τ̃1v

3
g

b
(114)

where b is equal to:

b =
1

(∆k)2
− τ2ag − τ̃2v2

g (115)

In the absence of dispersion, ag = 0, the traversal time
is equal to τ1, plus a small correction involving the sec-
ond derivative of the transmission phase with respect to
ω. This is in basic agreement with the expressions of the
time obtained with other approaches, although we cannot
obtain in this way the finite size correction proportional
to the reflection amplitude. The dispersion introduces an
acceleration since the factor multiplying the group veloc-
ity increases. This acceleration is proportional to the
amount of dispersion, ag, and to the second component
of the traversal time τ2.

The variance of y of the wavepacket is equal to:

σ2 =
b

2
+

((τ1 − t)ag + τ̃1v
2
g)2

2b
(116)

V. DWELL TIME

Until now we have concentrated on the traversal
(transmission) and the reflection times, but there is also
another important characteristic time called the dwell
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time, about which there exists a vast literature (see, e.g.,
Landauer and Martin [11], Hauge an Støvnengd [4] and
references therein). This time was first introduced by
Büttiker [45], and is defined as the average number of
particles within the barrier region divided by the average
number entering (or leaving) the barrier per unit time.
It corresponds to the average time spent by a particle
within the barrier irrespectively of whether it is finally
reflected or transmitted.

The dwell time in a neighborhood of y is defined as the
ratio between the particle number in the interval [y, y +
dy] and the incoming current (Büttiker [45]):

dτ (D)(y) =
|ψ(y)|2

J
dy (117)

where ψ(y) is the steady–state scattering solution of the
time–independent Schrödinger equation, which outside
the barrier has the form

ψ(y) = eiky + re−iky, y < 0

ψ(y) = teiky, y > L (118)

Obviously, Eq. (117) describes a balance equation: in
the stationary case the injected current equals the decay
rate of the probability in [y, y+ dy]. The dwell time τ (D)

of a finite region within the context of a stationary–state
scattering problem is obtained via a spatial integration
of Eq. (117). So the dwell time τ (D) is given by (Büttiker
[45])

τ (D) ≡ m

h̄k

∫ L

0

|ψ(y) |2 dy, (119)

Here the integral extends over the barrier, and h̄k/m is
the incident flux.

Our aim is to calculate directly the dwell time, given
by Eq. (119), for the case of a general one–dimensional
asymmetric barrier for particles coming both from the
left and from the right and to express the final result
in terms of the scattering–matrix elements, given by Eq.
(45).

Let us consider again a particle moving along the y–
direction in the presence of an arbitrary potential barrier
V (y) in the interval [0, L]. In the interest of simplicity we
do not consider the most general situation in which the
potential energy for y > L differs from zero and so we
will assume that the potential is zero outside the barrier.
We evaluate Eq. (119) in three steps, following the proce-
dure of Ref. [86]. First, we incorporate the fact that the
wave function appearing in this equation is a solution of
Schrödinger equation. Second, we rewrite the wave func-
tions in terms of Green functions. And finally, we express
the Green functions in terms of the density of states and
the reflection coefficients.

First of all, we take explicitly into account that the
wave function appearing in Eq. (119) is a solution of the
Schrödinger equation in the way we show in appendix C.
Substituting Eq. (C10) for the integral over the barrier

of the modulus square of the wave function in Eq. (119)
we arrive at:

τ (D) = − h̄

4k

[
ψ∗2(y)

∂

∂E

(
ψ′(y)ψ(y)
|ψ(y)|2

)
(120)

+ ψ2(y)
∂

∂E

(
ψ∗′(y)ψ∗(y)
|ψ(y)|2

)]L
0

.

This expression is formally the same for particles incident
from the left or from the right, but we have to remember
that the corresponding wave functions will not be the
same. Garćıa–Calderón and Rubio [87] arrived at the
same result by a completely different method.

Our second step is to rewrite Eq. (120) in terms of the
retarded GFG(y, y′) of the system, as we have been doing
for the other times. Taking into account expressions (C7)
for the GF in terms of wave functions and (C8) for the
derivative of the GF we can write the first factor in the
RHS of Eq. (120), containing the partial derivative with
respect to the energy, as:

∂

∂E

(
ψ′(y)ψ(y)
|ψ(y)|2

)
=

∂

∂E

(
Ġ(y + 0, y)
G(y, y)

ψ(y)
ψ(y)∗

)
(121)

=
∂

∂E

(
−2m/h̄2 +G′(y, y)

2G(y, y)
e2iθ(y)

)
where θ(y) is the phase function previously defined, Eq.
(38), and which implicitly depends on energy. A simi-
lar expression is valid for the other factor in Eq. (120)
containing the partial derivative with respect to the en-
ergy. Thus, using the previous expression and Eq.(C11)
for the integral of the GF at coinciding coordinates, the
dwell time can be written in terms of the GF as:

τ (D) =
[
i
∂

∂E
θ(y)−G(y, y)

∂

∂E

(
G′(y, y)
G(y, y)

)]L
0

(122)

As it occurs for the wavefunstion, the GF G(y, y′) de-
pends on whether the particle arrives to the barrier from
the left or from the right.

This technique was already applied to obtain the
traversal time [57] and the dwell time [86] of an arbi-
trary barrier. After some cumbersome algebra, using
Eqs. (C12–C15) and (C17), we arrive at the following
result for the dwell time in terms of the transmission and
reflection amplitudes:

τ
(D)
− = h̄Im

{[
∂ ln t
∂E

+
1

4E
(r + r′)

]
(123)

+
1
2

[√
R
∂

∂E
ln
r

r′
+

1
2E

(r − r′)
]}

The subindex− indicates that the particle is coming from
the left. r and r′ are the reflection amplitudes from the
left and from the right, respectively, R is the modulus
square of these amplitudes R = |r|2 = |r′|2, and t is the
transmission amplitude, which is independent of the inci-
dent direction as can be deduced from the time–reversal
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and current conservation requirements [88]. When the
particle is coming from the right, the dwell time is given
by an expression similar to Eq. (123), but interchanging
r and r′. We will refer to this case with the subindex +.

Gasparian et al. [57] showed that the first term on the
RHS of equation (123) is proportional to the density of
states. Then, we finally arrive at the following expression
for the dwell time:

τ
(D)
± = πh̄Lν(E)± h̄

2
Im
[√

R
∂

∂E
ln
r

r′
+

1
2E

(r − r′)
]
,

(124)
For a symmetric potential we have that the reflection

coefficients from the right and from the left are equal, r =
r′, and we obtain τ

(D)
− = τ

(D)
+ = πh̄Lν(E), in agreement

with the result of Gasparian and Pollak [56].
For an asymmetric barrier, it is easy to check that

the contribution from the asymmetry is the opposite for
particles coming from the left and from the right. Then
we find that:

ν(E) =
1

2πh̄L

(
τ

(D)
− + τ

(D)
+

)
(125)

This result was obtained in a much wider context by
Iannaccone [89], which considered the relation between
the dwell time and the density of states for a three–
dimensional region Ω of arbitrary shape with an arbitrary
number of incoming channels. He arrived at:

νΩ(E) =
1

2πh̄

N∑
n=1

τ (D)
n (126)

where νΩ(E) is the density of states per unit volume,
and τ

(D)
n is the dwell time for particles coming from the

n-channel. This result shows that the density of states
in Ω is proportional to the sum of the dwell times in Ω
for all the incoming channels.

A controversial question concerning the dwell time
is to know whether it satisfies or not the relation (see
Sokolovski and Baskin [66], Leavens and Aers [63] and
Støvneng and Hauge [90]):

τ (D) = RτBL
y,R + TτBL

y . (127)

This result is trivial for classical particles, for which the
traversal time coincides with the y component of our
complex traversal time and for which there is no interfer-
ence between the reflected and the transmitted particles.
For the quantum coherent case, this result is not so clear.
We can prove this relation, which we believe that it must
hold because a particle incident on the barrier is either
transmitted or reflected. Reflection and transmission of
a particle are mutually exclusive events in the sense of
Feynman and Hibbs [77]; that is, a measurement can de-
termine, without interfering with the scattering event,
whether a particle has been transmitted or reflected.

Our results for the y component of the transmission
and reflection times, Eqs. (50) and (65), respectively, and

for the dwell time, Eq. (123), allow us to prove exactly
the previous relation between these times:

τ
(D)
− = TτBL

y +RτBL
y,R ≡ Im

{[
∂ ln t
∂E

+
1

4E
(r + r

′)
]

+ R

[
∂

∂E
ln
r

t
− 1

4Er
(
1 + rr′−t2

)]}
(128)

On the other hand, our results also prove that the relation
involving the full BL times

τ (D) = RτBL
R + TτBL, (129)

does not hold. This relation has been claimed very often
in the literature, and also has been strongly criticized by
other authors [11].

To close this section we briefly sketch a derivation of
the initial expression of the dwell time, Eq. (119), de-
duced by Büttiker. We will follow the papers by Hauge,
Falck, and Fjeldly [91] and by Leavens and Aers [92]. Let
us assume once more a one–dimensional region of interest
with a potential V (y) in an interval [0, L]. The quantum
mechanical probability for finding the particle on an ar-
bitrary fixed interval [0, L] at time t is (see, e.g., Landau
and Lifshits [72])

P (0, L; t) =
∫ L

0

|ψ(y, t)|2 dy (130)

Let us define the average time spent on [0, L] by the par-
ticles described by the wavepacket ψ(y, t) as

〈τ (D)(0, L)〉 =
∫ ∞

0

P (0, L; t)dt ≡
∫ ∞

0

dt

∫ L

0

|ψ(y, t) |2 dy

(131)
We can expand the wavepacket ψ(y, t) over the scattering
states, given by Eq. (118), as:

ψ(y; t) =
∫
dk

2π
ϕ(k)ψ(y; k)e−ih̄k

2t/2m (132)

where the coefficients ϕ(k) determine the initial form
of the wavepacket. Substituting this expression for the
wavepacket in Eq. (131) we have [92]

〈τ (D)(0, L)〉 =
∫ ∞
−∞

dk

2π
|ϕ(k)|2 m

h̄k

∫ L

0

|ψ(y) |2 dy

≡
∫ ∞
−∞

dk

2π
|ϕ(k)|2 τ (D) (133)

The last step proves that expression (119) for the dwell
time is well justified.

We derived Eq. (133) from Eq. (131) assuming that the
limits of integration over t extend from negative infinity
to positive infinity. This makes no difference because
when ψ(0; t) is (essentially) zero for y > 0. The integra-
tion over t gives us a delta–function and the subsequent
calculations can be performed readily. Thus 〈τ (D)(0, L)〉
is an average time spent in the barrier region, 0 ≤ y ≤ L,
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by a particle with wave function ψ(y; t), with a probabil-
ity dk/2π |ϕ(k)|2 of having a wavevector between k and
k+dk. Hence the Eq. (119) must be an exact expression
for the average time spent in the barrier region by an
incident particle of energy E regardless of whether it is
ultimately transmitted or reflected.

VI. RECHARGING TIMES IN LOW
DIMENSIONAL CLUSTER-ARRANGEMENTS

Apart from the fundamental questions involved in the
QM concept of time and concepts of tunneling times,
practical questions arise, with time related quantities as
current in mesoscopic structures. Such phenomena can
be observed in ME-devices working with SET. As already
disclosed in 1.2, at present physical and chemical sub-
10 nm nanostructures, e.g. ligand-stabilized clusters are
favored for SET-devices. Before dealing with time in
these ultimate structures, we have to recall some facts
about usual single charge tunneling [31]: SE deals with
small amounts of excess electrons on islands changing
their distribution over the islands in time in a desirable
way. In order to realize this the following two principal
conditions must be fulfilled:

First, the insulating barriers separating conducting is-
lands should be rather opaque. If the energy barrier is
high enough (say, 1 eV ) and 1 − 2 nm in length, it pro-
vides essential decay of the electron wave function out-
side the island and, as a result, only weak overlapping of
the wave functions of the neighbor islands occurs within
the inter-island space. If besides this the number of elec-
tronic states contributing to tunneling is small enough
then total exchange of electrons between the islands be-
comes negligibly small. This situation is often referred to
the case of small quantum fluctuations of charge. In spite
of relatively complex rigorous QM consideration, quan-
titatively this situation can be clearly formulated using
such a characteristic of the tunneling junction as its tun-
neling resistance RT . It should be much higher than the
so called resistance quantum Rq = h̄/e2 = 25.8 kΩ. Then
electrons in the island can be considered to be localized
and classical electrodynamics can be applied, although
their number is undergoing thermodynamic fluctuations
as every statistical variable.

Second, in order to minimize these fluctuations and
consequently to make the exchange of electrons control-
lable, the Coulomb energy associated with charging by
one extra electron should be essential with respect to
characteristic thermal energy kT . The Coulomb-, or elec-
trostatic energy Ec of a charged conductor depends on
its charge Q as well as on the size of the island and
the capacitance of its nearest electrical environment. As
long as the diameter of such an island is larger than
the screening length of electrons, geometry dependence
can be expressed solely by the resulting capacitance C
of the insulated region. Then the Coulomb-energy of

an extra charge Ec = e2/2C has to be >> kT . Thus
usual lithographic SET-circuits with capacitances be-
tween 10−15F − 10−16F must be cooled down far below
one Kelvin. SET at ambient temperature only can be
achieved with capacitances between 10−18F − 10−19F ,
typical for sub-10 nm microclusters (see 6.2).

If the above conditions are met, charge transport
through this structure can be controlled by external volt-
age and current: Transfer of single electrons can be re-
alized by means of QM tunneling if the probability of
such tunneling depends on current biasing and driving
voltages applied to the circuit.

A Transit time and recharging time in
SET-junctions

In ME there is general agreement about the notion
”transit time” which is independent of the mechanisms
via which conduction takes place [19]. If we consider a
region of a conductor in space with length y2 − y1 = L,
between one point left and the other right, with electrons
constantly being supplied from the left side and taken out
on the right hand side, then, the magnitude of the total
electron charge within this length is fixed by Q. Then
current jy can be defined by

jy =
dQ

dt
(134)

Herewith only the convenient assumption is made that
each electrons spend the same amount of time dt = ∆τ
in travelling from left to right, where the time τ is called
transit time.

In the present design of semiconductor devices and in-
tegrated circuits, transit times have been greatly reduced.
Performance and limitations of operation speed as well as
overall time constants of nanostructured switch elements
are depending on transit times.

As for SET-devices, a single tunnel junction with
length L and capacitance C ≈ L−1 and tunneling resis-
tance RT is the simplest system (fig. 6a). Then charging
effects will appear if a current source supplies this junc-
tion with a charge independently of tunneling events by
jy.

Starting outside Coulomb blockade region, time depen-
dant recharging of the junction occurs with

Q =
∫
jdt−QT

where the first term is the charge supplied by the source
and the second term is the charge transferred through
the barrier junction by tunneling which is regulated by
the tunneling rate. In this place we recall the tunneling
times which were discussed in chapters 1.3. and 2.2.1.
Note, that in the present section we have already in-
troduced transit time τ and furthermore we will discuss
SET–period τSET, then recharging time τR, uncertainty
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FIG. 6: a) Simplest system of a single
metal/insulator/metal tunnel junction with length
L. Charging effects will occur if a current source
supplies this junction by jy. b) Equivalent simplest
tunnel–junction with a ligand stabilzed cluster (see fig.9)
between the metal junction.

time τq and tunneling time τt, the latter are 3 types of
times which are of different origin.

Since in metallic tunnel junctions tunneling timeτt
with 10−15 sec is very short [55, 68], external recharging
of the junction in time correlated SET will be periodic
with the so called SET-tunneling frequency

νSET =
jy
e

(135)

Generally, the smaller the current, the more regular are
the SET-oscillations, but with an inherent noise compo-
nent due to the stochastic nature of the tunneling pro-
cess.

Note, that transit time τ (134) refers to the ”exter-
nal” system around the single tunnel junction, supplying
its current bias jy. The tunnel junction system itself is
characterized by ”recharging time”

τR = RTC (136)

Depending on the approach to recharging time, it may
be defined either

• as a ”decay time” of an excess charge which ap-
pears say on the right side of the barrier after a fast
tunneling step (with finite but ultrashort traversal
time in the order of 10−15 sec), forming a polaron-
like state together with the ”hole” it left on the left
side, or

• as a ”relaxation time” which the junction system
needs to return to equilibrium, ready for a new cy-
cle of external recharging. Thus recharging time
and much faster tunneling time add in SET sys-
tems. Furthermore, transit time τ produced by the
current bias system connected by jy with relation
(135) starting with Q = 0 at t = 0, adds to them
also. Note, that τSET = ν−1

SET defines (in oscillating
case) SET-period and thus a time depending on jy
(see fig. 7).

Typically, in nanostructured materials with the small-
est possible conventional chip architecture (”classic”
structuring techniques by shadow evaporation reveal a

FIG. 7: External recharging of a tunneling junction by a
current jy. Oscillations are governed by the SET period
τSET and the system will be ready for a new cycle after a
tunneling event with τt and recharging time τR. Transit
time τ is only valid for the regime outside of SET domain.

FIG. 8: a) The theory of SET assumes a clear separation
of time scales τt � τq � τR; b) For tunneling resistance
RT and small capacitances in the order of 10−19F with
ligand stabilized clusters, these three times may have the
same order of magnitude.

present day limit for SET-junctions of 30 nm x nm 30)
the single tunnel junction comes up to a tunneling resis-
tance RT ≈ 105 Ω and with L ≈ 1− 2 nm a capacitance
C ≥ 10−16 F is feasible. Thus recharging time with
τR ≈ 10−11 sec is still much larger than the tunneling
time τt which an electron spends under barrier. An inter-
mediate time scale is the ”uncertainty time” τq = RqC,
where Rq is the resistance quantum. The theory of SET
assumes a clear separation of time scales τt � τq � τR
(see fig. 8a). The first inequality states that the tunnel-
ing time is negligible and the second one states the classi-
cal nature of recharging by SET. According to Likharev
[93], to maintain SET–oscillations meeting classical Eq.
(135), SET–period with τSET > 10τR has to be at least
ten times longer than recharging time. Otherwise ampli-
tude and shape of the current oscillations will be more
and more suppressed [93].

B Time scale in ligand-stabilized cluster
arrangements

With the availability of chemically size tailored quan-
tum dots with a few nanometers in diameter, namely
approximately spherical shaped ligand stabilized metal
or semiconductor clusters in 3D- (solids or crystals), 2D-
and 1D- (also in host- structures of nanoporous mate-
rials) or pair-arrangements and crystalline chalcogenide-
clusters a new generation of nanoparticles and of ordered
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FIG. 9: Simplest model of a chemical nanostructure a
ligand stabilized cluster.

materials was born. One typical, well investigated repre-
sentative is Au55 with a core diameter of 1.4 nm and a
double ligand shell-thickness of 0.7 nm (see fig. 9), the
latter adjustable to more by more volumes ligands or by
chemical spacers. Impedance Spectroscopy (IS) experi-
ments and tunneling of single clusters revealed SET at
room temperature confirming the theoretically expected
inter-particle capacitance C (respective the self capaci-
tance C0 to ground), in the order of magnitude of 10−18

F down to 10−19 F . By IS–experiments this value can
be evaluated both from activation enthalpy or from the
density of states contributing to the process. Strictly
speaking, this capacitance is not homogeneous and not
classically defined. Nevertheless the (shell-) capacitance
and with it the Coulomb-barrier e2/2C can be controlled
by thickness of the ligand-shell and by the diameter d of
the metallic (or semiconductor) core. The core in general
is characterized by metallic behavior (the species with
larger numbers of metal atoms > 100) or semiconducting
behavior (small metal clusters and metal-chalcogenides).
The smallest microclusters with a core diameter d <
1 nm are quantum dots where electrons with standing
waves (ground state λ/2 = d) are confined with discrete
energy levels. Since the number of atoms is restricted to
less than 100 and moreover since most of them are sur-
face atoms bound to the ligand shell, anyway one only
can expect < 100 conductance electrons per cluster.

In first approximation the capacitance Cmicro of in-
teracting ligand-stabilized quantum dots in solids obeys
Kirchhoff’s laws [33]. Cubes of ordered densest 3D-
arrangements of ligand- stabilized clusters or crystalline
materials show an overall capacitance of approximately
nCmicro (n the equal number of clusters in each space di-
rection). Various other arrangements with inter–particle
capacitance for SET, e.g. parallel chains with self capaci-
tances C0 (again in the same order of magnitude as Cmicro

) in between, and tunnel barriers with inter-particle ca-
pacitances Cmicro along the arrays are discussed [94].

More complicated is the estimation or the measure-
ment of the particle resistance Rp (to junctions, to
ground or between building units of a cluster arrange-
ment) which may have very small values in the order of

magnitude of quantum resistance Rq up to typical tun-
neling resistances RT in the range of MΩ. In the case
of low resistance, conductance may reveal band structure
for single electrons (similar to minibands) [33].

Note, that with clusters being nanoparticles, the above
two principal conditions for ”classical” SET need modi-
fication (see Simon and Schön [18]):

- First, such a simple parameter as a constant tunnel-
ing resistance RT must be handled with care.

- Second, the Coulomb energy only roughly can be de-
scribed by the elementary formula for the charging energy
of a capacitor. Then the symbol C denotes an amount
which generally depends on the number of interacting
electrons occupying the cluster.

However, these peculiarities of metal nanoparticles do
not eliminate charging effects. The SET-effect and the
quantum size effect do not contradict each other, and
can coexist. The effect of discrete levels on the charg-
ing characteristics has been treated by Averin and Ko-
rotkov [95], who extended the theory of correlated SET
to small nanoparticles. But as we will discuss in the fol-
lowing sections, description of the effect with an adequate
time-scale will be much complicated when characteristic
recharging times RT C become as short as the charac-
teristic time of the energy relaxation inside the quantum
dot.

1 SET-junction with a single cluster

Let us first discuss the situation of one single ligand
stabilized cluster in between the metal junctions (see fig.
6b). The figure suggests a symmetric two tunnel junc-
tion system with at least two capacitances and one is-
land. But one must remember that actually the ligand-
shell capacitance Cmicro is approximately spheric. Any-
how, in electrical engineering terms by circuit equivalent
approach it should behave like the simplest case of one
single junction (see fig. 6a) with capacitances coupled to
C which is close to Cmicro .

Let us again discuss the three relevant times:
- The tunneling time τt, as above mentioned, will be

τt ≈ 10−15sec.
- The recharging time τR = RTC = RTCmicro . This

again may be the longest time (see fig.8a). But in special
cases (e.g. for clusters with Cmicro = 10−19F and very
low RT ≤ 105 Ω), we get

τR ≤ 10−14 sec (137)

Note, that the capacitance contribution to τR depends on
chemically tailoring and spacing to next cluster neighbors
(as well as the resistance involved) and on the nature of
the ligand-shell, e.g. its thickness or charge. This was
proved by experiments with Au55 and Pt561 with chemi-
cally different ligand shells and different spacers [96].

- Furthermore we must consider the before mentioned
”uncertainty time” τq = RqCmicro = h̄Cmicro/e

2 associ-
ated with the Coulomb energy, a quantity for the electron
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FIG. 10: Arrays of ligand stabilized clusters as guest ar-
rays in a nanoporous solid: ideal packing and disordered
chain with local defects in distance and cluster size.

fluctuations of any electrons involved in the recharging
and tunneling mechanism

τq ≈ 10−14sec (138)

Now, with approximately 10−14 sec–10−15 sec all three
times are in the same order of magnitude with τt ≈ τq ≈
τR (see fig.8b). For microcluster SET-junctions we do
no longer know which time scale is relevant. This is not
only of theoretical interest but also very important for
practical application in cluster-ME. Since, within a clus-
ter arrangement we should know wether, and in which
time a single-electron signal starting at t = 0, arrives to
a receiver, if this receiver is one next neighboring cluster-
unit. In that case, we disregard transit time of the envi-
ronment of such an arrangement.

2 1D-cluster arrays

Let us focus our interest to an artificial arrangement of
an isolated 1D-cluster chain with a number of n clusters.
Such a multiple tunnel junction arrangement is within ex-
perimental reach as there were grown chains of clusters
[97] and since such chains may exist in anisotropic cluster
crystals (with spacers) or as guest arrays in nanoporous
inorganic host-structures (see fig.10) [3]. Even in com-
pressed discs of ligand stabilized Au55 clusters there are
regions of high order with densest package [33] and SET-
features (including fine structures due to energy quanti-
zation) were visible [98]. In monolayers of Au55 clusters
also were observed a short range close packing with a cor-
relation length of the cluster arrays up to 40 nm (n = 20)
[99] and SET- phenomena [100]. Regarding a single elec-
tron entering this chain, we are interested in the time
or velocity relevant for the propagation of the electron
which passes the array in a soliton-like state:

Let us first look at an 1D-array of ligand-stabilized
Au55 clusters (see fig.11) with small inter-particle ca-
pacitance Cmicro say as a current path through a 3D-
arrangement (self-capacitance C0 ≈ Cmicro). Any single

FIG. 11: 1D–array of ligand stabilized Au55 clusters with
inter–particle capacitance Cmicro and self capacitance C0

(to neighbors or to ground). A pair section e.g. between
clusters 3 and 4 can be regarded as one SET–junction.

section of a pair of clusters of this periodic chain struc-
ture in the direction of current jy can be regarded as
one single SET-junction separated by their own (double)
ligand shells.

3 High inter-particle resistance RT in condensed cluster
phase

IS-measurements at different species of condensed
Au55 proved a circuit equivalent for the total capacitance
of the samples obeying Kirchhoff’s laws [33, 97]. Thus lo-
cal microscopic capacitance Cmicro could be destined in
accordance to later STM-measurements on single Au55

clusters [100]. On the other hand, direct evaluation of
local inter-particle resistance RT was not possible since
sample resistance revealed no clear dependance from vol-
ume. Instead, macroscopic relaxation frequencies in the
100 kHz-region changed with thickness of the sample or
respectively with the distance of electrodes, leading to a
picture of percolating current paths or channels oriented
to the electric field [33, 101, 102]. All these experiments
are suffering under disorder and imperfect arrangement
of clusters and, therefore, relatively broad distributions of
macroscopic relaxation times τmacro are appearing. Mea-
surements at air–sensitive and metastable single-crystals
of metal chalcogenide clusters do not permit a clear deci-
sion between intrinsic electronic processes or conductivity
caused by impurities [96].

Nevertheless, at present, the picture of (parallel) cur-
rent channels in quasi 1D-cluster arrays between the elec-
trodes seems to be most suitable to experiments since
τmacro then can be simply explained as an operation time
needed for the (single) electron transport from one elec-
trode to the other. Thus, we have

τmacro ≈ nτR = nRTCmicro (139)

¿From one typical measurement [32] at Au55 (τmacro ≈
10−5 sec, n ≈ 105 and Cmicro ≈ 10−18F ), we obtain
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RT ≈ 100 MΩ, in good agreement with Ref.[100]. Exper-
iments or rather Eq.(139) express that with high inter-
particle resistance RR in densest cluster-arrangements,
recharging time τR rules over SET-time τSET, thus we
can explain it as the relaxation time which the cluster-
pair junction needs to return to equilibrium (see 6.1.).
Thus operation time for one cluster-pair section with high
tunneling resistance RT will be given by recharging time
τR.

Minimal recharging time τR and maximal operation
speed will be hypothetically approached with RT → Rq.
Let us estimate maximum electron ”velocity” as a clue in
classical terms between neighboring clusters with τR ≈ τt
(see 6.2.1): ve ≈ L/τR.

Tunneling barrier L, λ/2, 2R (and so on) are in the
order of 1 nm. Hence ve ≈ 106m/s = 10−2c. It is in-
teresting to note that in this case we expect the same
electron velocity ve as in the ballistic transport case in
semiconductors [103]. Moreover, we find a situation sim-
ilar to Bohr’s original semi-classic atom model for the
electrons on circular orbits, with 1% of light velocity c.
This means that we do not need to take into considera-
tion relativistic effects.

Let us consider now, as a whole, the before 1D-cluster
array, with small inter-particle capacitance Cmicro as an
isolated chain (self capacitance C0 ≈ 0).

4 Isolated chains with low inter-particle resistance RT or
Rq

First, if the inter-particle resistance RT is still high
enough to meet condition τSET > 10τR, the situation
of a very high frequency SET-turnstile device is given,
where Coulomb barrier has to be overcome only once.

Secondly, interesting questions arise with the case
RT → Rq, since quantum wires surely can be chemically
tailored by suitable ligand-shells and spacers (see 6.2.1).
Now the time-dependent play between slowly refilling a
reservoir (a SET- island), fast tunneling and recharging
of the junction is definitively over since one of the pre-
requisites of SET is no more satisfied. Then the electron
tends to go into a delocalized state and τR is no longer a
relevant quantity.

To handle this problem we start with the question:
Which collective total resistance can be attributed to
the above chain? To answer this question we have to
visualize that even in arrays, which are fabricated by
lithographic techniques in the sub-micron range, the de-
vice dimensions are smaller than the inelastic scatter-
ing length of the conductor materials of which they are
composed. Thus, charge transport is governed by coher-
ent wave propagation, whereby elastic scattering leads to
- macroscopic observable - quantum interference effects.
With respect to an 1D-array, the resistance will fluctuate
with portions in the order of quantum resistance Rq, de-
pending on the position and distribution of elastic scat-
tering centers. In an array of ligand-stabilized clusters

FIG. 12: Two neigboring clusters idealized as two quan-
tum wells with a tunneling barrier in between. Single
electrons near Fermi level EF may tunnel depending on
biasing.

these may be e.g. packing defects, i.e. fluctuations in
capacitance Cmicro [94].

Some scientists believe that the length-independent re-
sistance quantum Rq = h̄/e2 is connected with the elec-
tron motion in the ground state of the most elemen-
tary anharmonic electron resonator: the s-orbital of the
hydrogen atom [104]. Similar to Bohr‘s model of the
hydrogen atom with the first K-shell, we can speak of
s-electrons in ”cluster”–σ–orbitals [33]. This concept
means that wave functions exist, which are in turn tai-
lored by the size and shape of the cluster [105, 106]. Con-
sequently, to such an elementary harmonic electron res-
onator, the resistance quantum Rq may be attributed
also [33] as well as to the propagation of single electrons
in an ideal array with inter-particle resistance Rq. On
the other hand it has been shown [60] that the resistance
Ra of an 1D-array in the case of a defined potential dif-
ference on its edges is expressed by

Ra =
h̄

2e2T
(140)

where T is the energy averaged transmission probability.
This also implies, in the absence of disorder that the total
resistance of a size tailored periodic 1D cluster array at
low temperature may be h̄/2e2. A combination of low
resistance and low temperature variation of the resistance
is expected to be of enormous importance in ME-device
design [107].

If we regard again the concept of recharging time af-
ter tunneling, we have to realize that it is now failing in
its strict sense: The former recharging times τR of single
cluster sections of the array are now converted into uncer-
tainty time τq, if we disregard from recharging time of the
electrodes which serve as reservoirs supplying and equili-
brating the charges resulting from the potential difference
applied to the array. Although, however, in real systems
the macroscopic recharging time may still roughly be ex-
pressed by nRqCmicro.
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5 Measuring of ultrashort recharging times

With regard to Eq.(139), one might have the idea to
measure ultrashort recharging times by macroscopic re-
laxation time, similar to the IS-measurements described
in section A with high inter-particle resistance RT . With
RT → Rq relaxation frequencies would be expected in
the 1 GHz-region. Experiments could be done at an ad-
equate array (or a bundle of chains) of Q–dots of ligand-
stabilized clusters (say arranged in a crystal or in chan-
nels of a host structure), by dividing macroscopic relax-
ation time by the number of chain members n. But we
must be aware that then, because of τt ≈ τR ≈ τq we al-
ways measure a sum of times, but it would be an access to
the order of tunneling time. Since until now, there exist
no tunneling time experiments at such arrays, the above
suggestions may lead to qualitative approximation.

We emphasize that the above simple considerations
only make sense for approaching (to make transparent)
this new field of chemical quantum dot arrangements fig-
uratively speaking. Of course they are not adequate to
replace still missing analytical calculations of fast tun-
neling problems with possible ”superluminal” speed in
periodic chemical nanostructures, we indicated in 1.5.

6 The cluster-pair switch

The simplest and smallest but hypothetical one-
dimensional SET- device with an area of 2 nm x 4
nm which was discussed recently [33] is the two-cluster
switch, consisting of a pair of small ligand-stabilized
metal clusters separated by their own ligand-shells. It
corresponds e.g. to one pair section of fig.11, say clusters
3 and 4. Its principle is sketched in fig.12. The probabil-
ity of tunneling of one electron out of the left side quan-
tum well into the right side well depends on biasing and
on distribution of excess electrons over sites. Again, with
microclusters there are only few ”conducting” electrons
available at Fermi level EF in both reservoirs. For cur-
rent switching, one excess electron must pass the tunnel–
barrier. With respect to 4.2. it is interesting to see that
discrete energy modulation of the barrier can be used to
create a discrete spectrum of particle energies in the next
quantum–well.

VII. NUMERICAL RESULTS

We have divided this section into two parts. The first
one corresponds to the long wavepacket limit, when the
spread of the wave function is longer than the size of
the system and then expressions (47) and (67) for the
traversal and reflection times respectively are valid. In
this case, the numerical problem reduces to the eval-
uation of the transmission and reflection amplitudes
and their energy derivatives, which can be conveniently

achieved through the use of the characteristic determi-
nant method, introduced by Aronov and Gasparian [58]
and explained in appendix A. Different similar mathe-
matical methods, allowing us to take into account multi-
ple interfaces consistently and exactly without the use of
perturbation theory, have been proposed. For example,
Garcia-Moliner and Rubio [108] and Velicky and Bartos
[109] introduced a method, based on the surface Green
functions, to study the energy spectra of electrons in
systems containing interfaces between different crystals.
This method has been applied to various problems in
solid state physics before [110, 111, 112, 113].

The second part of this section concentrates on finite
size effects and in this case we have to consider a specific
wavepacket and evaluate its probability amplitude at dif-
ferent values of the time in order to calculate the amount
of time taken to cross the system.

A Long wavepackets

The evaluation of equations (47) and (67) for the
traversal and reflection times can be performed directly
for simple systems or with the help of the characteristic
determinant for more complex systems. Here we review
the results for a rectangular barrier, for a finite periodic
system and for two barriers, i.e., for resonant tunneling.

1 Results for a rectangular barrier

In the section on the Larmor clock, we gave the explicit
expressions for the y and z components of the traver-
sal time corresponding to a rectangular potential barrier,
Eqs. (22) and (21). In Fig. 4 we showed the variation of
these times as a function of energy. These expressions
refer to under barrier transmission. For energies above
the potential of the barrier, the analytical continuation of
these expressions apply. In this case, the traversal times
oscillate with energy. We can calculate the average of τ1
exactly and check that it is equal to the classical crossing
time without including reflections, i.e., to the time taken
by the first pulse to cross the barrier in the limit of very
short pulses.

2 Periodic structure

We now consider a periodic arrangement of layers.
Layers with potential V1 and thickness d1 alternate with
layers with potential V2 and thickness d2. We assume
that the energy is higher than max{V1, V2}, and so the
wavenumber in the layers of the first and second type
is ki = [2m(E − Vi)]1/2 /h̄ (i = 1, 2). In this case, the
results for long wavepackets apply equally well to elec-
tromagnetic waves considering ki = ωni/c, where ni is
the indice of refraction of the two types of layers. Let us
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call a to the spatial period, so a = d1 + d2. The peri-
odicity of the system allows us to obtain analytically the
transmission amplitude using the characteristic determi-
nant method [49]:

t = e−ik1d1

{
cos(Nβa/2)− i sin (Nβa/2)

sinβa

×

√
sin2 βa+

[
k2

1 − k2
2

2k1k2
sin k2d2

]2

−1

, (141)

where β plays the role of quasimomentum of the system,
and is defined by

cosβa = cos k1d1 cos k2d2 − (142)
k2

1 + k2
2

2k1k2
sin k1d1 sin k2d2 .

When the modulus of the RHS of Eq. (142) is greater
than 1, β has to be taken as imaginary. This situation
corresponds to a forbidden energy band. The term within
brackets in Eq.(141) only depends on the properties of
one barrier, while the quotient of the sine functions con-
tains the information about the interference between dif-
ferent barriers. The transmission coefficient is equal to
1 when sin(Nβa/2) = 0 and β is different from 0. This
condition occurs for

βa =
2πn
N

(n = 1, · · · , N/2− 1) , (143)

and we say that it corresponds to a resonant frequency.
For the reflection amplitude we have

r = te−ik1d1
k2

1 − k2
2

2k1k2
sin k2d2

sin(Nβa/2)
sinβa

. (144)

With these expressions for the transmission amplitude,
Eq. (141), and for the reflection amplitude, Eq. (144),
we can calculate the traversal time through equation (47)
and the reflection time via equation (67).

We concentrate in the simplest periodic case, which
corresponds to the choice k1d1 = k2d2. This case con-
tains most of the physics of the problem and is also used
in most experimental setups [9]. From Eqs. (141) and
(144), Ruiz et al. [15] calculated numerically the traver-
sal time for electromagnetic waves considering a system
of 19 layers (N = 20) with alternating indices of refrac-
tion of 2 and 1, and widths of 0.6 and 1.2, respectively.
Their main conclusions are also applicable to the prob-
lem of an electron in a periodic potential. In Fig. 13 we
represent τ1 and τ2 for electromagnetic waves in a peri-
odic system as a function of k1. In the energy gaps, the
traversal times are significantly smaller than the cross-
ing time at the vacuum speed of light (horizontal line).
The average of τ1 with respect to wavenumber is equal to
22.8, and coincides with the classical crossing time, i.e.,
for very short wavepackets, without including multiple
reflections. It corresponds to the horizontal straight line
in Fig. 13.

FIG. 13: Traversal times versus the size of the
wavepacket for a periodic system. The solid line cor-
responds to τ1, and the dashed line to τ2. The values of
the parameters are N = 20, n1 = 2, n2 = 1, d1 = 0.6 and
d2 = 1.2.

3 Resonant tunneling

Double–barrier potential structures present resonant
tunneling, which has been studied for electrons since the
early days of quantum mechanics [90, 114, 115]. Res-
onant tunneling for electromagnetic waves is easier to
carry out than corresponding experiments on electrons
[26].

A double–barrier structure is a special case of a pe-
riodic system consisting of N = 4 interfaces with two
evanescent regions separated by a propagating one. In
the evanescent layers the potential energy V2 is larger
than the energy of the electron E. The results of the
previous part also applied to this case where one type
of layers are evanescent. We merely have to replace k2

by −iκ where κ = [2m(V2 − E)]1/2 /h̄(correspondingly,
sin k2d2 becomes sinhκd2.)

Cuevas et al. [49] calculated the traversal time τ for
electromagnetic waves through a double barrier structure
using the previous equations for the transmission and
reflection amplitudes, Eqs. (141) and (144) with N =
4, convoluted with a gaussian distribution function with
a standard deviation of 6 MHZ, which reproduces the
same average height of the peak as the corresponding
experiments [26].

The behavior of the traversal time at a resonance is
fairly universal. The phase of the transmission amplitude
changes by an angle of π at each resonance, as predicted
by Friedel’s sum rule. Its frequency dependence can be
fitted quite accurately by an arc tangent function. The
time, proportional to the derivative of this phase, is a
Lorentzian with the same central frequency and width
as the Lorentzian corresponding to the transmission co-
efficient. As the lifetime τl of the resonant state is the
inverse of the width of the transmission coefficient at half
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maximum, we conclude that it must be equal to half the
traversal time at the maximum of the resonant peak

τl =
1
2
τres . (145)

This result was obtained by Gasparian and Pollak [56] by
considering the traversal time for an electron tunneling
through a barrier with looses, i.e., with a decay time.

B Finite size effects

The kinetic approach is suitable to study numerically
the evolution of wavepackets with sizes of the order of
the width of the region of interest. Up to now this has
only been done neglecting dispersion [15]. This is not
very adequate for electrons, although the results show
some light on very interesting aspect of the problem, so
we include them here.

We will describe the numerical simulations of the time
evolution of finite size wavepackets that cross the region
of interest and measure the delay of the peak of the
transmitted wave as a function of the size of the orig-
inal packet. The simulations also calculate the change in
size of the packets. As we are not including dispersion ef-
fects the results are directly applicable to electromagnetic
waves, so we will use a nomenclature most appropriate for
them, although the results are equally valid for electrons,
in the absence of dispersion, provided that we translate
indices of refraction into their corresponding potentials.

Let us consider a three-dimensional layered system
with translational symmetry in the Y − Z plane, and
consistent of N layers labelled i = 1, . . . , N between two
equal semi–infinite media with a uniform dielectric con-
stant n0. The boundaries of the i–th layer are given by yi
and yi+1, with y1 = 0 and yN+1 = L, so that the region
of interest corresponds to the interval 0 ≤ y ≤ L. Each
layer is characterized by an index of refraction ni. In the
case of electrons, we assume that the energy E of the
electron is higher than the potentials of the different lay-
ers and that the wavenumbers are inversely proportional
to the indices of refraction; so the potential Vi in layer y
is equal to Vi = E(1− (n0/ni)2).

One calculates the position of the packet at different
times and from this information one extracts the time
taken by the packet to cross the region of interest. In
particular, neglecting dispersion, one can measure the
average positions y1 and y2 of the square of the modulus
of the wavepacket at two values of t, t1 and t2, such that
the packet is very far to the right of the structure at t1
and very far to the left at t2. These average positions are
defined as

y(t) =
∫ ∞
−∞

y|Ψ(y, t)|2 dy (146)

The traversal time of the wavepacket through the region

FIG. 14: Traversal time versus the size of the wavepacket
for a rectangular barrier. The dashed line corresponds to
a central wavenumber k = 81π/80, the solidd line to
41π/40, and the dotted line to 21π/20. The values of the
parameters are L = 10, n = 2 and n0 = 1.

of interest is given by:

τ = t2 − t1 −
(y2 − y1 − L)n0

c
. (147)

Although we refer to this time as a traversal time, it is
learn that, strictly speaking, is a delay time. Part of the
interest of this type of simulations is to study how delay
times relate to the previously obtained expressions for
the traversal time.

1 Rectangular barrier

Let us consider first finite size effects for a rectangular
barrier or slab confined to the segment 0 ≤ y ≤ L and
characterized by an index of refraction n.

In Fig. 14 we plot the traversal time versus the size of
the wavepacket for three different values of the central
wavenumber, k = 81π/80 (dashed line), 41π/40 (solid
line) and 21π/20 (dotted line). The values of the param-
eters are L = 10, n = 2 and n0 = 1, and the velocity is
supposed equal to 1. The values of the wavenumbers are
chosen so that sin 2u = 1, sinu = 1 and sinu = 0, and so
the characteristic time τ1 is a central value, a minimum
and a maximum, respectively. We can check that the
long wavepacket limit of these results corresponds to the
value of τ1, given by Eq. (21).

The traversal times of very short pulses are all equal
to 20.8, independently of the central wavenumber consid-
ered. This value is the classical crossing time, taking into
account multiple reflection, which for the slab is given by:

τ =
Ln

c

1 + |r|4

1− |r|4
. (148)

The transition between the long and short wavepackets
limits takes place for wavepacket’s sizes of the order of
20, i.e., of the order of the width of the slab.

The transmission coefficient presents a similar behav-
ior to the traversal time [15]. In the regions with destruc-
tive interference, so that the transmission coefficient is
very small, the crossing times are also very small.
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2 Periodic structure

We now consider finite size effects in the periodic ar-
rangement of layers previously study in the subsection
on Long wavepackets. Layers with index of refraction
n1 = 1 and thickness d1 alternate with layers of index of
refraction n2 = 2 and thickness d2.

In Fig. 15 we show the delay time versus the size of the
wavepacket for two values of the central wavenumber,
k0 = 3.927 and k0 = 4.306, which correspond to the
center of the gap and to a resonance, respectively. There
is again a strong similarity in the behavior of the traversal
time and of the transmission coefficient [15]. The long
wavepacket limit of the traversal time coincides with the
characteristic time τ1, while the short wavepacket limit
is independent of wavenumber and equal to 29.

The speed of the wave is greater than in vacuum for
a wide range of sizes. The minimum size of the packets
that travel faster than in vacuum is about 9, so that the
corresponding width 2σI is very much the same as the
size of the system. Velocities larger than in vacuum occur
when the transmission coefficient is very small. In regions
with a very small density of states the traversal time is
very short and, at the same time, transmission is very
difficult due to the lack of states at the corresponding
energies.

The width of the transmitted packet σT is slightly
smaller than the width of the incident packet σI. Accord-
ing to the results in the subsection on the wavepackt ap-
proach, we obtain that, in the absence of dispersion and
up to second order in perturbation theory, this change
in width depends on the derivatives with respect to fre-
quency of τ1 and τ2. As the first of these derivatives is
equal to zero in the centre of the gap, one arrives at:

σ2
T = σ2

1 −
v2

g

2
dτ2
dω

. (149)

In order to check up to which sizes second order pertur-
bation theory is valid, Ruiz et al. [15] plotted σ2

1 −σ2
T as

a function of the size of the packet and compared it with
the value of (1/2)(dτ2/dω) obtained from the characteris-
tic determinant. Second order perturbation theory works
adequately for a wide range of sizes and, in particular,
for the sizes for which one obtains velocities larger than
in vacuum.

The error in the measurement of the traversal time of a
single wavepacket is its width divided by its velocity. All
the packets that travel faster than in vacuum are so wide
that their uncertainty in the traversal time is larger than
the traversal time itself and even larger than the time it
would take a wave to cross the structure travelling at the
same speed as in the vacuum.

VIII. CONCLUSIONS AND OUTLOOK

In this review we have discussed the topic of tunnel-
ing time in mesoscopic systems including nanostructures,

FIG. 15: Traversal time versus the size of the wavepacket
for a periodic system. The solid line corresponds to a
central wavenumber k = 3.927, and the dashed line to
k = 4.3. The values of the parameters are the same as in
figure 12.

particularly in 1D systems with arbitrary shaped poten-
tial. But the treatment of tunneling time in ”nanostruc-
tured materials” approaching the molecular and atomic
scales is still open.

In the field of tunneling time there are problems in
any of the existing approaches, and we do not have a
clear answer for the general question “How much time
does tunneling take?”. Unfortunately no one of these ap-
proaches is completely adequate for the definition of the
time in QM. Nevertheless, we note that all these differ-
ent approaches can be consistently formulated in terms
of Green’s function, and their main differences can be
fairly well understood.

As we have pointed out in sections 1.2 and 6 great
progress in the application of ligand stabilized microclus-
ter quantum dots in SE was reached recently. Therefore
it seems that the race between ”physical” and ”chemical”
nanostructured materials was decided in favor of chem-
istry: At present, the physical requirements for further
investigation of nanostructured tunneling devices can be
satisfied by chemically size tailoring zero-, one-, two- or
higher dimensional cluster materials in mole scale, al-
though fabrication techniques for hybrid or pure cluster-
nanodevices are still lacking.

A Complex nature of time

For 1D systems we obtained closed expressions for the
traversal and reflection times, Eqs. (47) and (67), in
terms of partial derivatives of the transmission and re-
flection amplitudes with respect to energy. Results of
other approaches can be related to these expressions and
the main differences can be grouped into two categories:
the complex nature of time and finite size effects.
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Our conclusion about the complex nature of time is
the following. It is clear that there are two characteristic
times to describe the tunneling of particles through bar-
riers. (Similar conclusions can be reached for reflecting
particles.) These two times correspond to the real and
imaginary components of an entity, which we can choose
as the central object of the theory. Different experiments
or simulations will correspond to one of their compo-
nents or to a mixture of both. Büttiker and Landauer
argue that these two times always enter into any physi-
cally meaningful experiment through the square root of
the sum of their squares, and so claim that the relevant
quantity is the modulus of the complex time.

B Finite size effects in mesoscopic systems

As regards to finite size effects, we believe that Eqs.
(47) and (67) are exact, and adequately incorporate fi-
nite size effects. These effects correspond to the terms
which are not proportional to derivatives with respect to
energy. They are important at low energies and when-
ever reflection is important (as compared to changes
in the transmission amplitude). Several approaches do
not include finite size terms, since they implicitly con-
sider very large wave functions. The WKB approxima-
tion, the Oscillatory incident amplitude approach and the
wavepacket analysis, for example, do not properly ob-
tain finite size effects. On the other hand, our GF treat-
ment, based on the Larmor clock, the generalization of
the Time–modulated barrier approach and the Feynman
path–integral treatments arrived to exact expressions. In
order to see that these expressions are all equivalent one
has to transform the derivative with respect to the aver-
age barrier potential, appearing in the Time–modulated
barrier approach, into an energy derivative plus finite
size terms. The same has to be done with the functional
derivative with respect to the potential appearing in the
Feynman path–integral techniques.

Finite size effects can be very important in mesoscopic
systems with real leads with several transmitting modes–
per current path. The energy appearing in the denomi-
nator of the finite size terms, Eqs. (47) and (67), corre-
sponds in this case to the ‘longitudinal’ energy of each
mode, and so there is a divergence whenever a new chan-
nel is open. In the exact expressions there are no diver-
gences; the problematic contributions of the finite size
terms is cancelled out by the terms with energy deriva-
tives.

C Bopp’s approach

Finally one of us (G.S.) wants to give some hints about
one existing new alternative QM approach: Bopp’s ap-
proach seems us to be not so well known in a broader
circle of physicists, but we hope that readers will find it

likewise interesting as we do, because within its frame-
work there still is some freedom for the definition of time.
Furthermore some critical problems with the wavepacket
approach in mesoscopic systems and nanostructured ma-
terials hopefully can be avoided.

Bopp’s QM [116] gives up the meaning of waves as
some real dualistic appearance of quantum, and oper-
ates with manifest annihilation and creation processes
instead. wave functions are only the expressions of the
stochastic process and of our often incomplete knowledge
of the events. But until now, his QM seems not to have
found entrance in the theoretical treatment of tunnel pro-
cesses.

Bopp’s derivation, which he completed ten years ago on
the basis of von Neumann’s equation of the alternative,
consequently starts with the undeniable (experimental)
fact that in Q-physics particles can be created and an-
nihilated. Therefore creation and annihilation must be
considered as basic processes. Philosophically speaking,
motion is not the fundamental driving force, but only
occurs when a particle (a quantum) is annihilated in a
certain point (of space) and an equal one is created in
an infinitesimal neighboring point, and if this process is
continuously going on during a certain time. Motions
of that kind are compatible with the existence of some
manifest creation and annihilation processes. Based on
this idea, Q-physics can be derived from the above cited
first principles.

According to this scenario, the nature of tunneling may
be as follows. Annihilation in front of a tunneling barrier
and immediate creation (only with different probabili-
ties) either in front or behind the barrier (reflected or
transmitted). Thus we cannot exclude that the time for
creation on the right side (after tunneling) can possibly
be infinitesimally small, perhaps even zero (and the same
for creation on the left side in the reflected case), pretty
independently of the barrier height and shape. Note that
some problems like deformation and that of size of the
wavepacket during such a process or the location of the
center of gravity then have no further meaning, a fact
which possibly simplifies analytic treatment of tunnel-
ing problems. But unfortunately two other difficulties
with the tunneling problem arise. First, when approxi-
mating “classical” QM, Bopp’s framework of QM claims
that motion is creation in an infinitesimally neighboring
point. The main question will be how to operational-
ize analytically the creation of a transmitted particle, far
away beyond a tunnel barrier. Secondly, the introduction
of a tunneling time.
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APPENDIX A: GREEN’S FUNCTION OF A
LAYERED SYSTEM

We have been able to obtained the characteristic bar-
rier interaction times in terms of the GF of the system,
and more specifically as spatial integrals of the GF at
coinciding coordinates, see for example Eq. (43). In the
appendices we present a convenient model to calculate
these integrals of the GF. We will closely follow Aronov
et al. (1991), and introduce a general model for GF cal-
culations of complex systems.

Let us consider that our system can be divided into
(N−1) layers, labelled n = 1, ..., N − 1, which are placed
between two semi-infinite media. The positions of the
boundaries of the nth layer are given by yn and yn+1.
We allow a possible discontinuity in the potential Vn(y)
at each boundary between two layers. This assumption
does not imply a loss of generality, since we can reproduce
any reasonable potential shape in the limit of an infinitely
large number of layers, each of them of an infinitesimally
small width.

We consider a plane wave incident from the left onto
the boundary y = y1 and we want to evaluate both the
amplitude of the reflected wave and of the transmitted
wave, propagating in the semiinfinite media for y ≥ yN .

In this method the GF is evaluated first for the case of
a single boundary between two media. Then, the case of
two boundaries is solved using the GF for one boundary.
The problem is solved iteratively for n + 1 boundaries,
considering that the solution for n boundaries is known.

a One boundary

Let us first discuss the contact of two semi–infinite
media, which will clearly show the spirit of the method.
Assume that on the left of the boundary at y1 (y < y1)
the potential energy of the electron is V0(y), while on
the right of the boundary (y > y1) the potential is
V1(y). We suppose that the one–dimensional electron
GF G

(0)
n (y, y′;E) (n = 0, 1) for each medium are known,

when the media are infinite. In the following the energy
parameter E will be omitted from the arguments of the
GF. The GF is the solution of the following equation:[
− h̄2

2m
∂2

∂y2
+ Vn(y)− E

]
G(0)
n (y, y′;E) = δ(y − y′)

(A1)

The upper index (l) will indicate the number of bound-
aries considered in the calculation of a given GF. In Eq.
(A1), for example, the index is l = 0. The lower index
of the GF labels the interval for which the GF is valid.
The GF G

(1)
0 for the case when one interface is taken into

account in the first medium can be expressed in the form

G
(1)
0 (y, y′) = G

(0)
0 (y, y′) + r01

G
(0)
0 (y, y1) G(0)

0 (y1, y
′)

G
(0)
0 (y1, y1)

,

y, y′ ≤ y1 (A2)

The first term on the RHS corresponds to direct prop-
agation between the two arguments of the GF, y and
y′, while the second term to propagation from y to the
surface, reflection on the surface and propagation back
to the point y′. r01 is the reflection amplitude of the
electron propagating from region 0 into region 1, and we
will calculate it below. A similar expression holds for
the GF G

(1)
1 in the region on the right of the boundary

(y, y′ ≥ y1):

G
(1)
1 (y, y′) = G

(0)
1 (y, y′) + r10

G
(0)
1 (y, y1) G(0)

1 (y1, y
′)

G
(0)
1 (y1, y1)

.

(A3)
r10 is the reflection amplitude of the electron propagating
from region 1 into region 0.

To calculate the quantities r01 and r10, we have to
enforce the condition of continuity for G(1)

0 (y1, y1) and
G

(1)
1 (y1, y1)

G
(1)
0 (y1, y1) = G

(1)
1 (y1, y1) (A4)

and the conservation of current at the boundary y = y1

∂

∂y

[
G

(1)
0 (y1, y1)−G(1)

1 (y1, y1)
]

= 0 (A5)

where the derivative is taken over the two variables in
the argument of the GF simultaneously. This condition
may also be written in terms of derivatives with respect
to the first argument of the GF only in the form:

Ġ
(1)
0 (y1 − 0, y1)− Ġ(1)

1 (y1 + 0, y1) =
2m
h̄2 , (A6)

Here the dot signifies the derivative with respect to the
first argument, and it is necessary to distinguish between
left-side and right-side derivatives of the GF due its dis-
continuity:

Ġ(y ∓ 0, y) = ±m
h̄2 +

1
2
∂

∂y
G(y, y) (A7)

Solving Eqs. (A4) and (A6), we obtain the following
expressions for the amplitudes of reflection r01and r10:

r01 =
G

(0)
1 Ġ

(0)
0 (y1 + 0, y1)−G(0)

0 Ġ
(0)
1 (y1 + 0, y1)

G
(0)
1 Ġ

(0)
0 (y1 − 0, y1)−G(0)

0 Ġ
(0)
1 (y1 + 0, y1)

(A8)

r10 =
G

(0)
1 Ġ

(0)
0 (y1 − 0, y1)−G(0)

0 Ġ
(0)
1 (y1 − 0, y1)

G
(0)
1 Ġ

(0)
0 (y1 − 0, y1)−G(0)

0 Ġ
(0)
1 (y1 + 0, y1)

(A9)
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where we have used the notation G(0)
n ≡ G(0)

n (y1, y1), for
n = 0, 1.

We shall usually consider homogeneous media with
constant potentials Vn of arbitrary strength. In this case
we have

∂

∂y
G

(0)
0,1(y, y) = 0 (A10)

and the final expressions for r01 and r10, Eqs. (A8) and
(A9), become:

r01 = −r10 =
G

(0)
1 −G

(0)
0

G
(0)
1 +G

(0)
0

(A11)

b Many boundaries

We can generalize the previous procedure by adding
new boundaries and using each time the previously ob-
tained GF as the starting point. In this way, we derive
the new amplitudes of reflection of the electron on sub-
systems composed by many layers. Finally, the GF for
the complete system at coinciding coordinates in the n-
th layer (the left block containing n boundaries and the
right block consisting of (N −n) boundaries) is given by:

G(N)
n (y, y) = G(0)

n (y, y)
[
1 +R

(n)
n,n−1R

(−n+N)
n,n+1 λn,n+1

+ R
(n)
n,n−1e

2i[θn(y)−θn(yn)]

+ R
(−n+N)
n,n+1 e2i[θn(yn+1)−θn(y)]

]
DN
−1. (A12)

where the R are reflection amplitudes that we will define
below, and DN is a very important magnitude, contain-
ing all the information about the self-consistent problem
of multiple reflections in the boundaries. This magni-
tude is called the characteristic determinant and can be
expressed as the product:

DN = D0
N

{
N∏
n=1

λn−1,n(1 + rn,n−1)(1 + rn−1,n)

}−1/2

(A13)
We now define the different symbols appearing in this
expression. The quantity rn−1,n (rn,n−1) is the ampli-
tude of reflection of the electron propagating from the
region n − 1 into n (n into n − 1). In general the val-
ues of rn,n−1 are model dependent and for a piece-wise
constant potential is given by Eq. (A11), but replacing
in the lower indices 0 by n− 1 and 1 by n:

rn−1,n =
G

(0)
n −G(0)

n−1

G
(0)
n +G

(0)
n−1

(A14)

The GF are the unperturbed GF evaluated with their
two arguments at coinciding coordinates in yn, G(0)

n ≡
G

(0)
n (yn, yn). The amplitude of reflection in the opposite

direction satisfies rn−1,n = −rn,n−1. For a tight-binding
model and a for set of delta functions, we have:

rn,n−1 = − VnG
(0)
n

1 + VnG
(0)
n

(A15)

and rn−1,n = rn,n−1, where Vn is the n-th diagonal en-
ergy in the tight-binding case, and the strength of the
n-th delta function in the other case.

The factors λn−1,n are defined, in general, as

λn−1,n = exp

(
−
∫ yn

yn−1

2m
h̄2

dy

G
(0)
n−1(y, y)

)
, (A16)

and the factor λ0,1 is defined as equal to 1. For a piece-
wise constant potential the previous expression reduces
to:

λn−1,n = exp

(
−2m
h̄2

yn − yn−1

G
(0)
n−1

)
, (A17)

D0
N is the determinant of a tridiagonal matrix and sat-

isfies the following recurrence relationship:

D0
n = AnD

0
n−1 −BnD0

n−2 (A18)

where

A1 = 1; D0
1 = 1; D0

−1 = 0 (A19)

and we have for n > 1:

An = 1 + λn−1,n
rn−1,n

rn−2,n−1
(1 + rn−2,n−1 + rn−1,n−2),

(A20)
and

Bn = λn−1,n
rn−1,n

rn−2,n−1
(1 + rn−2,n−1)(1 + rn−1,n−2)

(A21)
The generalized quantity R

(n)
n,n−1 is the amplitude of

reflection from the left block, containing n boundaries
(when the electron incides on this block from the right),
and R(−n+N)

n,n+1 is the amplitude of reflection from the right
block, containing N − n boundaries (when the electron
incides on this block from the left). θn(y) is the phase fac-
tor defined in Eq. (38). The reflection amplitude R(n)

n,n−1

may also be written in the form:

R
(n)
n,n−1 =

D̃0
n+1

D0
n

(A22)

where D̃0
n+1 is given by

D̃0
n+1 =

(1 + rn,n−1)(1 + rn−1,n)
rn−1,n

D0
n−1

− (1 + rn,n−1 + rn−1,n)
rn−1,n

D0
n. (A23)
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R
(−n+N)
n,n+1 can also be written in a similar way to R(n)

n,n−1.

In the case of a symmetric barrier, we have R(−n+N)
n,n+1 =

R
(n)
n,n−1.
To conclude this appendix let us note that the GF on

the right side of the N -th boundary (y, y′ ≥ yN ) has the
following form:

G
(N)
N (y, y′) = G

(0)
N (y, y′)+R(N)

N,N−1

G
(0)
N (y, yN )G(0)

N (yN , y′)

G
(0)
0 (yN , yN )

(A24)
Here R

(N)
N,N−1 is the reflection amplitude of the whole

system from the N -th boundary when the electron falls
in from the right.

In a similar way, the GF on the left of the system
(y, y′ ≤ y1) can be written as:

G
(N)
0 (y, y′) = G

(0)
0 (y, y′) +R

(N)
0,1

G
(0)
0 (y, y1)G(0)

0 (y1, y
′)

G
(0)
0 (y1, y1)

(A25)
where R(N)

0,1 is the reflection amplitude of the system from
the first boundary when the wave falls in from the left.

APPENDIX B: TRANSMISSION COEFFICIENT
OF A LAYERED STRUCTURE

The method described on the previous appendix al-
lows us to calculate any electronic property of a layered
structure. In this appendix we show how to obtain the
transmission coefficient of such a system from the char-
acteristic determinant defined in appendix A.

By definition, the transmission coefficient is equal to
the modulus square of the amplitude of the wave function
at the right of the system when the electron incides on
it from the left. Using the Fisher–Lee [117] relation be-
tween the scattering matrix and the GF, the transmission
coefficient may be written as

T =
[∣∣∣G(0)

0 (y1, y1)
∣∣∣ ∣∣∣G(0)

N (yN , yN )
∣∣∣]−1 ∣∣GN (y1, yN )

∣∣2
(B1)

where GN (y1, yN ) is the GF of the electron in the layered
structure with N boundaries.

In order to simplify the previous equation we rewrite
the general expression for the GF G(y, y′) in terms of
GF at coinciding coordinates y = y′, which can be done
using Eq. (37):

G(N)(y1, yN ) =
[∣∣∣G(N)(y1, y1)

∣∣∣ ∣∣∣G(N)(yN , yN )
∣∣∣]1/2

exp i [θ(yN )− θ(y1)] (B2)

where θ(y) is again the phase function defined by Eq.
(38), so that

θ(yN )− θ(y1) = −
∫ yN

y1

m

h̄2

dy

G(N)(y, y)
= (B3)

−
N−1∑
n=1

∫ yn+1

yn

m

h̄2

dy

G(N)(y, y)

We remember that the GF appearing in these two expres-
sions G(N)

n (y, y′), G(N)
N (y, y′) and G(N)

0 (y, y′) are defined
by Eqs. (A12), (A24) and (A25), respectively.

To calculate the integral appearing in Eq. (B3) we use
the final expression for the GF obtained in the previous
appendix, Eq. (A12). The spatial integral corresponding
to layer n is equal to:

−
∫ yn+1

yn

m

h̄2

dy

G(N)(y, y)
= (B4)

m

h̄2 ln
λn,n+1(1 +R

(n)
n,n+1)(1 +R

(−n+N)
n,n+1 )

(1 + λn,n+1R
(n)
n,n+1)(1 + λn,n+1R

(−n+N)
n,n+1 )

Taking into account the previous expression, the defini-
tion of the determinant D0

n, Eq. (A18), and the values
of the generalized reflection amplitudes, Eq. (A22), we
arrive at the following expression for the GF:

G(N)(y1, yN ) =
{
G

(N)
0 (y1, y1)G(N)

N (yN , yN )

×(1 +R
(N)
0 )(1 +R

(N)
N,N−1)

×
N−1∏
n=1

λn,n+1(1 +R
(n)
n,n+1)(1 +R

(−n+N)
n,n+1 )

(1 + λn,n+1R
(n)
n,n+1)(1 + λn,n+1R

(−n+N)
n,n+1 )

}1/2

= (D0
N )−1

(
G

(N)
0 (y1, y1)G(N)

N (yN , yN )

×
N−1∏
n=1

(1 + rn,n−1)(1 + rn−1,n)

)1/2

(B5)

Substituting this final expression for the GF
G(N)(y1, yN ), Eq. (B5), and the analogous expression for
the complex conjugate of the GF,

[
G(N)(y1, yN )

]∗
in the

expression for the transmission coefficient, Eq. (B1), we
finally arrive at:

T = |DN |−2 (B6)

where DN is the characteristic determinant, given by Eq.
(A13). This is a general expression, valid for any model,
which tell us that the transmission coefficient T of a sys-
tem is inversely proportional to the characteristic deter-
minant DN .

APPENDIX C: INTEGRAL OF THE GREEN’S
FUNCTION

We showed that the traversal time is proportional to
the spatial integral of the GF at coinciding coordinates,
which can be calculated exactly using the method de-
veloped in the previous appendices. Here we first prove
the relations used in this article involving integrals of the
GF, and secondly we obtain the exact expression of the
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integral of the GF at coinciding coordinates in terms of
the transmission and reflection coefficients.

Let us derive the equations appearing in the section on
the dwell time. Our first aim is to obtain the spatial inte-
gral of the modulus square of the wave function. In order
to do so, we start by trivially rewriting the wave function
ψ(y) in terms of derivatives with respect to energy

ψ(y) = (V (y)− E)
∂

∂E
ψ(y)− ∂

∂E
(V (y)− E)ψ(y) (C1)

From here, and taking into account that the wave func-
tion is a solution of Schrödinger equation, we can express
the square of the wave function in the form

ψ(y)2 =
h̄2

2m

(
ψ′′(y)

∂

∂E
ψ(y)− ψ(y)

∂

∂E
ψ′′(y)

)
(C2)

≡ h̄2

2m
∂

∂y

(
ψ′(y)

∂

∂E
ψ(y)− ψ(y)

∂

∂E
ψ′(y)

)
Integrating both parts of this expression over y one gets∫

ψ(y)2dy = − h̄2

2m
ψ(y)2 ∂

∂E

(
ψ′

ψ

)
(C3)

≡ − h̄2

2m
ψ(y)2 ∂

∂E

(
ψ′ψ∗
|ψ|2

)
We now express this equation in terms of the GF, taking
into account that the wave function is of the form

ψ = |ψ| eiθ (C4)

where θ(y) is the phase function, Eq. (38). Eq. (C3)
becomes:∫

G(y, y) e2iθ(y,E)dy = − h̄2

4m
G(y, y) e2iθ(y)

∂

∂E

[(
G′(y, y)− 2m

h̄2

)
G−1(y, y)

]
(C5)

In a similar way, we have:∫
G(y, y) e−2iθ(y,E)dy = − h̄2

4m
G(y, y) e−2iθ(y)

∂

∂E

[(
G′(y, y) +

2m
h̄2

)
G−1(y, y)

]
(C6)

We derived Eqs. (C5) and (C6) making use of the fact
that the wave function ψ(y) at energy E is related to the
retarded Green function G(y, y′) of the system through
the expression:

G(y, y′) =
{
iπν(E)ψ(y)ψ∗( y′) if y > y′

iπν(E)ψ∗(y)ψ(y′) if y ≤ y′ (C7)

where ν(E) is the density of states per unit energy
and per unit length. Note that at coinciding coordi-
nates, this expression reduces to the well known result
G(y, y) = iν(E)|ψ(y)|2. From Eq. (C7) we can obtain

the left-side and right-side derivatives of the GF with re-
spect to coordinates, which have to be distinguished due
to discontinuity:

Ġ(y ∓ 0, y) = ±m
h̄2 +

1
2
G′(y, y) (C8)

Here the dot signifies the derivative with respect to the
first argument, keeping fixed the second argument and
the energy.

Using the expressions for the wave function, Eq. (C1),
and for its square, Eq. (C2), we can represent |ψ(y)|2 in
the following form

|ψ(y)|2 =
h̄2

4m
∂

∂y

{(
ψ′(y)

∂

∂E
ψ∗(y) + ψ∗′(y)

∂

∂E
ψ(y)

)
−
(
ψ(y)

∂

∂E
ψ∗′(y) + ψ∗(y)

∂

∂E
ψ′(y)

)}
(C9)

Integrating both parts of this expression over y one gets∫
|ψ(y)|2 dy = − h̄2

4m

{
ψ∗2(y)

∂

∂E

(
ψ′(y)ψ(y)
|ψ(y)|2

)
+ ψ2(y)

∂

∂E

(
ψ∗′(y)ψ∗(y)
|ψ(y)|2

)}
(C10)

A straightforward calculation, using Eqs. (C4), (C7) and
(C8), leads to∫

G(y, y)dy = i
∂

∂E
θ(y)− h̄2

4m
G(y, y)

∂

∂E

(
G′(y, y)
G(y, y)

)
(C11)

This completes the deduction of the set of useful integrals
which were used in this article.

Now we can go a step further and calculate the spatial
integral of the GF at coinciding coordinates, given by
Eq. (C11), over the region [0, L], which appears in the
calculation of the traversal time, Eq. (43). Without loss
of generality we will discuss the case when the potential
V (y) is zero outside the interval [0, L]. In this case the
GF’s outside the barrier are G

(0)
0 (0, 0) = G

(0)
N (0, 0) =

im/kh̄2.
The expression for the GF on the left of the barrier,

given by Eq. (A25), when evaluated at y = y′ = 0 reduces
to:

G(0, 0) = G0(0, 0) (1 + r) (C12)

where we have relabeled the total reflection amplitude
from the left as r ≡ R

(N)
0,1 . Analogously, the expression

for the GF on the right of the barrier, Eq. (A24), when
evaluated at y = y′ = L becomes:

G(L,L) = G0(L,L) (1 + r′) (C13)

where r′ ≡ R(N)
N,N−1 is the total reflection amplitude from

the right. The derivative of the GF G′(y, y) at the origin
is equal to

G′(0, 0) =
2mr
h̄2 (C14)
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while its derivative at y = y′ = L is

G′(L,L) = −2mr′

h̄2 . (C15)

Making use of the expressions of the GF at 0 and at L,
Eqs. (C12) and (C13), and of the derivative of the GF
at 0 and at L, Eqs. (C14) and (C15),we can rewrite the
integral of the GF, Eq. (C11), as∫ L

0

G(y, y;E) dy = i
∂

∂E
[θ(L)− θ(0)] (C16)

+
∂

∂E
ln(1 + r)(1 + r′) +

1
4E

(r + r′)

The next step to get the final answer is to calculate
the first bracket in Eq. (C16). It is straightforward to
show, using Eqs. (B4) and (B5), that the bracket can be
represented in the form:

i [θ(L)− θ(0)] = ln
t

(1 + r)(1 + r′)
(C17)

Substituting this expression in Eq. (C16) we finally ob-
tain for the spatial integral of the GF, and so for the
traversal time, Eq. (43), the following expression:∫ L

0

G(y, y;E) dy =
∂ ln t
∂E

+
1

4E
(r + r′) . (C18)

In the rest of this Appendix, starting from the explicit
expression for the integral of G(N)

n (y, y) in each layer,
given by Eq. (A12), we show that the sum of the contri-
butions of all the layers yields also the result previously
obtained, Eq. (C18). For a piece-wise constant potential,
the integral over a layer of the GF, as was first done by
Aronov et al (1991), is:∫ yn+1

yn

G(N)
n (y, y) dy =

∂ ln t
∂Vn

, (C19)

where Vn is the potential energy of electron in the n-
th subsystem and t is the transmission amplitude of the
whole system. We could write the total integral of the
GF as a sum of terms of the form given by Eq. (C19):∫ L

0

G(N)(y, y) dy = (C20)

N−1∑
n=1

∫ yn+1

yn

G(N)
n (y, y) dy =

N−1∑
n=1

∂ ln t
∂Vn

,

A similar expression to this Eq. (C20) was found, on a
different context, by Garćıa-Moliner and Flores (1979)
in terms of surface GF. In the N → ∞ limit (keeping
L fixed) and converting the summation into an integral,
Eq. (C20) becomes∫ L

0

G(N)(y, y) dy =
∫ L

0

δ ln t
δV (y)

dy, (C21)

where δ/δV (y) is a functional derivative. This is the
result of Sokolovski and Baskin (1987).

As was shown by Leavens and Aers (1987) the func-
tional derivative with respect to the potential can be
replaced by the derivative with respect to the average
height of the potential V , keeping the spatial variation
of the potential fixed. We thus obtain∫ L

0

δ ln t
δV (y)

dy =
δ ln t
δV

. (C22)

We would like to remember that we have shown that
the integral of the GF at coinciding coordinates, equal to
Eq. (C22) can also be written exactly in terms of deriva-
tives with respect to energy, plus a correction term, ex-
pression (C18).
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[68] M. Büttiker and R. Landauer, IBM J. Res. Develop.

30, 451 (1986).
[69] Th. Martin and R. Landauer, Phys. Rev. B 47,

2023 (1993).
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