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Abstract. We calculate analytically the conditions that establish the number of bound states in finite
superlattices as a function of the depth, width and separation of the wells. We consider a lattice of δ-wells
and a set of rectangular wells. For this latter case, we show how for finite systems the energy levels already
group together in bands separated by gaps.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers)

1 Introduction

Since the appearing of the concept of heterostructure [1],
a vast amount of scientific work in the field of condensed
matter physics has been devoted to the theoretical and ex-
perimental study of such structures. The development and
continuous improvement in growth techniques [2] allow to
construct quasi-one dimensional systems in the direction
of the growth of the heterostructure, forming structures
such as single quantum wells, double barriers, coupled
quantum wells and superlattices.

The envelope function method has become the most
commonly employed theoretical tool for the study of elec-
tronic properties of heterostructures, such as transmission
coefficients, bound state energies, or the behavior under
the effect of electric and magnetic fields [3–11]. In this
method, the effective mass approximation is usually con-
sidered, because the potential structures generated are
near the bottom of the conduction band of the barrier and
well material (typically, AsGa and AlAsGa). The standard
model assumes that the potential wells and barriers are
rectangular, due to the fast jump of the potential energy
between successive materials.

An interesting problem that arises in the calculation of
the bound states of a Kronig-Penney (KP) system formed
by N identical rectangular wells (a finite periodic super-
lattice) is the number of bound states that this potential
is able to hold. When a single well is considered, the result
is well-known: the number of bound states depends on the
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width and the depth of the well, and analytical conditions
for the range of parameters corresponding to each number
of bound states can be written down explicitly.

The aim of this paper is the calculation of the number
of bound states for a finite periodic superlattice formed by
N identical square wells. We will obtain analytical condi-
tions for the appearance of each new bound states in the
superlattice in terms of the width, depth and separation
of the wells. These conditions can be considered as critical
values of the interaction between the wells when they are
coupled together to form a lattice.

The paper is organized as follows: in Section 2, we ex-
plain the method of calculation used to obtain the bound
states of the systems considered. In Section 3, we solve the
problem for a periodic system of δ-wells. For this system,
the calculation is easier, because an isolated δ-well admits
one and only one bound state, independently of its ampli-
tude. Finally, in Section 4 we present the results for the
more general case of a superlattice formed by square wells
and barriers.

2 Method of calculation

We will calculate the number of bounds states sustained
by a finite periodic lattice with the help of the characteris-
tic determinant method. This is a very powerful technique
that provides us with the relevant information contained
in the Green function of the whole system [12,13]. The
characteristic determinant method can be used in simi-
lar problems to the usually solved by the transfer matrix
method, both providing the same results [14]. In this sec-
tion we review the application of the method to the two
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models considered: δ-wells and rectangular potentials. The
potential corresponding to a periodic finite chain of δ-wells
is:

V (x) = −
N∑
n=1

V0δ(x− na) V0, a > 0. (1)

The second, more realistic, case that we will consider is
a multilayered system, which we will restrict to only two
types of layers forming identical square wells. Each layer
is characterized by its width and its constant potential
energy.

For both cases, the determinant, that in general is a
complex function of the energy E, satisfies the following
recurrence relationship

Dn = AnDn−1 −BnDn−2 (2)

where the index n goes from 1 to N . This number N
represents the total number of δ-wells for the first model,
and the number of interfaces between different layers in
the multilayered model. The initial conditions are:

D−1 = 0

D0 = 1. (3)

The magnitudes An and Bn depend on the model
considered. For the δ-well case we have

A1 = 1 + V1G0(x, x)

An = 1 + VnG0(x, x)(1 − λn−1) +Bn n > 1

Bn = Vnλn−1/Vn−1 n > 1 (4)

where Vn is the amplitude of the nth well (in our case
Vn = −V0) and G0 is just the GF for the free particle:

G0(x, x′) =
1

2κ
e−κ|x−x

′|. (5)

In this equation κ =
√
−E, because we have to find the

bound states in the region of negative energy. Note that,
as in the rest of the paper, we use units derived from the
convention ~ = 2m = 1. The parameter λn is defined as:

λn = exp

(
−

∫ xn+1

xn

1

G0(x, x)
dx

)
. (6)

For the multilayered case, the magnitudes An and Bn are
defined as:

An = 1 + λn−1,n
rn−1,n

rn−2,n−1
(1− rn−2,n−1 − rn−1,n−2)

(7)

and

Bn = λn−1,n
rn−1,n

rn−2,n−1
(1− rn−2,n−1) (1− rn−1,n−2) ,

(8)

where rn−1,n is the reflection amplitude between layers
n− 1 and n, and in general is given by

rn−1,n =
Gn−1 −Gn
Gn−1 +Gn

(9)

where Gn ≡ Gn(x, x) is the GF in layer nth at coinciding
coordinates, which for a constant potential Vn is given by:

Gn =
i

2
√
E − Vn

· (10)

Once DN has been obtained the determination of the
bound states is easy. It can be shown [13] that the poles
of the GF of the whole system (which, as we know, cor-
respond to the bound states) are just the zeroes of the
characteristic determinant. Therefore, to find the bound
states of the potential for both models we just will have
to solve the equation:

DN = 0. (11)

3 δ-wells superlattices

In this section, we are going to obtain the number of bound
states of a finite chain of N δ-wells. The reason for consid-
ering the δ-well case is that it can be solved analytically
up to the end.

Let us remember first that for a single δ potential
V (x) = −V0δ(x), with V0 > 0, we always have a single
bound state, whose energy is given by:

E1 = −
V 2

0

4
· (12)

We can easily recast this result with the characteristic
determinant method. As there is only one δ-function, we
have a 1 × 1 determinant, D1 = 1 − V0G0(x, x), where
G0(x, x) is given by equation (5). The zero of the deter-
minant corresponds to the solution of the equation:

1− V0G0 = 0 (13)

which, of course, is the same given by equation (12).
Let us now consider two δ-wells, i.e., a potential of the

form V (x) = −V0(δ(x) + δ(x − a)), where V0, a > 0. We
can obtain easily the bound spectrum of this potential
either solving Schrödinger equation directly or with the
help of the characteristic determinant solving the equation
D2 = 0, where D2 is given by equation (2). The result for
the bound spectrum of this potential is well-known (see,
e.g. [15]): there exist at least one bound level, indepen-
dently of the values of V0 and a, and a second bound level
appears when the condition

V0a > 2 (14)

is satisfied. As we will see in the case of many δ-wells, and
following the trend already established for two δ-wells, the
number of bound states explicitly depends on the value of
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Fig. 1. Plot of the bound spectrum of a system formed by 10
δ-wells. In part (a) we show the behavior of the eigenenergies
as a function of V0 for a = 1. In part (b), we show the bound
states as a function of the distance a between wells for V0 = 4.
The condition V0a = 4 is shown in both cases as a vertical
dotted line.

the product V0a, which we will define as the interaction
strength between the wells.

Our purpose now is to generalized the previous result
to a periodic system consisting of an arbitrary number
N of wells, whose potential is given by equation (1). The
main aim is to obtain the number of bound states in terms
of the interaction strength V0a.

Before entering into the details of the calculation, let
us show, as an example, the numerical results for a system
formed by N = 10 wells. In Figure 1a, we show the bound
energies obtained for such a system as a function of the
amplitude V0 for a fix distance a (which we take a =
1). In Figure 1b, we represent the same bound energies
as a function of the distance a between the wells for a
fix amplitude V0 (numerically V0 = 4). In both cases, we
show the condition V0a = 4 as a vertical dotted line. The
number of bound states allowed in the band depends on
the value of the product V0a.

For a system with N wells, there are N − 1 conditions
of V0a (excluding the trivial value V0a = 0 for the appear-
ance of the first bound state) for the appearance of every
new bound state in the band. It is important to point out
that a new state always arises at an energy E = 0, which

facilitates our calculation. Let us denote by (V0a)i, where
i = 1, 2, ..., N −1, the value of the interaction strength for
which the (i+ 1)th bound state appears at E = 0. When
we finally reach the value (V0a)N−1 no new bound state
appears and the band is complete, i.e., there are the same
number of bound states as wells in the lattice.

For the δ-well periodic lattice, we can solve analytically
the determination of the conditions (V0a)i. The recurrence
relation for our characteristic determinant, equation (2),
can be summed for this system by making use of its
periodicity, and the result can be written as [12]:

DN = e−Nκa {TN (cosβa)− Z(κa)UN−1(cos βa)} (15)

whereN is the number of wells. The magnitude β plays the
role of the quasimomentum, and its dispersion relationship
is given by

cos(βa) = cosh(κa)−
V0

2κ
sinh(κa) (16)

where κ =
√
−E (we are in the rangeE < 0). The function

Z(κa) is defined as:

Z(κa) =
V0

2κ
cosh(κa)− sinh(κa). (17)

Finally, the functions TN(cosβa) and UN−1(cos βa) are
the Chebyshev polynomials of the first kind of order N
and of the second kind of order N − 1, respectively.

As we commented in the previous section, the bound
energies of the system are obtained by solving the equation
DN = 0, and every new bound state appears at an energy
infinitesimally small. Therefore, we have to look for the ze-
roes of DN when the energy tends to 0, i.e., when κ→ 0.
In this limit, the function Z(κa) diverges and the sign
of this divergence is determined by the sign of the func-
tion UN−1(cosβa). Whenever UN−1(cosβa) crosses zero,
it changes its sign and so does the characteristic determi-
nant DN , indicating the appearance of a new bound state.
Thus, the divergence of Z(κa) as κ goes to zero, ensures
that the change in sign of DN at very small energies and
so the number of solutions of DN = 0, i.e., the number of
bound states, is entirely dominated by the changes in sign
of UN−1(cosβa).

The polynomial UN−1(cosβa) presents N − 1 zeroes
given by [16]

cosβa(m) = cos
mπ

N
, m = 1, 2, ..., N − 1. (18)

In the limit κ → 0, the dispersion relationship given by
equation (16) is reduced, in first order in κa, to:

cosβa = 1−
V0a

2
· (19)

Substituting these values of cosβa in equation (18), we
finally obtain the N − 1 critical values of the interaction
strength V0a for the appearance of a new bound state:

(V0a)m = 2
(

1− cos
mπ

N

)
. (20)
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Fig. 2. Schematic plot of the potential energy profile of a piece
of our system formed by square wells and barriers, where the
parameters used (dA, dB and V0) are indicated.

It is interesting to see what happens when N is large. In
this case, the last state appears for m = N − 1 ≈ N and
therefore the limiting condition for the completeness of
the band is

(V0a)N−1 = 4. (21)

This is the value shown as a vertical dotted line in
Figures 1a and 1b. (The exact value for N = 10 is
(V0a)9 = 3.902.)

4 Square wells superlattice

We now want to solve the problem of the number of bound
states of a finite Kronig-Penney model of square wells and
barriers frequently used as a relatively realistic represen-
tation of superlattices. The effective mass approximation
is often included in the model. We pass to generalize for
this model the results previously obtained for the δ-wells
lattice.

First of all let us summarize the well-known results for
a single square well of width dA and depth −V0. For this
potential there are n bound states when the value of the
product V0d

2
A is in the range:

(n− 1)2π2~2

2m
< V0d

2
A <

n2π2~2

2m
· (22)

Equivalently, the state number n + 1 appears at E = 0
when the condition(

V0d
2
A

)
n+1

=
n2π2~2

2m
(23)

is satisfied. The previous equation can be written in our
units as (V0d

2
A)n+1 = n2π2.

Let us now consider a system formed by N identical
square wells, of width dA and depth −V0, separated by
identical flat barriers, of width dB and V = 0, as it is
shown in Figure 2. It corresponds to a periodic KP su-
perlattice built with layers of two different materials, A
and B, for which there is an energy shift in the bottom of
their conduction bands. Let us call A the wells material,

and B the barriers material. The system is surrounded by
two layers of material B of semi-infinite size. The prob-
lem is to know how many bound states exist in such a
superlattice.

Again, the periodicity of the system allows us to
solve the recurrence relation for the characteristic determi-
nant, for which the following analytical expression can be
deduced:

D2N = e−NkBdB {TN (cosβa)− Z(E)UN−1 (cosβa)} .
(24)

The index of the determinant (2N) is the number of
interfaces in the system, which is clearly equal to twice
the number of wells, N . The magnitude β plays the role
of the quasimomentum, and its dispersion relationship is
given by:

cosβa = cos kAdA coshkBdB

−
k2
A − k

2
B

2kAkB
sin kAdA sinh kBdB (25)

where

kA =
√
V0 +E, kB =

√
−E (26)

since we are in the range E < 0. The function Z(E) is
now defined as:

Z(E) = cos kAdA sinh kBdB

−
k2
A − k

2
B

2kAkB
sin kAdA coshkBdB. (27)

We follow the same strategy as for the δ-lattice. Every
new bound state appear in the limit E → 0, where the
dispersion relation given by equation (25) becomes:

cosβa = cos
√
V0dA −

√
V0dB

2
sin
√
V0dA. (28)

As before, the function Z(E) diverges as E goes to 0
and there is a new solution of the equation D2N = 0
whenever UN−1 changes sign, i.e., it becomes zero. Thus,
a new bound state appears whenever the argument of
the function UN−1 is equal to cos(mπ/N), where m =
1, 2, ..., N − 1. Using equation (28) the zeroes of UN−1

correspond to the condition:

cos
mπ

N
= cos

√
V0dA −

√
V0dB

2
sin
√
V0dA (29)

where m = 1, 2, ..., N − 1. Let us define F (V0, dA, dB) ≡

cos
√
V0dA −

√
V0dB
2 sin

√
V0dA. From now on, we do not

write the explicit dependence of F for brevity. In fact,
this function depends on only two variables

√
V0dA

and
√
V0dB.

Equation (29) points out the physical difference be-
tween the parameters

√
V0dA and

√
V0dB. For fixed values

of
√
V0dA, the only N − 1 values of dB for which a new

bound state appears are:

(dB)m = 2
cos
√
V0dA − cos mπ

N√
V0 sin

√
V0dA

· (30)
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Fig. 3. The behavior of the bound states of a system formed by
30 identical square wells as a function of the distance between
wells, dB. We have taken V0 = dA = 1. The first physically
acceptable value of dB for the appearance of a new bound
state (dB)10 is shown as a vertical dotted line.

We can note that for a range of values of
√
V0dA it is

possible to find negative values of (dB)m, which are not
physically acceptable. Let us consider the limit dB → 0,
in which the system is equivalent to a single well of width
NdA and depth −V0. Let us suppose that this well can
maintain m0 (m0 < N) bound states. Then for positive
values of dB , only N−m0 bound states can appear. There
are only N −m0 positive values of dB that are solutions
of equation (30). Note also that when dB = (dB)m the
(m+ 1)th bound state appears at E = 0.

As an example of the previous result, we show in
Figure 3 the energy spectrum of a system formed by 30
identical quantum wells as a function of dB , for the case
V0 = dA = 1. In the limit dB → 0 the equivalent “to-
tal” well has a depth of 1 and a width of 30, so it can
maintain (see Eq. (22)) 10 bound states. Therefore, equa-
tion (30) only produces 20 physically acceptable (posi-
tive) values of (dB)m, corresponding to m = 10, 11, ..., 29
for which a new state appears. The first positive solution
(dB)10 = 9.58× 10−2 is represented in Figure 3 as a ver-
tical dotted line, and gives the appearance of the bound
state that firstly appears when we begin to separate the
wells of the system.

The dependence of the number of bound states on the
magnitude

√
V0dA is very rich, since this magnitude en-

ters as the argument of trigonometric functions. There are
multiple sets of values of

√
V0dA for which equation (29)

is satisfied. This is natural, because when the depth or the
width of a well is increased, the well admits more bound
states, and the lattice must reflect the same behavior.

To illustrate the problem graphically, we represent in
Figure 4 the energy bound spectrum as a function of√
V0dA for a system with 30 wells. Note that, as dA is

increased (we fix numerically dB = 1 and V0 = 2), new
bound states appear (at E = 0), forming the well-known
superlattice minibands separated by gaps. Our purpose

Fig. 4. The bound states of a system formed by 30 identical
square wells as a function of dA with V0 = 2 and dB = 1. The
values dA = nπ/

√
V0 for n = 1, 2 are shown as vertical dotted

lines, and indicate the appearance of the first bound state of a
new miniband. The solid line is used for reference in Figure 5.
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Fig. 5. In part (a), we show the spectrum of the same system as
in Figure 4, but in the region of small energy (in absolute value)
and the range of values of dA corresponding to the appearance
of the states of the second miniband. In part (b), we show the
function F (V0, dA, dB) in a solid line, and in horizontal dotted
lines we show the functions cosmπ/30 for m = 1, 2, ..., 29. The
crossings of these functions with F gives the appearance of new
bound states, as we show with vertical dotted lines connecting
(a) and (b).

here is the exact determination of the values of
√
V0dA

for which new bound states appear in the spectrum and,
as a consequence, we will also explain the reason for the
appearing of the gaps.

The general and exact solution of the problem of the
appearing of new bound states is encountered by solv-
ing equation (29). We show a graphical solution of this
equation in Figure 5. In part (a) we represent the bound
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Fig. 6. The probability density of the three bound states cor-
responding to the ground states of the three minibands of the
system, obtained for the parameters V0 = 2, dB = 1 and
dA = 5.825. These values correspond to the vertical solid line
in Figure 4.

spectrum of the same system as in Figure 4, but only in
the region of small energy (in absolute value) and for a
range of values of dA for which the 30 bound states of the
second miniband appear. In Figure 5b, we show in a solid
line the function F (2, dA, 1) for the same range of values
of
√
V0dA as in part (a). The horizontal dotted lines corre-

spond to cos(mπ/30) for m = 1, 2, ..., 29. The crossings of
these values with the function F (2, dA, 1) give the values
of
√
V0dA for which a new bound state appears. We rep-

resent these values with vertical dotted lines connecting
parts (a) and (b) of Figure 5. Although we only show in
Figure 5 the case of the second miniband, the crossings
of cosmπ/N and the oscillating function F will give the
values of

√
V0dA for which new bound states will appear

in all the minibands.
The gaps between minibands (see Fig. 4) arise because

there are intervals of
√
V0dA for which F is bigger (in abso-

lute value) than 1, and therefore the general equation (29)
has no solution in these intervals. Note that, for

√
V0dB

constant, we can rewrite the function F as:

F =

√
1 +

V0d2
B

4
sin

(√
V0dA + arctan

(
2

√
V0dB

))
(31)

F is a sine function whose amplitude is always greater
than 1. For certain intervals of

√
V0dA we will have that

F > 1, and no new bound states will appear at E = 0 in
this region. Since the energy of the bound states are con-

-2 -1 0
E nerg y

0

5 0 0

1 0 0 0

1 5 0 0

ID
O

S

Fig. 7. Integrated density of states for a superlattice with 500
wells and for V0 = 2, dB = 1 and dA = 5.825. Note that the
three minibands are complete. The parameters correspond to
the solid line at the right of Figure 4.

tinuous functions of
√
V0dA, the previous absence of states

propagates to other energies, forming the well-known en-
ergy gaps for a fix value of

√
V0dA.

An additional remaining question is that we have
determined only N − 1 conditions (per band) for the
appearance of new states. But each band is formed by N
bound states, and therefore there is still one undetermined
condition. It corresponds to the existence of the first state
of each band. A new band begins whenever all the wells
of the system as a whole satisfy the well-known condi-
tions for the appearance of a state in a single square well,
equation (23). In particular, when

√
V0dA = nπ, the first

state of the (n + 1)th band appears. As an example, the
beginning of the second and third bands, at

√
V0dA = π

and
√
V0dA = 2π (with V0 = 2) respectively, are shown as

vertical dotted lines in Figure 4.

The determinant method, which is based on a Green
function formalism, can also provide the wave functions
corresponding to the bound states. Note that the method
yields the information of the total Green function in all
the layers of the system, and also the transmission and
reflection in each interface can be obtained (see Ref. [13]
for more details). Therefore, the wave functions can be ob-
tained directly. In Figure 6, we show the wave functions for
three bound states corresponding to the ground states of
the three bands obtained for the values V0 = 2, dA = 5.285
and dB = 1. These values corresponds to the solid line at
the right of Figure 4. Note how the envelope of the three
states is the same, but they present a different oscillation
pattern, as expected. In addition, the determinant method
is very powerful when calculating the spectrum of bigger
systems, because in general is a well-behaved function of
energy whose zeroes (if the system is closed) are directly
the bound states. These advantages, together with the nu-
merical facilities derived from the recursion relationship
(2) make this method very appropriated in the study of
this kind of phenomena. As an example, and for the same
parameters as in Figure 6, we show in Figure 7 the inte-
grated density of states (IDOS) obtained for a superlattice
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formed by 500 wells. Note that for the parameters that we
are using, the three bands are complete, each one with 500
states.

Finally, we would like to comment that although, for
the sake of simplicity, we have considered in all the cal-
culations that ~ = 2m = 1, our equations are also correct
when the envelope function method is considered with the
effective mass approximation included. Our results can be
directly generalized to a binary superlattice with a well
material A (like GaAs), with an effective mass mA, and
a barrier material B (like GaAlAs), with a different effec-
tive massmB . In this case, the corresponding wave vectors
(26) in the effective mass formalism are just:

kA =
√

2mA (V0 +E) /~2, kB =
√
−2mBE/~2. (32)

Therefore, from (29, 32), the general equation for the
appearance of new bound states (at E = 0) in a superlat-
tice formed by N wells becomes explicitly:

cos
mπ

N
=cos

√
2mAV0

~2
dA−

√
mAV0

2~2
dB sin

√
2mAV0

~2
dA,

(33)

where we have now abandoned our unit convention.

5 Conclusions and remarks

We have obtained conditions for the appearance of bound
states in finite periodic Kronig-Penney structures. In par-
ticular we have considered the cases of δ-well potentials
and rectangular wells and barriers. From these conditions
one can easily deduce the number of states for any given
range of the parameters of the problem. We solved the
problem with the help of the characteristic determinant
method, which is an exact and non-perturbative method
that has established itself as a very powerful tool for the
study of wave phenomena.

For the δ-well case, the relevant parameter is V0a. The
number of states increases with this parameter and ranges
between 1, for very small values of V0a, and the number
of wells, for V0a very large.

For rectangular wells and barriers, the relevant param-
eters are

√
V0dA and

√
V0dB. The states are divided into

bands. The number of states in each band ranges, depend-
ing on the parameters, between 1 and the number of wells,
as it was the case for the δ-wells potential (which only has
one band). The number of states bound by the single ef-
fective well obtained by considering dB = 0 gives us the
number of bands.

Finally, we would like to point out that the problem
studied in this paper, apart from its evident academic
interest, is important also from the experimental point of
view in order to study or design real superlattices. Note
that, although for mathematical convenience we have
restricted ourselves to bound states, our results can be di-
rectly applied to transmission minibands in open systems,
which will appear practically at the same energies as the

bands of bound states in a closed potential. If we are in a
range of the parameters for which new states are able to
appear (given in general by Eq. (33)), this means in the
open case that there is a transmission miniband in the en-
ergy region around the top of the barriers (equivalent to
E = 0 in the closed case). This region is in general more
difficult to study, specially by using simple methods. The
reason is that, in this case, the energy range is far away
from the bottom of the conduction band of the well mate-
rial, and non-parabolicity effects in the dispersion relation
has to be taken into account. On the contrary, if we are
in a range of the parameters for which no new states can
appear, this means that the transmission minibands are
well inside the well material of the superlattice. In this
region, the envelope function method with the effective
mass formalism gives reasonable good results in spite of
its simplicity, even for parabolic dispersion relationship.
In any case, our results can be helpful in order to select
the wells width, the distance between wells or, if possible
by changing the materials, V0, in the construction of a real
superlattice.
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