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Electronic spectrum of quantum-é-wells superlattices in an electric field
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We study one-dimensional periodic chains of quaniimells, centering our attention on the properties of
the electronic spectrum in the presence of an electric field. We study the field dependence of the quasibound
and resonant states of the system, which we define clearly. The spectrum, whose absolute behavior depends on
the symmetry of the potential, is universal if an appropriate origin of energy is chosen. The field finally
transforms the spectrum into a continuous one. We study also the formation of Wannier-Stark ladders. Finally,
we show that in superlattices, the quasibound levels are never degen8€d€3-18207)04640-7

[. INTRODUCTION the Green function of the system using the characteristic de-
terminant method, which is briefly described in the next sec-
Since the first days of quantum mechanics, electric-fieldion.

effects in solids have been a controversial matter until re-
cently. The pioneering works by Bloch, Wannier, and Z&ner Il. METHOD OF CALCULATION
about periodic lattices in an homogeneous electric field in- i ] ]
troduced theoretically the concepts of the Wannier-Stark lad- We shall consider a sequence ffé-function potentials
der, Stark localization, and related phenomena, but it wa8f the form

experimentally difficult to observe these effects. The reason N
was that in ordinary solids the bandwidthsare so large that V(x)=U(x) + 2 V. 8(X—Xp) 1)
the dimensionless parametier A/Fa (F=ef is the electri- = n

cal force;a is the lattice spacings enormous and the effects
above referred were unobservable for accessible fiefds (
<10° V/cm). This problem was eliminated with superlat-
tices, for whichf=1 is easily reachable. There is clear ex-
perimental evidenceof field-induced localization, Wannier-

where the potential(x) can be any external potential ap-
plied [we will concentrate on the casd(x)=Fx]. The
Green functionGF) G(x,x";E) is defined as the solution of
the equation

Stark ladders, and Bloch oscillations in superlattices. This 2 N
fact has produced a great amount of theoretical work during ( — — 4+ Fx+ >, V,8(x—x,)—E | G(x,x":E)
the past few years. dx? n=1
The aim of this paper concerns the existence of sharp
=5(x—x"). 2

Stark-shifted electron and hole states in semiconductor quan-
tum wells and sharp resonant field-dependent states that hay@is GF satisfies Dyson’s equation:

been found lying above the potential barriers enclosing quan-

tum wells. This paper presents analytical and numerical cal- XN

culations for a one-dimensional superlattice built with quan- G(x,x’)=Go(x,x’)+J Go(X,X")V(X")G(x",x")dX",

tum & wells. The field produces a restructuring of the “a &)
ordinary (F=0) spectrum into field-dependent states.

The underlying question is the meaning of bound states ihereGg(x,x") is the unperturbed GF of an electron in the
an electric field. Its mere existence is strange, because if potential Fx. We will concentrate on the retarded GF. An
quantum well is placed in an electric field, the energy specacceptable GFGy(x,x") for the study of the energy
trum becomes continuous, frome to «. Experimental ob-  spectrum is given by
servations suggest that certain states in the continuum are
“special” and differ from the rest by their exceptional . T
stability* The procedures used to find these states have been Go(x,x") == F_1’3AI(§ )BI(E), (4)
basically two: by identifying them with peaks in the density
of states, or as transmission resonaricel this paper, we where £¢=(Fx—E)/F?3 ¢*(£7)=max(min)¢,¢), and Ai
use a different method. The ordinary bound stafes ), or  and Bi are the standard Airy functiof&Ve obtain the qua-
the quasibound state§ ¢ 0) are calculated as the poles of sibound energies of the system as the poles of the Green
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function of the whole system. Gasparianal® showed that
the poles of the Green function of the potentiBl are given 04 - crenes |
by the zeroes of the characteristic determinBit, of the ' +++,++++* T
matrix whose elements are defined as ot .
Dij = 6ij + V;Go(Xi X)), 5 o 2t
where the indexesandj run from 1 toN, the total number % e To0040, L - ',
of & wells. 5 00 o o
It can be showhthat the determinarDy can be written = R e, o
in tridiagonal form. ThereforeDy, which is in general a s st .._..8“
complex function of the energl¢, can be calculated using Ei »c{:;.“,g,,,,,,....-o°"' ¢!
the following recurrence relation: N X
04 — °°°°°°o¢¢°° o°°°°‘ .
Dy=ADpn-1—BDp-2, (6) : eeees :
where the indexn goes from 1 toN. The initial conditions ' . L
areD . .—0 andD.—1 0.0 0.1 02 03 Fe 0.4
-1 o= Electric field

The magnitude#\, andB,,, and thenD, can be calcu-
lated directly® just by fixing the values of the amplitudds
of the wells and their positions;, and using the function
Go(X;,X;), given by Eq.(4). This method, which also can be
generalized to multilayered systeffishas been successfully
applied to study transmission properties of randoamd
quasiperiodit' sequences of barriers.

FIG. 1. Plot of the energy spectrum for odenell, centered at
different points. The values arg =1 (crossey x;=0 (circles, and
x;=—1 (diamond$. We also plot(solid line9 for each value ok,
the functionsE=Fx4, and in dotted lines the results obtained from
perturbation theory.

while a pole of the GF bigger thaRx; corresponds to a
resonant state. This distinction between quasibound and
resonant states was not clear in previous wénhere the

In all the calculations presented from now on, we haveenergyE=0 was considered to be the limit between quasi-
considered that=2m=e=1 (% is Planck’s constant/2, m bound and resonant states, independently of the position
is the electron mass, is the proton chargeand then all the ©Of the well. This criterium will also be applied in bigger

units are derived from this convention. systems. o _
The results show that there exist in all cases a quasibound

state inside the well, and a resonant state lying above the
_ ) well (aboveFx,). This resonant state always appear&at

If we consider one5 well of the form—V; 8(x—x;) (With =0 for very weak fields. The energy of both quasibound and
V1>0) for F=0, a simple calculation indicatesee, €.9., resonant states is modified by the field, butFasncreases,
Ref. 12 that there exist always a bound state, independentlyhe energies of these two states approach each other. Finally,
of the value ofV,, with energyE;=—V7/4. The value of for a critical value ofF (F. in Fig. 1) the two energies
E; is not altered, of course, K; is changed, but the corre- coincide at a value equal .x,. From this value of the
sponding wave function will have parity only ¥ =0. This  well is unable to maintain either quasibound states or reso-
distinction will affect the behavior of the spectrum when annances, and the spectrum of the potential becomes continu-
electric field is considered. ous.

To find the quasibound energy when an uniform electric |t is easy to show, using the standard expressions for the
field is considered, we must solve numerically the equatiomij and Bi functions for an infinitesimal arguméehthatF . is

lll. RESULTS

A. One 6 well

D,=0, due to the presence of the Airy functions@y. In given by

Fig. 1 it is shown the quasibound spectrum as a function of

the electric field applied for three different positionsof the w3

well. The numerical values used avg=1, x;=0 (circles, Fe Vi 8

= 250 6 1
X1=1 (crosses andx;=—1 (diamond$. As expected, the 3°qT(2/3)]
eigenenergy for a well at; is equal to the energy for a well s value, which can be very well approximated By

atx=0 shifted by the amourftx, . The quantitative behav- _y/3/3 coincides exactly with the numerical calculation.
ior of the spectrum in the range of small fields depends
clearly onx, . By using second-order perturbation theory, we
obtair{ for éma)I/I fieldgé? P Y B. Two & wells
Let us consider now a potential of the forwi(x)=
=V [ 8(X—Xq) + 8(X—X5)], wherex;<x,. For F=0, this
potential presents two bound state¥if(x,—X;)>2 is veri-
fied. When a uniform electric fiel& is applied, the quasi-
The perturbative results are plotted as dotted lines in Fig. Zbound energies have to be calculated numerically because
The energy of the state relative Fx; allows us to dis- Gg(x,X) is defined in terms of the Airy functions. The nu-
tinguish between guasibound and resonant states. A pole oferical calculation is performed by using the characteristic
the GF smaller thafrx,; corresponds to a quasibound state,determinant, which in this case is ax2 determinanD,.

V2 27 _,
EZ——+FX1—FF .

(7)
4 1
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FIG. 3. Plot of the quasibound states of a system formed by 10
FIG. 2. Plot of the quasibound levels as a function of the electrics wells with V,=7 anda=1 as a function of the electric field
field for a system with twas wells. We show in squares the case applied, in the weak-field regime. We show with diamonds the
x1=1 andx,=2, and in circles the casg =1/2 andx,= —1/2. spectrum obtained fdF =0.

For numerical purposes, we use the recursion relatdn  state associated to the well. The two quasibound states
where A, and B, are defined in terms d¥;, Gy(x,x), x;  disappear, overlapping at the natural origin of enddptted
andx,. line in the insek

We have studied both the symmetrical € —x,) and the We have also encountered very complicated patterns of
asymmetrical X;# —X,) cases, and the results obtained areresonances, above the ones plotted in Figs. 1 and 2, that
in some way equivalent to the one found for ahevell, but  disappear when the field increases. The Wannier-Stark ladder
with some significative differences. The absolute value of thés probably only well defined for negative energies and in the
spectrum depends on the symmetry. In the range of smaWeak-field regime due to the presence of these resonant
fields, for the symmetric case the two quasibound energiestates, for which evidence is presented in Ref. 14. In the
decrease quadratically with the field; meanwhile, for thefollowing section, in which we study bigger systems, we
asymmetric one there is a linear behavior, as expected frorestrict ourselves to this region to investigate the presence of
perturbation theory. But the spectrum is again universal; wéhe ladder.
can obtain all the results by a proper field—dependent energy
shift. C. N & wells

The universal spectrum is shown in Fig. 2, in which the
origin of energy is taken at the top of the well placed at the
point of smaller potential energy . The behavior of the two N-1
qguasibound states is similar. The quasibound energies are V(x)=Fx—V12 S(x—na). (9)
field dependent, and as the field increases, both of them ap- n=0
proach the energy origin. Associated to each quasibounge quasibound states of the system can be obtained, as be-
state, there is a resonant state, whose energy is also fiejgye, by solving the equatio®y=0, whereDy is now an
dependent and tends to the origin of energy wienn-  Nx N determinant. For numerical purposes, we use the re-
creases. For two critical values of the electric field, calledcysjon relation(6). The results obtained are presented in
Fci andF, in Fig. 2, the highest and the lowest quasiboundgig. 3, in which we plot the energies of the quasibound states
states disappear, respectively, by overlapping with their corss 5 function of the electric field applied, for N=10, V,
responding resonances, and only remains in the continuou§7, anda= 1. WhenF — 0, we recover exactly the spectrum
part of the spectrum. obtained wherf is not present, shown as diamonds in Fig. 3.

An interesting question is whether the states presenfhe apsolute value of the spectrum obtained is different if
above the origin of energy are resonant or quasibound stat€ge consider symmetric or asymmetric potentials, as it hap-
The lowest quasibound state presents no problem. By Statfaneq before, with a quadratic or linear behavior, respec-
localization, this state must be localized in the first well, a”dtively. But if we shift the spectra b, , the results overlap
it disappears af ., by overlapping at the energy origin with jn0 "5 universal spectrum, that is, the one plotted in Fig. 3.
a clear resonant state, also associated to the first well. Thg,g energy spacing between adjacent levels is affected by
field Fc, is given by Eq.(8), that is, the field needed to e electric field, and it is approximately uniform in the cen-

transform the quasibound spectrum into a continuous ongyg| region of Fig. 3, forming a Wannier-Stark ladder.
But the highest quasibound state and its associated ‘“reso-

nance” behave differently. In the inset of Fig. 2, we show as
a solid line the top of this well, given biyx,. For very weak
fields, there is a resonance above, which for a fiEld We now want to describe the properties of systems made
crossesg-x,, and can be considered asecondquasibound with two different types ofs wells. In the case of no electric

Let us consider now a potential of the form

IV. SYSTEMS WITH TWO TYPES OF WELLS
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all our calculations we found that in a repulsion between two

quasibound levels, these practically interchange their slopes.
This means that, after the repulsion, the two levels have in-
terchanged the wells where they are localized. The lowest
guasibound state is localized in the well of smallest potential

energy.

When we increase the number of wells in the system
forming the sequencé,, V,, Vq, V,, ... , the number of
repulsions increases considerably, and even we can find that
there can be several repulsions between two adjacent levels
due to the multiple repulsions and the corresponding inter-
changes of slopes between all the adjacent levels of the sys-

tem. This fact produces a field-dependent and oscillatory en-
ergy spacing between adjacent levels, which can affect
strongly the absorption optical spectrum of superlattices un-
der the effect of a variable electric field.

The repulsions between adjacent levels found in all cases
FIG. 4. Plot of the behavior of the quasibound states of a systen? |T,I %,et?ﬁ;teftzree, Lr;ifggngf@/;ls (é:irroesilg\?e?lcljoewz r]UeSr ;;)e con-
with two differents wells as a function of the electric field applied. q 9 )
In the two cases plotted; =1 andx,=3. In crosses, we show the
caseV,;=5 andV,=4.5, and in circles the casé,=4.5 andV,
=5.

Electric Field

V. SUMMARY

We present here a study of periodic superlattices formed
field applied, it is clear that for a periodic sequence we willPy (lq.uzntumﬁ WZIIS \r/]vh?_n Ig gomo%eneousfelﬁctrlc f|e_lt§i IS d
have two bands of bound states due to the two types of wel|£PPIIEd. We study the field dependence of the quasiboun
But we would like to comment on a phenomenon that doeStates, which are p"?‘ced inside the wells, .and also .Of the
not happen in systems with one type of well. Let us considefesonant states that lie above the well. We give a criterium to

a potential formed by two different wells of the form distinguish clearly between these two types of states. Al-
though the absolute spectrum depends on the symmetry of

(10)  the potential, there is in all cases a “natural” origin of en-
ergy, for which the spectrum is equivalent. We also study
where x;<x,, andV;<V,. When an electric field is ap- how Wannier-Stark ladders appear. If the electric field is
plied, we have an increase of the quasibound energies witktrong enough, the lattice is unable to maintain quasibound
the field, and the increase is faster for the quasibound statgates. Finally, we show that the quasibound levels are never
associated to the, well. AsV,;<V,, the lowest quasibound degenerate.
state increases faster than the highest and they must cross at
a given field. Nevertheless, we found that the two levels
repel each other. This is shown in Fig. 4, where we plot the
qguasibound levels of a system with @wells with x;=1, We acknowledge the financial support of the Spanish
X,=3 as a function ofF; we represent in circles the case DGICYT for Project No. PB93-1125 and for the sabbatical
V,=4.5,V,=5, and in crosses the ca¥g=5, V,=4.5. In  Grant No. SAB95-0349 for V.G.

V(X)==V18(X—X1) = V28(X—Xj),
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