
ain

PHYSICAL REVIEW B 15 DECEMBER 1997-IVOLUME 56, NUMBER 23
Electronic spectrum of quantum-d-wells superlattices in an electric field
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We study one-dimensional periodic chains of quantumd wells, centering our attention on the properties of
the electronic spectrum in the presence of an electric field. We study the field dependence of the quasibound
and resonant states of the system, which we define clearly. The spectrum, whose absolute behavior depends on
the symmetry of the potential, is universal if an appropriate origin of energy is chosen. The field finally
transforms the spectrum into a continuous one. We study also the formation of Wannier-Stark ladders. Finally,
we show that in superlattices, the quasibound levels are never degenerate.@S0163-1829~97!04640-7#
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I. INTRODUCTION

Since the first days of quantum mechanics, electric-fi
effects in solids have been a controversial matter until
cently. The pioneering works by Bloch, Wannier, and Zen1

about periodic lattices in an homogeneous electric field
troduced theoretically the concepts of the Wannier-Stark
der, Stark localization, and related phenomena, but it w
experimentally difficult to observe these effects. The rea
was that in ordinary solids the bandwidthsD are so large tha
the dimensionless parameterf 5D/Fa (F5eE is the electri-
cal force;a is the lattice spacing! is enormous and the effect
above referred were unobservable for accessible fieldsE
<105 V/cm!. This problem was eliminated with superla
tices, for whichf 51 is easily reachable. There is clear e
perimental evidence2 of field-induced localization, Wannier
Stark ladders, and Bloch oscillations in superlattices. T
fact has produced a great amount of theoretical work du
the past few years.3

The aim of this paper concerns the existence of sh
Stark-shifted electron and hole states in semiconductor q
tum wells and sharp resonant field-dependent states that
been found lying above the potential barriers enclosing qu
tum wells. This paper presents analytical and numerical
culations for a one-dimensional superlattice built with qua
tum d wells. The field produces a restructuring of th
ordinary (F50) spectrum into field-dependent states.

The underlying question is the meaning of bound state
an electric field. Its mere existence is strange, because
quantum well is placed in an electric field, the energy sp
trum becomes continuous, from2` to `. Experimental ob-
servations suggest that certain states in the continuum
‘‘special’’ and differ from the rest by their exceptiona
stability.4 The procedures used to find these states have b
basically two: by identifying them with peaks in the dens
of states, or as transmission resonances.5,6 In this paper, we
use a different method. The ordinary bound states (F50), or
the quasibound states (FÞ0) are calculated as the poles
560163-1829/97/56~23!/14929~4!/$10.00
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the Green function of the system using the characteristic
terminant method, which is briefly described in the next s
tion.

II. METHOD OF CALCULATION

We shall consider a sequence ofN d-function potentials
of the form

V~x!5U~x!1 (
n51

N

Vnd~x2xn!, ~1!

where the potentialU(x) can be any external potential ap
plied @we will concentrate on the caseU(x)5Fx]. The
Green function~GF! G(x,x8;E) is defined as the solution o
the equation

S 2
d2

dx2
1Fx1 (

n51

N

Vnd~x2xn!2ED G~x,x8;E!

5d~x2x8!. ~2!

This GF satisfies Dyson’s equation:

G~x,x8!5G0~x,x8!1E
x1

xN
G0~x,x9!V~x9!G~x9,x8!dx9,

~3!

whereG0(x,x8) is the unperturbed GF of an electron in th
potentialFx. We will concentrate on the retarded GF. A
acceptable GFG0(x,x8) for the study of the energy
spectrum7 is given by

G0~x,x8!52
p

F1/3
Ai ~j1!Bi~j2!, ~4!

where j5(Fx2E)/F2/3, j1(j2)5max(min)(j,j8), and Ai
and Bi are the standard Airy functions.8 We obtain the qua-
sibound energies of the system as the poles of the G
14 929 © 1997 The American Physical Society
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14 930 56BRIEF REPORTS
function of the whole system. Gasparianet al.9 showed that
the poles of the Green function of the potential~1! are given
by the zeroes of the characteristic determinantDN , of the
matrix whose elements are defined as

Di j 5d i j 1VjG0~xi ,xj !, ~5!

where the indexesi and j run from 1 toN, the total number
of d wells.

It can be shown9 that the determinantDN can be written
in tridiagonal form. Therefore,DN , which is in general a
complex function of the energyE, can be calculated usin
the following recurrence relation:

Dn5AnDn212BnDn22 , ~6!

where the indexn goes from 1 toN. The initial conditions
areD2150 andD051.

The magnitudesAn and Bn , and thenDn can be calcu-
lated directly10 just by fixing the values of the amplitudesVi
of the wells and their positionsxi , and using the function
G0(xi ,xi), given by Eq.~4!. This method, which also can b
generalized to multilayered systems,10 has been successfull
applied to study transmission properties of random9 and
quasiperiodic11 sequences ofd barriers.

III. RESULTS

In all the calculations presented from now on, we ha
considered that\52m5e51 (\ is Planck’s constant/2p, m
is the electron mass,e is the proton charge!, and then all the
units are derived from this convention.

A. One d well

If we consider oned well of the form2V1d(x2x1) ~with
V1.0) for F50, a simple calculation indicates~see, e.g.,
Ref. 12! that there exist always a bound state, independe
of the value ofV1 , with energyE152V1

2/4. The value of
E1 is not altered, of course, ifx1 is changed, but the corre
sponding wave function will have parity only ifx150. This
distinction will affect the behavior of the spectrum when
electric field is considered.

To find the quasibound energy when an uniform elec
field is considered, we must solve numerically the equat
D150, due to the presence of the Airy functions inG0 . In
Fig. 1 it is shown the quasibound spectrum as a function
the electric field applied for three different positionsx1 of the
well. The numerical values used areV151, x150 ~circles!,
x151 ~crosses!, andx1521 ~diamonds!. As expected, the
eigenenergy for a well atx1 is equal to the energy for a we
at x50 shifted by the amountFx1 . The quantitative behav
ior of the spectrum in the range of small fields depen
clearly onx1 . By using second-order perturbation theory, w
obtain, for small fields,13

E52
V1

2

4
1Fx12

2p

V1
4

F2. ~7!

The perturbative results are plotted as dotted lines in Fig
The energy of the state relative toFx1 allows us to dis-

tinguish between quasibound and resonant states. A po
the GF smaller thanFx1 corresponds to a quasibound sta
e

ly

c
n

f

s

1.

of
,

while a pole of the GF bigger thanFx1 corresponds to a
resonant state. This distinction between quasibound
resonant states was not clear in previous works,7 where the
energyE50 was considered to be the limit between qua
bound and resonant states, independently of the positiox1
of the well. This criterium will also be applied in bigge
systems.

The results show that there exist in all cases a quasibo
state inside the well, and a resonant state lying above
well ~aboveFx1). This resonant state always appears aE
50 for very weak fields. The energy of both quasibound a
resonant states is modified by the field, but asF increases,
the energies of these two states approach each other. Fin
for a critical value ofF (Fc in Fig. 1! the two energies
coincide at a value equal toFcx1 . From this value ofFc the
well is unable to maintain either quasibound states or re
nances, and the spectrum of the potential becomes con
ous.

It is easy to show, using the standard expressions for
Ai and Bi functions for an infinitesimal argument,8 thatFc is
given by

Fc>
p3

35/2@G~2/3!#6
V1

3. ~8!

This value, which can be very well approximated byFc

'V1
3/3, coincides exactly with the numerical calculation.

B. Two d wells

Let us consider now a potential of the formV(x)5
2V1@d(x2x1)1d(x2x2)#, wherex1,x2 . For F50, this
potential presents two bound states ifV1(x22x1).2 is veri-
fied. When a uniform electric fieldF is applied, the quasi-
bound energies have to be calculated numerically beca
G0(x,x) is defined in terms of the Airy functions. The nu
merical calculation is performed by using the characteris
determinant, which in this case is a 232 determinantD2 .

FIG. 1. Plot of the energy spectrum for oned well, centered at
different points. The values arex151 ~crosses!, x150 ~circles!, and
x1521 ~diamonds!. We also plot~solid lines! for each value ofx1

the functionsE5Fx1 , and in dotted lines the results obtained fro
perturbation theory.
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For numerical purposes, we use the recursion relation~6!,
whereA2 and B2 are defined in terms ofV1 , G0(x,x), x1
andx2 .

We have studied both the symmetrical (x152x2) and the
asymmetrical (x1Þ2x2) cases, and the results obtained a
in some way equivalent to the one found for oned well, but
with some significative differences. The absolute value of
spectrum depends on the symmetry. In the range of sm
fields, for the symmetric case the two quasibound ener
decrease quadratically with the field; meanwhile, for t
asymmetric one there is a linear behavior, as expected f
perturbation theory. But the spectrum is again universal;
can obtain all the results by a proper field–dependent en
shift.

The universal spectrum is shown in Fig. 2, in which t
origin of energy is taken at the top of the well placed at
point of smaller potential energyx1 . The behavior of the two
quasibound states is similar. The quasibound energies
field dependent, and as the field increases, both of them
proach the energy origin. Associated to each quasibo
state, there is a resonant state, whose energy is also
dependent and tends to the origin of energy whenF in-
creases. For two critical values of the electric field, cal
Fc1 andFc2 in Fig. 2, the highest and the lowest quasibou
states disappear, respectively, by overlapping with their c
responding resonances, and only remains in the continu
part of the spectrum.

An interesting question is whether the states pres
above the origin of energy are resonant or quasibound st
The lowest quasibound state presents no problem. By S
localization, this state must be localized in the first well, a
it disappears atFc2 by overlapping at the energy origin wit
a clear resonant state, also associated to the first well.
field Fc2 is given by Eq.~8!, that is, the field needed t
transform the quasibound spectrum into a continuous o
But the highest quasibound state and its associated ‘‘r
nance’’ behave differently. In the inset of Fig. 2, we show
a solid line the top of this well, given byFx2 . For very weak
fields, there is a resonance above, which for a fieldFa
crossesFx2 , and can be considered as asecondquasibound

FIG. 2. Plot of the quasibound levels as a function of the elec
field for a system with twod wells. We show in squares the cas
x151 andx252, and in circles the casex151/2 andx2521/2.
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state associated to thex2 well. The two quasibound state
disappear, overlapping at the natural origin of energy~dotted
line in the inset!.

We have also encountered very complicated patterns
resonances, above the ones plotted in Figs. 1 and 2,
disappear when the field increases. The Wannier-Stark la
is probably only well defined for negative energies and in
weak-field regime due to the presence of these reso
states, for which evidence is presented in Ref. 14. In
following section, in which we study bigger systems, w
restrict ourselves to this region to investigate the presenc
the ladder.

C. N d wells

Let us consider now a potential of the form

V~x!5Fx2V1 (
n50

N21

d~x2na!. ~9!

The quasibound states of the system can be obtained, a
fore, by solving the equationDN50, whereDN is now an
N3N determinant. For numerical purposes, we use the
cursion relation~6!. The results obtained are presented
Fig. 3, in which we plot the energies of the quasibound sta
as a function of the electric field applied,F, for N510, V1
57, anda51. WhenF→0, we recover exactly the spectrum
obtained whenF is not present, shown as diamonds in Fig.
The absolute value of the spectrum obtained is differen
we consider symmetric or asymmetric potentials, as it h
pened before, with a quadratic or linear behavior, resp
tively. But if we shift the spectra byFx1 , the results overlap
into a universal spectrum, that is, the one plotted in Fig.
The energy spacing between adjacent levels is affected
the electric field, and it is approximately uniform in the ce
tral region of Fig. 3, forming a Wannier-Stark ladder.

IV. SYSTEMS WITH TWO TYPES OF WELLS

We now want to describe the properties of systems m
with two different types ofd wells. In the case of no electric

c
FIG. 3. Plot of the quasibound states of a system formed by

d wells with V157 and a51 as a function of the electric field
applied, in the weak-field regime. We show with diamonds
spectrum obtained forF50.
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field applied, it is clear that for a periodic sequence we w
have two bands of bound states due to the two types of w
But we would like to comment on a phenomenon that do
not happen in systems with one type of well. Let us consi
a potential formed by two different wells of the form

V~x!52V1d~x2x1!2V2d~x2x2!, ~10!

where x1,x2 , and V1,V2 . When an electric field is ap-
plied, we have an increase of the quasibound energies
the field, and the increase is faster for the quasibound s
associated to thex2 well. As V1,V2 , the lowest quasibound
state increases faster than the highest and they must cro
a given field. Nevertheless, we found that the two lev
repel each other. This is shown in Fig. 4, where we plot
quasibound levels of a system with 2d wells with x151,
x253 as a function ofF; we represent in circles the cas
V154.5, V255, and in crosses the caseV155, V254.5. In

FIG. 4. Plot of the behavior of the quasibound states of a sys
with two differentd wells as a function of the electric field applied
In the two cases plotted,x151 andx253. In crosses, we show the
caseV155 andV254.5, and in circles the caseV154.5 andV2
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all our calculations we found that in a repulsion between t
quasibound levels, these practically interchange their slop
This means that, after the repulsion, the two levels have
terchanged the wells where they are localized. The low
quasibound state is localized in the well of smallest poten
energy.

When we increase the number of wells in the syste
forming the sequenceV1 , V2 , V1 , V2 , . . . , the number of
repulsions increases considerably, and even we can find
there can be several repulsions between two adjacent le
due to the multiple repulsions and the corresponding int
changes of slopes between all the adjacent levels of the
tem. This fact produces a field-dependent and oscillatory
ergy spacing between adjacent levels, which can aff
strongly the absorption optical spectrum of superlattices
der the effect of a variable electric field.

The repulsions between adjacent levels found in all ca
and, therefore, the lack of level crossing allows us to co
clude that the quasibound levels are never degenerate.

V. SUMMARY

We present here a study of periodic superlattices form
by quantumd wells when a homogeneous electric field
applied. We study the field dependence of the quasibo
states, which are placed inside the wells, and also of
resonant states that lie above the well. We give a criterium
distinguish clearly between these two types of states.
though the absolute spectrum depends on the symmetr
the potential, there is in all cases a ‘‘natural’’ origin of en
ergy, for which the spectrum is equivalent. We also stu
how Wannier-Stark ladders appear. If the electric field
strong enough, the lattice is unable to maintain quasibo
states. Finally, we show that the quasibound levels are ne
degenerate.
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