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Abstract

Results of a study on the tunneling electron effective mass as a function of energy and barrier width are reported.
A system with a highly selective transmission factor, a double barrier, has been chosen in order to be able to define
a particular energy. As the energies of the resonant transmission peaks are mostly determined by the effective mass of the
material forming the well, while the transmission-peak width mostly depends on the barrier effective mass, both masses
are obtained separately by fitting results for transmission using layers of periodic lattices and using the simplification
allowed by the effective-mass approximation. The central well width has been varied and several transmission maxima
have been considered, thus covering a wide energy range. The effective-mass in the relatively large barrier is shown to be
much lower than the bulk-conduction-band value. For very thin barriers, when the decay length of tunneling electrons
becomes of the same order as the barrier width, an anomalous increase in the effective mass is observed for high energies.
Finally, we obtain the behavior of the effective mass as a function of energy in a one-dimensional triangular potential
profile. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to their simplicity and usefulness in the
solution of practical problems, the envelope func-
tion method and the effective-mass approximation
have been widely used together in the study of
heterostructures. Although the effective-mass ap-
proximation has been theoretically justified only in
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the bulk of wide systems [1], it has been used even
in multilayered systems in which very narrow
layers are present. To assume that properties corre-
sponding to an infinite bulk material can be used
for a very thin layer of this material when it forms
a barrier between layers of different materials is
highly questionable. Nevertheless, the lack of de-
tailed information about the crystal potential and
the formidable task involved in using it in three-
dimensional simulations with spatially variable
electric fields have made the effective-mass ap-
proximation very common in electron device ana-
lysis even with very narrow layers. Furthermore,
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numerous examples can be found in the literature
in which the effective-mass approximation is claimed
to produce good results, provided that suitable
values are chosen. Notably, transmission through
a single barrier of AlAs 1.42 nm thick, placed be-
tween two GaAs layers [2], which can be regarded
as very narrow since the AlAs lattice constant is
0.57 nm. Even in narrow barriers of amorphous
materials like SiO

2
the effective-mass approxima-

tion has been reported to produce good results with
a barrier thickness of 1.4 nm [3]. Transmission
through AlAs barriers with a very small thickness
(1.05 nm) in a GaAs/AlAs superlattice was reported
by Brozak et al. [4], where a renormalized effective
mass was used. In general, as the envelope-function
approximation produces good results, its validity is
assumed in each layer of the heterostructure.
Therefore, the remaining problem is to choose suit-
able boundary conditions. Detailed studies have
been performed on precisely this issue [5,6].

Notwithstanding, even if the validity of the envel-
ope-function approximation is assumed, a remain-
ing question is the appropriate effective-mass value
that should be chosen for each layer. The mass
corresponding to the minimum of the conduction
band is usually used when dealing with electron
transport. However, this choice can be questioned
in several specific cases. For example, in a quantum
well the allowed energy levels are well above the
conduction band minimum of the well material.
Non-parabolicity effects are therefore important
[7] and the effective mass must be modified. The
use of the conduction-band minimum mass is even
more questionable when considering transmission
through a barrier, since tunneling usually takes
place at an energy well below the barrier conduc-
tion-band edge. In this case there are no physical
reasons to assign a conduction-band mass to an
energy level inside the band gap of the barrier
material and so the use of the band edge barrier
effective mass is extremely suspect and the real
band structures of the barrier should be taken into
consideration. It would be more reasonable to use
a dispersion relationship with participation of both
the conduction- and valence-band effective masses.
But as the effective mass of electrons at the top of
the valence band is negative, the effective mass
inside the band gap should decrease with energy,

even changing its sign at an energy value close to
the middle of the band gap, where a zero value can
be accepted. This result has been reported by Ando
and Akera [8]. A similar result was obtained by
Bowen et al. [9], who showed that a parabolic E—k
dispersion relationship in the barriers cannot accu-
rately reproduce experimental current-voltage
curves in a double-barrier diode, while much better
agreement with experimental results is obtained if
the E—k dispersion calculated with a ten-band
model is used. Nevertheless, another possibility is
that the effective mass of electrons which cross a
narrow barrier is influenced by the materials on both
sides of the barrier in addition to the influence of
the barrier material itself, as concluded by Brozak
et al. [4]. Considering only parameters for the
barrier material, in computing the energy-depen-
dent effective mass within it, may be therefore insuf-
ficient, it being important to consider properties of
the material on both sides of the barrier as well.

An additional question is the lowest barrier
thickness at which the effective-mass approxima-
tion, even with an energy dependence, can produce
accurate results. Of course the concept of effective
mass makes no sense in barriers with only one
lattice period. But even with several lattice periods
the effective-mass concept in the barrier should
only be used at energies at which the barrier thick-
ness is several times higher than the inverse of the
damping factor. Given these difficulties in choosing
the effective-mass value, the aim of this paper has
been to test the effective-mass approximation as
a function of energy as well as of the barrier width.
To select a definite energy, a system with a highly
selective transmission factor has been chosen:
a double barrier. As it is well known, transmission
peaks are obtained at energies very close to the
central well levels. Their energies are therefore
determined by the well material effective mass. On
the other hand, disregarding scattering-assisted
transitions, the transmission-peak width is deter-
mined by the transmission of the two barriers [10]
and is thus dependent on the barrier effective mass.
As a consequence, if the energy position and width
of a transmission peak obtained in a ‘real’ double
barrier are compared to the energy position and
width of the transmission peak obtained with
the effective-mass approximation, information
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concerning the well and barrier effective masses can
be gathered at the energy of the transmission max-
imum. By varying the central well width and con-
sidering several transmission maxima, this study
can be accomplished across a wide energy range,
which is the procedure used in this paper.

One of the main objectives of this paper is
a qualitative description of the expected properties
of the effective masses for both the well material
and the barrier material in a heterostructure. To
perform this qualitative study, we need to solve
exactly a model in which the periodic potential at
atomic scale is taken into account (from now on, we
will term it as a ‘real’ crystal), and we have to
compare these exact results with the ones obtained
from the envelope function method in the effective-
mass approximation, that disregards the periodic-
ity of the potential at atomic scale. Our choice for
the exactly solvable model is a ‘real’ binary lattice
in which the periodic potential is represented by
a Kronig—Penney series of d functions. The trans-
mission through this system has been calculated
and an attempt has been made to reproduce it with
the simpler potential provided by the effective-mass
approximation. The effective masses of the mater-
ials of the well and of the barrier have been modi-
fied to achieve good agreement both in the position
and width of the transmission peaks. In previous
works, results given by Kronig—Penney lattices
have been compared with those produced by the
envelope-function approximation in a single het-
erojunction, allowing the analysis of matching con-
ditions in one heterointerface [11]. Nevertheless,
with the procedure used here, the mass in the two
materials, well and barrier, can be studied separate-
ly. Following sections present the calculation pro-
cedure, a more detailed description of the system,
and also our most significant results.

2. Method of calculation

In order to calculate the transmission coefficient
through the double barrier in both cases, in the
‘real’ crystal and in the envelope-function approxi-
mation, we used the characteristic determinant
method, which is closely related to the Green func-
tion (GF) of the whole system [12,13]. This method

can be considered as an alternative to the widely
used transfer matrix method and provides not only
the transmission coefficient of the system, but also
the density of states and, if the system is closed, its
bound states. This method has been shown to be
very valuable in the study of random [12] as well as
quasiperiodic [14] one-dimensional systems, even
in the presence of applied electric and magnetic
fields [15,16].

The double-barrier heterostructure is built in
both cases by using a multilayered system. In the
structure we termed ‘real crystal’, we consider the
case where the extent of each individual potential
»(x) is small as compared to any other typical
length of the system. In particular, the different
layers are pieces of Kronig—Penney lattices built
with d-function barriers. Note, however, that gener-
ally this simplification with Kronig—Penney lattices
is not necessary for applying the method discussed
here. As for the envelope-function approximation,
the layers are just homogeneous pieces character-
ized by their lengths and the constant value of their
potential energy.

For such multilayered systems, the method of the
characteristic determinant presents some features
that greatly facilitate the numerical calculation.
The basic idea of the method is to take into account
multiple interfaces consistently and exactly without
making use of the perturbation theory (see Ref.
[13] for more details). In this method the Green
function (GF) is first evaluated when one boundary
between two media is available. In the case of two
boundaries, the problem is solved using the GF for
one boundary. Therefore we can solve the problem
iteratively with n#1 boundaries, considering the
solution with n boundaries to be known. In the case
of two semi-infinite media A and B we have the
conditions of the GF continuity and the equality of
currents at the boundary x"x

1
:
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where G
A
(x, x) (G

B
(x, x)) are the exact one-dimen-

sional GF to the left (right) of boundary x
1
. The

initial information needed to apply the method is
just the exact GF G

i
(x, x) (i"1, 2,2, N) of each
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one of the N layers of the system, but when these
layers are considered to be isolated and infinite
materials.

The next step for the further calculation is to
determine the appropriate boundary conditions at
abrupt interfaces in the frame of the effective-mass
theory. We restrict ourselves to only the most wide-
ly used boundary conditions (see Ref. [6] for more
details),
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where m*
A,B

is the electron effective mass in the
corresponding region. Note that we have written in
the previous equation GI

A(B)
instead of G

A(B)
. The

symbol ’F’ indicates that the GF are not exact, in
the sense that they are written in terms of the
effective masses, that is the approximation usually
considered. Further calculations indicate that the
final results, concerning the calculations of the
transmission coefficient of the heterostructure, the
density of states, etc., remain unchanged when the
matching (1) for the exact GF are replaced by
conditions (2) valid for the GF written in terms of
the effective mass (see, Ref. [17] for more details).
With these boundary conditions, we can use the
characteristic determinant by the substitution of
the exact GF by the GF in the effective-mass ap-
proximation.

In the cases we are studying, the determinant, in
general a complex function of energy E, satisfies the
following recurrence relationship:

D
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D
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!B

i
D
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, (3)

where the explicit dependence on energy E has been
omitted and index i ranges from 1 to N, where N is
the total number of layers. The initial conditions
are

D
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0
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1
"1. (4)
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where r
i~1,i

is the reflection amplitude between
layers i!1 and i, in general given by
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G
i
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(x, x) is the GF of the same coordinates in

layer i-th. The last magnitudes involved in the cal-
culation of the characteristic determinant are func-
tions j

i~1,i
, defined as

j
i~1,i
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xi
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1

2G
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where x
i~1

and x
i
are the boundaries of layer i!1.

As mentioned above, all the magnitudes needed to
calculate the characteristic determinant can be ob-
tained if the N Green functions G

i
are known.

Moreover, this fact makes this method exception-
ally general, since the layers can be of totally differ-
ent materials, and their properties are introduced in
the total system by their GF.

To obtain the transmission coefficient of the
whole system, it is necessary to define an auxiliary
determinant from D

N
, termed D1

N
, with the expres-

sion
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N
"D
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The transmission coefficient is finally obtained
from the compact expression

¹
N
"DD1

N
D~2. (9)

3. Construction of the system

3.1. Double-barrier heterostructure

We built a one-dimensional double-barrier het-
erostructure formed by two different binary crys-
tals, each consisting of a piece of a Kronig—Penney
(KP) lattice made of d-function potentials [11].
We designed two different crystals, A and B,
and formed the structure ABABA. By using an
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Fig. 1. Plot of an example of the fitting method used in the
paper. The solid line represents the transmission coefficient of
the real heterostructure, and the dotted line corresponds to the
same magnitude using the envelope-function approximation.
We fit not only the position of the resonance (mainly controlled
by m*

A
), but also its width (mainly controlled by m*

B
). This allows

us to determine the two masses for the energy of the resonance.

appropriate choice of d-function amplitudes in the
A and B materials, named »

A
and »

B
, respectively,

we obtained a double-barrier heterostructure.
To apply the method set forth in the previous

section in this system, we needed to know the exact
Green function G

n
(x, x) (n"A, B) of an infinite

Kronig—Penney crystal, made of d-function poten-
tials. The result for an energy E inside an allowed
band is given by (see e.g. Ref. [18])

G
n
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2k sin b

n
aG1#

»
n

k

sin kx sin k(a!x)

sin ka H,
(10)

where »
n

is the amplitude of the d barriers that
form the crystal, a is the lattice constant, which is

the same for both lattices, k"JE (we consider
from now on that +"2m

0
"1, where m

0
is the free

electron mass), and b
n

plays the role of
quasimomentum and its relationship with energy
E is given by the standard KP dispersion relation

cos b
n
a"cos ka#

»
n

2k
sin ka. (11)

When the modulus of the RHS in Eq. (11) turns out
to be greater than 1, b

n
has to be taken as imaginary

(b
n
"ic

n
, c

n
'0). This situation corresponds to

a forbidden energy gap.
It is important to point out that the use of GF of

the type (10) (which is a Bloch Green function)
implies that the d-crystal A at both sides of the
sequence ABABA is infinite, and therefore corres-
ponds to bulk material of type A.

In the case of the envelope function approxima-
tion, we used two layers, A and B, of constant
potential energy E

A
and E

B
, and arranged the se-

quence ABABA. The values of E
A

and E
B

were
chosen such that the difference E

B
!E

A
, which is

the height of the two barriers, is equal to the differ-
ence of the energy-band minima in the ‘real’ struc-
ture. Without loss of generality, E

A
can be set to

zero. We obtained the barrier height from the en-
ergy difference between the conduction-band min-
ima in A and B, and the effective masses from fitting
curvatures at the band edges.

In order to obtain the effective mass of the
‘real’ crystal as a function of energy, we compared
the transmission coefficient of the heterostructure

formed with d-function crystals to the transmission
coefficient in the envelope-function approximation,
both calculated from the characteristic determi-
nant. In the effective-mass approximation the un-
perturbed GF in the materials A, B can be written
in the standard form

GI
A,B

(x, x)"
im*

A,B
J2m*

A,B
(E!E

A,B
)
. (12)

The method used to obtain the value of the
effective mass makes use of the resonant peaks of
the double barrier. By means of an iterative proced-
ure, we consecutively varied the values of m*

A
and

m*
B

to fit not only the position of the first resonant
peak on the energy axis, but also its width. An
example of this type of fit is shown in Fig. 1, where
the transmission coefficient of the real double bar-
rier around a resonant peak (solid line) and the
fitted transmission coefficient in the envelope-func-
tion approximation (dashed line) are represented.
The perfect adjustment obtained allowed us to de-
termine the values of the two effective masses at the
energy of the resonant peak. Once the resonant
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Fig. 2. Schematic of the potential energy profile used to simu-
late the triangular potential barrier. The two lateral unaffected
materials are considered to be infinite.

peak of the real heterostructure has been matched
properly, as just described, separate values of
m*

A
and m*

B
are determined for this energy. Never-

theless, it is worth noting that this good agreement
is obtained only for one peak, corresponding to the
energy being considered.

3.2. Abrupt heterostructure in an electric field

In order to discuss the behavior of the effective
mass in an external electric field and complete our
calculations, we have used a method similar to that
detailed in the previous subsection. This can be
considered not only as a separate case but also as
an application of the results obtained with the
method in that subsection. This barrier corres-
ponds to the sequence AB, but with an electric field
applied in material B. The scheme of potential
energy is shown in Fig. 2.

In the real crystal the continuous linear de-
crease of the potential in material B is replaced by
closely spaced potential steps. Each step consists of
two atomic layers within which the potential is con-
stant. The energy difference between consecutive
steps is made compatible with the strength of the

applied field by appropriately changing the lowest
value of k within the steps in Eq. (10). The corre-
sponding k

i
for layer i will be given by

k
i
"JE#¸(i!1)]eF, (13)

where F is the modulus of the homogeneous ap-
plied electric field, e is the electron charge and ¸ is
the length of layer i. The term (i!1) is included
since for layer i"1 (the first small piece of material
B), the origin of energy remains unchanged, and
therefore the barrier in this position has the same
height as in the F"0 case.

In the envelope-function approximation, we built
the same structure as in the real crystal, formed by
layers of constant potential energy with decreasing
value in the direction of the field. We used the same
length for each layer as in the real crystal, charac-
terizing them by their effective masses. As the po-
tential is constant in each small layer, the boundary
conditions (2) also remain valid.

4. Results and discussion

4.1. Double barrier

The result for the effective mass in the A material,
m*

A
, obtained using the methods described earlier, is

shown in Fig. 3 as a function of energy. The effec-
tive masses right in the conduction-band minima
for the A and B infinite lattices, m

1
and m

2
, respec-

tively, are plotted in solid circles, with the smallest
value corresponding to the A lattice. A monotonic
increasing behavior of m*

A
with energy can be ob-

served. The energy ranges from E
A

to E
B
, which is

the height of the barrier.
The curves in Fig. 4 show in symbols the depend-

ence of the effective mass m*
B

in the barrier (material
B) on the energy, for different values of the barrier
width (curves with £, *, n, and e correspond to 6,
4, 3, and 2 periods of the B lattice, respectively.
Curves for barriers with more than six lattice peri-
ods practically coincide with the curve for six peri-
ods). Note that for the relatively large barrier width
the effective mass m*

B
monotonical increases with

energy, being close to m
1
"0.022m

0
for energies

close to the conduction-band minimum of the
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Fig. 3. Behavior of m*
A

of the well material of the well (dia-
monds) as a function of energy. A linear fit (solid lines) which
reproduces very well the dependence of m*

A
on energy for the

whole energy range is also shown.

Fig. 4. Behavior of m*
B

of the barrier material as a function of
energy for different barrier widths. The energy range is the
height of the barrier, and the different barrier widths are, in
periods of lattice B, 6 (+), 4 (*), 3 (n) and 2 (e). In addition, we
show as a solid line the behavior of m*

B
in the same range of

energy, but for a triangular potential barrier.

A lattice, tending to reach m
2

as the energy ap-
proaches the conduction-band minimum of the
B lattice. At an energy well below the barrier con-
duction-band edge, the effective mass m*

B
of the

tunneling electrons is considerably lower than
the bulk-conduction-band value of m

2
"0.033m

0.
The same conclusion was reached by Brozak et al.
[4], analyzing the experimental results of tunneling
cyclotron resonance in a thin barrier GaAs/AlAs
superlattice. It was shown that the mass in the AlAs
barrier is strongly renormalized down to 0.09m

0
from the bulk-conduction-band value of 0.015m

0
[4]. It seems that this kind of renormalization of
the effective mass deep in the band gap is a general
result and is connected with the density of states
in the barrier region. We numerically verified that
the behavior of the average density of states versus
energy is qualitatively the same as for the effective
mass, and therefore do not plot the corresponding
figure to avoid repetition. For a very thin barrier,
when the decay length of tunneling electrons
becomes of the same order as the barrier width
(see the curve with e in Fig. 4), an anomalous
increase of the effective mass is observed for high

energies. This can be interpreted as resulting from
the formation of a very narrow band (and thus
a very large effective mass) in the real part of the
band structure in the barrier. It is also interesting to
note that the behavior of the two masses, m*

A
and

m*
B
, is quite similar, as can be seen by comparing

Figs. 3 and 4. Hence, dividing by the effective mass
in the boundary condition (2) does not significantly
affect the results.

4.2. Triangular barrier

The solid line in Fig. 4 reflects the behavior of the
effective mass of a tunneling electron in B, in which
there is an applied electric field. It can be seen that
m*

B
increases monotonically with energy, but with

a lesser slope. This behavior is reasonable since in
the triangular barrier there is always a region where
the energy is very close to the conduction-band
edge of material B.

It is of interest to emphasize here the great
influence of material A on m*

B
, since this is
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rarely taken into account. An example of current
high-technological interest is the triangular or
trapezoidal barrier which appears in a Metal—Ox-
ide—Semiconductor structure, where both Fowler—
Nordheim and direct tunneling are observed. The
effective mass in the oxide is often measured by
analyzing tunneling results [19,20]. In most of
these studies the effective mass of the electron in the
SiO

2
while tunneling is attributed only to the oxide

material. According to the results of this paper, the
effective mass in the emitter material, normally
silicon, must also be taken into consideration as it
can be dominant due to the substantial barrier
height of the silicon—SiO

2
interface.

5. Conclusions

One of our foremost conclusions is that in com-
puting transmission through a potential barrier,
using constant values such as m

1
and m

2
is not

a suitable approximation. An energy- and barrier-
width dependent effective mass must be considered.
If this is not done, the energy resonant peaks in
a double-barrier system cannot be accurately ob-
tained. Furthermore, the effective mass within
the barrier, corresponding to energies within
the bandgap in the barrier material, seems to be
strongly influenced by the emitter material. This
effective mass is closer to the conduction-band ef-
fective mass of the emitter material than to the
effective mass in the conduction band of the barrier
material at low energies, where tunneling takes
place in many cases of interest. Another conclusion
is that using a suitable energy-dependent effective
mass that is independent of the barrier width can
produce reasonably good results only down to
about four lattice periods, and for energies that are
not near the top of the barrier. For thinner barriers
a strong deviation is observed, mainly at high ener-
gies, while almost no deviation is seen at very low
energies. The coincidence of the effective mass
values at very low energies, even with very narrow

barriers, is proof of the minimal influence of the
barrier material in this energy region.
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