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A convenient formalism, based on the surface Green’s functions is developed that allows
one to obtain a general expression for the B¨uttiker–Landauer tunneling time through one-
dimensional barriers of arbitrary shape. It is shown that transmission, reflection and dwell
times can be expressed in terms of the scattering-matrix elements. Although the results are
based on the Larmor clock approach, there are indications that they will be applicable to a
wide range of clocks. A relation between functional derivatives of the barrier potential and
partial derivatives with respect to the incident energy is established. Finally, an analytical
expression for escape time of an electron from a finite disordered region is derived and the
connection to thelocal scattering-matrix elementsis discussed.
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1. Introduction

The calculation of the time interval during which a particle interacts with the barrier of arbitrary shape
has raised great interest recently and has been studied both theoretically and experimentally (see, e.g. [1, 2]
and references therein). This is of particular importance in the context of the remarkable developments in
the fabrication of mesoscopic devices [3, 4] and the synthesis of promising chemical nanostructures [5],
where quantum transport is based on the tunneling process. Over the years the problem of tunneling in
one-dimensional (1D) systems has been approached from many different points of view, as shown in the
recent review on the subject by Landauer and Martin [2]. One approach is to follow the behavior of a
wavepacket incident on the barrier and calculate the delay introduced by the barrier. This type of approach
is beset with difficulties, mainly associated with the dispersive character of the propagation and with the
difficult experimental determination of the delays due to the barrier [2]. Physically more significant is the time
during which a transmitted particle interacts with the barrier, as measured by some physical clocks which
can detect the particle’s presence within the barrier. There is a wide choice for the physical clocks [6–12]:
one of them, the time-modulated barrier, was proposed by B¨uttiker and Landauer, to analyze the behavior
of transmitted electrons through a potential barrier, supplemented by a small oscillatory perturbation [7, 13].
Another physical clock mechanism, based on an idea by Baz’ [6] to utilize the Larmor precession frequency of
the spin, produced by a weak magnetic field acting within the barrier region is the so-called B¨uttiker–Landauer
(BL) time τBL [7, 8]. In this method, which is the most extensively studied, the spin is thought to be polarized
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initially perpendicular to the direction of motion of the electron (y-direction). The rotation of the spin, as it
traverses the barrier, is then studied by determining the time evolution of itsz component along the magnetic
field perpendicular toy, and along they-direction. Two times,τBL

y andτBL
z , are determined as the inverse

expectation values of they andz components, respectively, of the Larmor frequency. A physical connection
was made between they andz component of the BL tunneling times, the density of states and the Landauer
conductance, respectively [14].

This work will concentrate on the Larmor clock approach and following [14, 15], a general expression will
be presented for the tunneling and reflection times in terms of the surface of Green’s function (GF) of the
whole system, including the 1D arbitrary barrier and the regions outside it. Thus a relation between functional
derivatives of the barrier potential and partial derivatives with respect to the incident energy is established and
an analytical expression for escape time of an electron from a finite disordered region is derived. Furthermore
in Appendixes A and B specific expressions for the tunneling time in layered systems are established and it is
shown that they are equivalent to those by Sokolovski and Baskin [10], obtained with the Fenman path-integral
technique, to those by Leavens and Aers [16], using the auxiliary barrier potential and to those by Jauho and
Jonson [17], obtained in the generalized discussion of the time-modulated barrier (see [7, 13]).

2. Formalism in terms of Green’s functions

Let us now derive a general expression for the B¨uttiker–Landauer traversal time using the surface GF
method [14, 15]. The GF method, allowing us to take into account multiple interfaces consistently and exactly
without the use of the perturbation theory, was proposed in [18, 19] to study the energy spectra of electrons
in systems containing interfaces between different crystals (see Appendixes A and B).

We will consider a 1D system with an arbitrary potentialV(y) confined to a finite segment 0< y < L.
We will call this region ‘the barrier’ of lengthL, and we will assume that scattering in it is purely elastic.
As in the case of a rectangular barrier, discussed by B¨uttiker [8], we apply a weak magnetic fieldB in the
z-direction and confined to the barrier:

B = Bθ(y)θ(L − y)ẑ (2.1)

If we concentrate on the motion of an electron, with kinetic energyE = k2 (h̄ = 1 andm= 1
2 is the electron

mass) and with spins = 1
2, we have to consider its two wavefunctions91 and92, corresponding to the two

spin projections of+ 1
2 and− 1

2 along thez-axis. The column wavefunction̂9(y) represents compactly both
spin states:

9̂(y) =
(
91

92

)
. (2.2)

The electron inside the barrier from the left with an energyE and with its spin polarized along they-direction,
has its wavefunction before the barrier given by:

9̂(y) =
(

1
1

)
exp(iky) (2.3)

wherek = (E + iη)1/2, with η→ 0.
In the presence of a magnetic field, the Schr¨odinger equation takes the form:(

− d2

dy2
+ V(y)− E

)
9̂(y) = −EµB9̂(y) = −µB

(
1 0
0 −1

)
9̂(y). (2.4)

The term−EµB on the right-hand side describes the interaction. Since by assumption the vectorB is directed
along thez-axis and the magnetic momentEµ is of the formEµ = 2µs, wheres is the particle spin vector, we
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have:

EµB = 2µszB = µσzB = µB

(
1 0
0 −1

)
, (2.5)

whereσz is a Pauli matrix.
The problem is solved by perturbation theory. In the lowest order inB, the spinor9(L) of the electron on

the right end of the barrier is given by:

9(L) =
(

1
1

)
9(L)+ B

2

(
1
−1

) ∫ L

0
ψ(0)G(L ,0)dy. (2.6)

Hereψ(y) is the solution of the spatial part of the Schr¨odinger equation in the absence of the magnetic field.
This spatial part of the wavefunction can be written in terms of GF of the system as:

ψ(y) = exp(iky)−
∫ L

0
G(y, y′)V(y′)exp(iky′)dy′, (2.7)

whereG(y, y′) is the retarded GF, whose energy dependence is not written explicitly. It should satisfy the
Dyson equation:

G(y, y′) = G0(y, y′)+
∫ L

0
G0(y, y′′)V(y′′)G(y′′, y′)dy′′, (2.8)

whereG0(y, y′) = i exp(ik|y− y′|)/2k is the free-electron GF. Some properties of the GF are discussed in
Appendix A.

2.1. Tunneling time

Now we are ready to obtain all the relevant properties of the problem in terms of the GF solution of the
previous equation. The expectation value of the component of the spin along the direction of the magnetic
field of the transmitted electron is, up to second order inB:

〈Sz〉T = 1
2〈9(L)|σz|9(L)〉 = −4B Re

[
ψ∗(L)

∫ L
0 ψ(y)G(L , y)dy

]
. (2.9)

We want to express the wavefunctionψ(y) appearing inside the integral in the previous equation in terms of
the GF. So, we take into account the following relationship between the wavefunction and the GF of a 1D
system:

ψ(y) = −2ikG(0, y). (2.10)

For 1D systems also, we can further simplify the problem by writing the general expression of the GF,G(y, y′),
in terms of its own expression at coinciding coordinatesy = y′ [20]:

G(y, y′) = [G(y, y)G(y′, y′)]1/2 exp[i |θ(y)− θ(y′)|], (2.11)

where the phase factorθ(y, E) is defined as:

θ(y, E) =
∫

idy

2G(y, y)
. (2.12)

Substituting (2.11) into (2.9) and making use of the relation (2.10) one finds the spin component along the
direction of the magnetic field:

〈Sz〉T = 4B|ψ(L)|2 Re
∫ L

0
G(y, y)dy. (2.13)
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A similar procedure for the spin component along they- andx-directions lead to

〈Sy〉T = −4B|ψ(L)|2 Im
∫ L

0
G(y, y)dy (2.14)

and

〈Sx〉T = 2|ψ(L)|2
(

1− B2

∣∣∣∣ ∫ L

0
G(y, y)dy

∣∣∣∣2). (2.15)

Thez, y andx components of the BL traversal time are proportional to the corresponding spin components
[6, 8], and we finally arrive at:

τBL
z,T = Re

∫ L

0
G(y, y)dy, (2.16)

τBL
y,T = Im

∫ L

0
G(y, y)dy, (2.17)

and so

τBL
T =

∣∣∣∣ ∫ L

0
G(y, y)dy

∣∣∣∣, (2.18)

if we make use of the following relationship:

〈Sx〉2+ 〈Sy〉2+ 〈Sz〉2 = 1
4.

The final result, eqn (2.16) or eqn (2.17), only depends on the integral of the GF at coinciding coordinates
and can be calculated quite generally in a finite region [20, 15]. It is straightforward to show that the final
result can be expressed in terms of partial derivatives with respect to energy (or, equivalently, the incident
wavevectork = √E) (see Appendix B)

τBL
y,T = Im

∫ L

0
G(y, y)dy= Im

1

2k

{
∂ ln t

∂k
+ 1

2k
(r + r ′)

}
(2.19)

τBL
z,T = Re

∫ L

0
G(y, y)dy= Re

1

2k

{
∂ ln t

∂k
+ 1

2k
(r + r ′)

}
. (2.20)

These are general expressions, independent of the model considered.r andr ′ are the reflection amplitudes
from the left and from the right, respectively.t is the transmission amplitude, which is independent of incident
direction as can be deduced from the time reversal and current conservation requirements [21]. For a spatially
symmetric barrierV(y) = V(−y) one has additionallyr = r ′.

The first term on the right-hand side of eqns (2.19) and (2.20) proportional to imaginary and real parts
of ∂ lnt/∂k, mainly contains information about the region of the barrier. Most of the information about the
boundary is provided by the reflection amplitudesr andr ′, and is of the order of the wavelengthλ over the
length of the systemL, i.e. 0(λ/L). Thus, it becomes important for low energies and/or short systems. As is
pointed out in [22] a calculation of the density of states (DOS) without taking into account the extra term in
eqn (2.19) yields a wrong result without an oscillation term. Such oscillations in DOS and the partial DOS
should influence the conduction properties of sufficiently small conductors [23].

Note that the second term in eqns (2.19) and (2.20) can be neglected in the semiclassical (WKB) case, ifr
(and sor ′) is negligible (e.g., in the resonant case, when the influence of the boundaries is negligible) and, of
course whenλ� L. When boundary effects can be neglected, such a situation arises in the general analysis
of two interfering incident waves, which yields the characteristic time [24]

τ = h̄|t−1
E |

∣∣∣∣dtE
d E

∣∣∣∣ =
{(

dϕ

d E

)2

+
(

d ln T

d E

)2
}1/2

,
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as well as in [25], where Leavens and Aers regarded the shape distortion of the transmitted wave by the
infinitely large barrier, following the papers of B¨uttiker and Landauer [13, 26].

The integral of the GF at coinciding coordinates, and so the components of the traversal time, can be related
to the density of states and the conductance. It is well known that the imaginary part ofG(y, y) is proportional
to the local DOS at the corresponding energy. So,τBL

y,T (2.19) can also be written in terms of the average DOS
of the electron in the system per unit energy and per unit lengthνL(E):

τBL
y,T = πLνL(E). (2.21)

As for the second component of the BL timeτBL
z,T it can be connected with the conductance of a 1D structure

coupled by two perfect leads. Using the well-known Landauer formula for the conductance [27]

G = T

measured in natural units(2e2/h = 1), we can rewrite eqn (2.20) in the form

τBL
z,T =

1

2k

{
∂ ln G

2∂k
+
√

1− G

k
sin(ϕ) cos(ϕa)

}
. (2.22)

Hereϕ is the scattering phase andϕa is an extra phase accumulated, with respect to transmitted particles, by
reflected particles incident from the left or from the right.

Thouless [28] has shown the existence of a dispersion relation between the localization length and the DOS.
This relationship can be expressed [29] in the form of a linear dispersion relation between the real, Re lnt ,
and imaginary, Im lnt , parts of the complex transmission amplitude. Similar relations also hold between the
partial DOS and the sensitivity [22]. As the self-averaging properties ofτBL

z,T and ofτBL
y,T in disordered systems

they are an immediate consequence of self-averaging of the localization length and of the DOS [29]. It means,
thatτy,T is additive, in the sense that

τBL
y,T (0, L) = Im

∫ L

0
G(y, y)dy= τBL

y,T (0, y)+ τBL
y,T (y, L) (2.23)

as we can easily deduce from eqns (2.19). A similar relation holds for theτBL
z,T too. This property has been

pointed out by Leavens and Aers [25] when they discussed the local version of the Larmor clock with an
arbitrary barrier potential and a localized magnetic field inside the barrier.

2.2. Reflection time

It is clear that the orientation of the spin of the reflected wave and so the BL reflection timeτBL
R from

the arbitrary 1D barrier can be calculated in the same way as we have done for the transmitted wave (see
eqns (2.9)–(2.18)). Proceeding as above, we find

〈Sz〉R = 1
2〈(9(0)− 1)|σz|(9(0)− 1)〉

= 4B Re(ψ∗(0)− 1)
∫ L

0
ψ(y)G(0, y)dy (2.24)

〈Sy〉R = −4B Im(ψ∗(0)− 1)
∫ L

0
ψ(y)G(0, y)dy (2.25)

〈Sx〉R = 2|ψ∗(0)− 1|2
(

1− B2

∣∣∣∣ ∫ L

0
ψ(y)G(0, y)dy

∣∣∣∣2) (2.26)
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and finally:

τBL
y,R = Im

1+ r

r
e−2i θ(0)

∫ L

0
G(y, y)e2i θ(y) dy

= Im
1

2k

{
∂ ln r

∂k
− 1

2kr
(1− r 2− t2)

}
(2.27)

τBL
z,R = Re

1+ r

r
e−2i θ(0)

∫ L

0
G(y, y)e2i θ(y) dy

= Re
1

2k

{
∂ ln r

∂k
− 1

2kr
(1− r 2− t2)

}
(2.28)

whereθ(y) is given by eqn (2.12).
These expressions are the main results of this paper and are valid for an arbitrary 1D potential shapeV(y).

Together with the eqns (2.19) and (2.20) they complete the set of BL times in terms of the scattering-matrix
elements. Note that the second term in eqns (2.27) and (2.28) is of the same order of magnitude as the
analogous one in eqns (2.19) and (2.20) and so becomes important for an open and finite system.

Some of the well-known relations between the componentsτBL
y,T , τBL

z,T , τBL
y,R andτBL

z,R (see [1]) can be checked
directly, using the explicit expressions (2.19), (2.20), (2.27) and (2.28). Indeed for an arbitrary symmetric
barrier, wherer = r ′, i.e. the total phase accumulated in a transmission and reflection event is the same
(ϕa ≡ 0), one has therefore

τBL
y,T = τBL

y,R. (2.29)

For the special case of a rectangular barrier, eqn (2.29) was found first by B¨uttiker [8]. Comparison of
eqns (2.19) and (2.27) show that for asymmetric barrier eqn (2.29) breaks down [16].

Another identity, as an equation of conservation of angular momentum [8, 10]

RτBL
z,R+ TτBL

z,T = 0

immediately follows from eqns (2.20) and (2.28).
Finally the dwell timeτD [8, 10, 25, 1] can be written as

τD
− ≡ TτBL

y,T + RτBL
y,R =

1

2k
Im

{
∂ ln t

∂k
+ 1

2k
(r + r ′)

}
+ R

2k
Im

{(
∂ ln r

∂k
− ∂ ln t

∂k

)
− 1

2kr
(1+ rr ′ − t2)

}
.

(2.30)
The subscript minus indicates that the particle is coming from the left. A similar expression to (2.30) was
obtained in [30] and holds when the particle is coming from the right, interchangingr andr ′.

2.3. Escape of an electron from a finite disordered region

It should be clear that the concepts of the surface GF method discussed in this article, apply not only to
the traversal time of tunneling but can be generalized to the escape problem of the electron from the 1D
disordered region. To show this, we consider the case where an arbitrary and finite 1D barrier potential break
up into two, left(0 < y < y0) and right(y0 < y < L) blocks. We shall assume that the electron with the
initial coordinatey = y0 escapes from the region when it reaches one end of the system:y0 = 0 or y = L. To
calculate, for example, the escape timeτ esc

r (y0, L; E0) on the right-hand side of the disordered region we will
use the local version of Larmor clock [26], where B¨uttiker’s analysis [9] was extended to the local situation
in which a uniform transverse magnetic field is confined to an arbitrary part of a barrier. It means that in our
caseB is finite only in the interval [y0, L]. Along the lines of Section 2 one derives (see Appendix B)

τ esc
r,y (y0, L; E) = Im

∫ L

y0

G(y, y; E)dy
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τ esc
r,y (y0, L; E) = Im

∫ L

y0

G(y, y; E)dy

= Im

{
∂ ln tr
∂E
+ 1

4E
(r̃ r + r ′)+ 1

2
(1− r̃ r )

∂

∂E
ln

1− r̃ r

1+ r̃e

}
, (2.31)

tr (y0, L; E) is the complex amplitude of transmission only through the right block andr ′ is the reflection
amplitude of the electron from the whole system, when it falls in from the right (see eqns (2.19), (2.20)).
r̃ r ≡ r̃ r (y0, L; E)(r̃e ≡ r̃e(y0, L; E)) has slightly different meaning: the tilde mark signifies that the given
quantity is calculated in the presence of the left and right blocks [20]. Thusr̃ r (r̃e) is the complex amplitude
of reflection from the right (left) block in the presence of the left (right) block, when the electron falls
in this block from the left (right). Analogous expressions hold for the second component of escape-time
τ esc

r,y (y0, L; E) = Re
∫ L

y0
G(y, y; E)dy and for the particle, escaping on the left-hand side of the disordered

region.
Fory0 = 0 the eqn (2.31) coincides obviously with eqn (2.19), i.e., with the problem of the free incidence of

the electron from the left on the 1D arbitrary potential. We have thus arrived at a sample relationship between
the two components of escape time of an electron from a finite disordered region and thelocal scattering-
matrix elements. It is seen from eqns (2.31), that the time required by an electron to cover a distanceL in
the disordered region is extremely sensitive to the boundary conditions and on its initial positiony0. With
respect to the chemical nanostructures mentioned in the Introduction, escape time out of a quantum well can
have different orders of magnitude [31]. Note that expression (2.31) is valid not only for the escape of the
electron but also for any other times, e.g. the lifetime, characterizing the behavior of an electron within a
given potential shape [32].

3. Conclusions

To conclude, one would like to stress that the surface GF method, which is not a perturbation approach,
is very appropriate for practical calculations of the transmission, reflection and dwell times for an arbitrary
barrier potential. Three characteristic times, as well as the escape time of an electron from a finite disordered
region were expressed in terms of the scattering-matrix elements.
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Appendix A. Basic concept of surface Green’s function

To calculate theτBL
T traversal time, defined by eqn (2.18), we follow closely [20] and introduce the following

general model. Let us consider that our system can be divided into(N−1) layers, labelledn = {1, . . . , N−1},
which are placed between two semi-infinite media. The positions of the boundaries of thenth layer are given
by yn andyn+1. We allow a possible discontinuity in the potentialVn(y) at each boundary between two layers.
Let us assume that a plane wave is incident from the left onto the boundaryy = y1 and evaluate the amplitude
of the reflected wave and the wave propagating in the semi-infinite media fory ≥ yN . For this purpose we
will use the surface GF method, as mentioned in the Introduction. In this method the GF is evaluated first for
the case of a single boundary between two media. Then, the case of two boundaries is solved using the GF
for one boundary. The problem is solved iteratively forn+ 1 boundaries, considering that the solution forn
boundaries is known.

Let us first discuss the contact of two semi-infinite media; this will clearly show the spirit of the method.
Assume that the potential energy of the electron isV0(y) on the left of the boundary aty1(y < y1) andV1(y)
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on the right aty1 and that 1D electron GFG(0)
n (y, y′; E)(n = 0,1) for each medium are known, when the

corresponding media are infinite. The following equation holds:[
− ∂2

∂y2
+ Vn(y)− E

]
G(0)

n (y, y′; E) = δ(y− y′). (A1)

We shall consider below constant potentialsVn with arbitrary strength for two cases when we have free
electrons or an additional external homogeneous electrical field present(Vext = Vn + Fy). The upper index
(l ) of GF (in eqn (A1) the indexl = 0) will indicate the number of boundaries considered in the calculation
of a given GF. The lower index of the GF labels the interval for which the GF is valid. The GF on the left of
the boundary(y, y′ ≤ y1) is given by [20]:

G(1)
0 (y, y′) = G(0)

0 (y, y′)+ r01
G(0)

0 (y, y′)G(0)
0 (y1, y′)

G(0)
0 (y1, y1)

, (A2)

wherer01 is the amplitude of the reflection of the electron propagating from region 0 into 1. The first term
on the right-hand side corresponds to direct propagation and the second term to reflection on the surface. A
similar expression holds in the region on the left of the boundary. The continuity of the GF and the equality
of currents at the boundaryy = y1 allow us to calculate the two amplitudes of reflection coefficientsr01 and
r10 (from region 1 into 0)(G(0)

n ≡ G(0)
n (y1, y1),n = 0,1):

r10 = −r01 = G(0)
0 − G(0)

1

G(0)
0 + G(0)

1

. (A3)

Adding new boundaries and each time using the previously obtained GF as the starting point we derive the
new amplitude of reflection of the electron. Finally, the GF for the complete system at coinciding coordinates
in thenth layer (the left block containingn boundaries and a right block consisting of(N − n) boundaries)
is given by:

G(N)
n (y, y) = G(0)

n (y, y)

DN

[
1+ R(n)n,n−1R(−n+N)

n,n+1 λn,n+1+ R(n)n,n−1e2i [θn(y)−θn(yn)] + R(−n+N)
n,n+1 e2i [θn(yn+1)−θn(y)]

]
.

(A4)
Here DN is a characteristic determinant (or denominator of the whole system GF) and can be expressed as
the product:

DN = D0
N

{ N∏
n=1

λn−1,n(1+ rn,n−1)(1+ rn−1,n)

}−1/2

. (A5)

The factorsλn−1,n are defined, in general, as

λn−1,n = exp

(
−
∫ yn

yn−1

dy

G(0)
n−1(y, y)

)
, (A6)

and the factorλ0,1 is defined as equal to 1.
The quantityrn−1,n(rn,n−1) is the amplitude of the reflection of the electron propagating from the region

n− 1 into n (n into n− 1) and can be obtained from eqn (A3) by replacing in the lower indices 0→ n− 1,
1→ n andy1 → yn. The complex quantityR(n)n,n−1 in eqn (A4) is the amplitude of reflection from the left

block, containingn boundaries (when the electron falls on this block from the right), andR(−n+N)
n,n+1 is the

amplitude of reflection from the right block, containingN − n boundaries (when the electron falls on this
block from the left) [20].

To conclude this appendix let us note that the GF on the right side of theNth boundary(y, y′ ≥ yN) has



Superlattices and Microstructures, Vol. 23, No. 3/4, 1998 817

the following form:

G(N)
N (y, y′) = G(0)

N (y, y′)+ R(N)N,N−1

G(0)
N (y, yN)G

(0)
N (yN, y′)

G(0)
N (yN, yN)

. (A7)

HereR(N)N,N−1 is the reflection amplitude of the whole system from theNth boundary when the electron falls
in from the right.

In a similar way, the GF on the left of the system(y, y′ ≤ y1) can be written as:

G(N)
0 (y, y′) = G(0)

0 (y, y′)+ R(N)0,1

G(0)
0 (y, y1)G

(0)
0 (y1, y′)

G(0)
0 (y1, y1)

(A8)

whereR(N)0,1 is the reflection amplitude of the system from the first boundary when the wave falls in from the
left.

With this brief introduction to the surface GF method, we are ready to calculate the coefficient of transmission
through a 1D random-layered system. By means of the definition, the coefficient of transparency through a
multilayered structure is expressed as the square amplitude of the wavefunction from the right (if the electron
falls in from the left) of the given structure and it may be written, using the Fisher–Lee relation between the
scattering matrix and the GF [33]

T = [|G(0)
0 (y1, y1)||G(0)

N (yN, yN)|]−1|GN(y1, yN)|2 (A9)

whereGN(y1, yN) is the GF of the electron in the layered structure withN boundaries.
Using the relation (2.11) for general expression of theG(y, y′) in terms of coinciding coordinatesy = y′

we can write:

G(N)(y1, yN) = [|G(N)(y1, y1)||G(N)(yN, yN)|]1/2 expi [θ(yN)− θ(y1)]. (A10)

Where

i θ(yN)− θ(y1) = −
∫ yN

y1

dy

2G(N)(y, y)
= −

N−1∑
n=1

∫ yn+1

yn

dy

2G(N)
n (y, y)

. (A11)

HereG(N)
n (y, y), G(N)

N (y, y′) andG(N)
0 (y, y′) are defined by eqns (A4), (A7) and (A8) respectively.

To calculate the integral appearing in eqn (A11) we shall make use of eqn (2.12), the connected phase
functionθ(y, E) and the GF, as well as eqn (A4) forG(N)

n (y, y):

−
∫ yn+1

yn

dy

2G(N)
n (y, y)

= 1

2
ln

λn,n+1(1+ R(n)n,n−1)(1+ R(−n+N)
n,n+1 )

(1+ λn,n−1R(n)n,n+1)(1+ λn,n+1R(−n+N)
n,n+1 )

. (A12)

In view of eqn (A12) let us present eqn (A10) in its final form:

G(N)(y1, yN) = (D0
N)
−1

(
G(0)

0 (y1, y1)G
(0)
N (yN, yN)

N−1∏
n=1

(1+ rn,n−1)(1+ rn−1,n)

)1/2

. (A13)

Substituting eqn (A13) into eqn (A9) for the GFG(N)(y1, yN) and using the analogous expression for
[G(N)(y1, yN)]∗ we can finally show that the coefficient of transmission through a multilayered structure
is inversely proportional to the characteristic determinantDN :

T = |DN |−2 (A14)

whereDN is given by (A5).
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Appendix B. Integral of the Green’s function

First, we can trivially rewrite the wavefunctionψ(y), which is a solution of the Schr¨odinger equation, as:

ψ(y) = [V(y)− E]
∂

∂E
ψ(y)− ∂

∂E
[V(y)− E]ψ(y). (B1)

Hence, the square of the wavefunction can be rewritten in the form

ψ(y)2 = ψ ′′(y) ∂
∂E

ψ(y)− ψ(y) ∂
∂E

ψ ′′(y) ≡ ∂

∂y

[
ψ ′(y)

∂

∂E
ψ(y)− ψ(y) ∂

∂E
ψ ′(y)

]
. (B2)

Integrating both parts of this expression overy one gets∫
ψ(y)2 dy= −ψ(y)2 ∂

∂E

(
ψ ′

ψ

)
≡ −ψ(y)2 ∂

∂E

(
ψ ′ψ∗

|ψ |2
)
. (B3)

Substituting the wavefunction in the form

ψ = |ψ |ei θ (B4)

one can write (B3) in the following form:∫
G(y, y)e2i θ(y,E) dy= −G(y, y)

2
e2i θ(y) ∂

∂E

[
G′(y, y)− 1

G(y, y)

]
. (B5)

In a similar way, one has:∫
G(y, y)e−2i θ(y,E) dy= −G(y, y)

2
e−2i θ(y) ∂

∂E

[
G′(y, y)+ 1

G(y, y)

]
. (B6)

We derived eqns (B5) and (B6) making use of the fact that the wavefunctionψ(y) at energyE is related to
the retarded GFG(y, y′) of the system through the expression:

G(y, y′) =
{

iπνL(E)ψ(y)ψ∗(y′) if x > x′

iπνL(E)ψ∗(y)ψ(y′) if x ≤ x′
(B7)

whereνL(E) is the DOS per unit energy and per unit length. Note that at coinciding coordinates, this expression
reduces to the well-known resultG(y, y) = iπνL(E)|ψ(y)|2.

Using the expressions (B1) and (B2) we can present|ψ(y)|2 in the following form

|ψ(y)|2 = 1

2

∂

∂y

{[
ψ ′(y)

∂

∂E
ψ∗(y)+ ψ∗′(y) ∂

∂E
ψ(y)

]
−
[
ψ(y)

∂

∂E
ψ∗

′
(y)+ ψ∗(y) ∂

∂E
ψ ′(y)

]}
. (B8)

Integrating both parts of the modulus square|ψ(y)|2 over y one shows∫
|ψ(y)|2 dy= −1

2

{
ψ∗2(y)

∂

∂E

[
ψ ′(y)ψ(y)
|ψ(y)|2

]
+ ψ2(y)

∂

∂E

[
ψ∗

′
(y)ψ∗(y)
|ψ(y)|2

]}
. (B9)

The straightforward calculation, using eqns (B4) and (B7) leads to∫
G(y, y)dy= i

∂

∂E
θ(y; E)− G(y, y)

2

∂

∂E

[
G′(y, y)

G(y, y)

]
. (B10)

This completes the set of useful integrals which were used in this article.
Now we can go a step further and calculate the integral (B10) in the given region [0, L] in order to calculate

the τT traversal time, defined by eqn (2.18). Without loss of generality we will discuss the case when the
barrier potentialV(y) is zero outside the interval [0, L], i.e. G(0)

0 (0,0) = G(0)
N (L , L) = i /2k.
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Note that the expressions relating reflection amplitudes to the GF (A7) and (A8) can be read as (r ≡ R(N)0,1

andr ′ ≡ R(N)N,N−1)

G(0,0) = G0(0,0)(1+ r ) (B11)

G(L , L) = G0(0,0)(1+ r ′). (B12)

As for the derivativesG′(y, y) at 0 andL we have respectively

G′(0,0) = r (B13)

G′(L , L) = −r ′. (B14)

Making use of eqns (B11)–(B14) we can rewrite the integral (B10) as∫ L

0
G(y, y; E)dy= i

∂

∂E
[θ(L; E)− θ(0; E)] + ∂

∂E
ln(1+ r )(1+ r ′)+ 1

4E
(r + r ′). (B15)

The next step to get the final answer is to calculate the first bracket in eqn (B15). It is straightforward to show,
using eqns (A12) and (A13) that the bracket can be presented in the form:

i [θ(L; E)− θ(0; E)] = ln
t

(1+ r )(1+ r ′)
.

This completes the proof: substituting into eqn (B15) we finally obtain theτBL
T traversal time (2.18).

In the rest of this appendix we present the explicit expressions for the integral ofG(N)
n (y, y) given by

eqn (A4) in each layer and show that the sum of all the contributions of all layers correspond to the results of
[10, 16, 17]. For a piece-wise constant potential, as was done by Aronovet al. [20] the result is:∫ yn+1

yn

G(N)
n (y, y)dy= ∂ ln t

∂Vn
, (B16)

whereVn is the potential energy of electron in thenth subsystem andt is the complex amplitude of the
transmission between 0 andL. We could write the total integral of the eqn (B16) in the form:∫ L

0
G(N)(y, y)dy=

N−1∑
n=1

∫ yn+1

yn

G(N)
n (y, y)dy=

N−1∑
n=1

∂ ln t

∂Vn
. (B17)

In the N → ∞ limit (keepingL fixed) and converting the summation into an integral the eqn (B17) can be
written ∫ L

0
G(y, y)dy=

∫ L

0

δ ln t (y)

δV(y)
dy, (B18)

whereδ/δV(y) is a functional derivative: this is the result of Sokolovski and Baskin [10]. On the other hand,
as was shown in [16], the functional derivative with respect to the potential can be replaced by the derivative
with respect to the average height of the potentialV̄ (keeping the spatial variation of the potential fixed). It
means that ∫ L

0

δ ln t (y)

δV(y)
dy= δ ln t

δV̄
(B19)

and so
δ ln t

δV̄
=
∫ L

0
G(y, y)dy= ∂

∂E
ln t + 1

4E
(r + r ′) (B20)

as we might expect.
In the time-modulated barrier approach of B¨uttiker and Landauer [7, 13], where the original staticV0 barrier
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was augmented by a small oscillation in the barrier height, e.g.V1 cos$ t ($ is the modulation frequency and
$ � V1), it was shown that for an opaque barrierχL � 1(χ = √V0− E) can be defined as an asymmetry
function which was characterized by a single quantity with the dimension of time

τT = L/2χ. (B21)

The timeτT separates characteristic low- and high-frequency behaviors and can be identified with the traversal
time for tunneling. On the other hand using the basic idea of [8, 14], Jahou and Jonson [18] showed that in
the adiabatic$ → 0 limit and for an arbitrary-shaped potential barrier the traversal timeτT (B21) must be
replaced formally by the modulus of the complex quantity

τ V̄
T = i

∂ ln t (E, V̄)

∂ V̄
(B22)

which is closely related to the complex times introduced in [10, 16, 25]. But as shown above (see eqn (B20))
eqn (B22) is equivalent to eqns (2.19) and (2.20), because the derivative with respect to the average height
of the potential can be presented in terms of partial derivatives with respect to energyE [12]. Thus we show
that most results, obtained from very different points of view [10, 16, 17], are almost compatible and the final
results can be expressed in terms of the GF and the scattering-matrix elements.
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