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The response of an arbitrary scattering problem to quasistatic perturbations in the scattering potential is
naturally expressed in terms of a set of local partial densities of states and a set of sensitivities each associated
with one element of the scattering matrix. We define the local partial densities of states and the sensitivities in
terms of functional derivatives of the scattering matrix and discuss their relation to the Green’s function.
Certain combinations of the local partial densities of states represent the injectivity of a scattering channel into
the system and the emissivity into a scattering channel. It is shown that the injectivities and emissivities are
simply related to the absolute square of the scattering wave function. We discuss also the connection of the
partial densities of states and the sensitivities to characteristic times. We apply these conceptdsoraer
and to the local Larmor clockS1050-294{06)10110-4

PACS numbeps): 03.80-+r, 72.10.Bg

l. INTRODUCTION tion probability R=1—T=|s;,|?=|s,,%. The response of
the system can be characterized by a setoofl PDOS,
Densities of state€DOS) play an important role in a num- dn,g(x)/dE, and a set ofsensitivities 7,4(x), which are
ber of different physical contexts. For example, thermody-directly connected to the scattering-matrix elemsggy. In
namic properties, tunneling spectroscopy, electrical conducgeneral, the scattering matrs,5(E,U(x)) is a function of
tion phenomena, and charging effects depend strongly on th@e incident energy of the carriers and is a functional of the
DOS of the respective system under consideration. In recemqotentialU(x). To linear order in a perturbatiodU (x), the
works on ac transport in mesoscopic conducfdrg] it was  density response and the current response of the scattering
found that many results can be expressed in a very transpagproblem can be expressed with the help of the local PDOS
ent way if the concept of the DOS is generalized. In particu{2]
lar, it was shown that it is not only the total DOS but also
parts of it which have physical significance. In this work we
point to the generality of this decomposition of the total DOS dn,g 1 [ o 054 5523
and present expressions fquartial densities of states dE )=- Ami Saﬁgu(x) - 8U(x)
(PDOS in terms of the scattering matrix, the Green'’s func-
tion, and the absolute square of scattering wave functions. ) o
Decompositions of the total DOS into partial DOS appear@nd With the help of the sensitivities
naturally in scattering problems in which one is concerned
with the response of the system to a small perturbation
6U(x) of the potentialU(x). An example is the mentioned
self-consistent treatment of electrical ac transport in meso-
scopic conductors. Other examples are the Larmor clock

[3—8] and the optical clock9], where the tunneling of elec- \yhere 5/5U(x) denotes a functional derivative. The local

trons and photons, respectively, through a barrier containingpog represent a decomposition of the total local OIS
a magnetic field is investigated. It turns out that the PDOS

determine the rotation of the spin polarization and the Fara-
day rotation, respectively. dn
A one-dimensional scattering problem is characterized by E(X): Z
a scattering matrix with elements,z. The indicesa and apB
B label outgoing and incoming scattering channels, respec-
tively, of the system under consideration. For the two-They are based on both a preselection and postselection of
channel case as discussed below, these indices take the verriers, i.e., they group carriers according to the asymptotic
ues 1 and 2 to designate reference poitandx, at the left  region from which they arrive) and according to the as-
and the right sides of the scattering region, respectively. Thgmptotic region into which they are scattered)( We em-
absolute squares of the scattering matrix elements determinghasize that the PDOS are mathematical constructions.
the transmission probabilit§ = |s,,|>=|s;,/? and the reflec- Whether these quantities are by themselves of physical rel-
evance might well depend on the problem under investiga-
tion. While we find that the off-diagonal PDOS are positive
“Permanent address: Department of Physics, Yerevan State Urthis is not always the case for the diagonal elements. All
versity, 375049 Yerevan, Armenia. local DOS can be obtained by summation of the local PDOS,
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and the global quantities associated with an entire segment or U .,
volume of the system are obtained by spatial integration.

It is the purpose of this work to present a discussion of the - ---rorrrereeee s
PDOS and to relate them to the Green’s function, to dwell  ,  --------
times, and to scattering wave functions. The paper is orga- U,
nized as follows. The scattering problem to be considered is
introduced in Sec. Il. Some well-known results concerning
the local DOS in terms of the Green’s function and in terms T | — — T >
of the scattering matrix are recalled in Secs. Ill and IV, re- % a x x b Lo oX
spectively. Section V provides the relation between the basic
PDOS(1) and the Green’s function. In Sec. VI, we encounter  FIG. 1. One-dimensional scattering problem described in the
decompositions of the local DOS on a next-higher leveltext. The dashed and dotted curves belong to Fermi energies asso-
based only on a preselection or based only on a postseleciated with a transparent and an opaque barrier, respectively.
tion. We call the local PDOS which is generated by carriers

incident from the asymptotic regiom regardless into which dn, s 1T, _g(%)|2
region the carriers are finally scattered thiectivity [10] of dr, g(X)=h (3?5 (x)dxz“’fdx. (7)
channela:

The injectivity and the emissivity are identical in the absence
dn, dng, of a magnetic field. A connection between the functional
dE (X)Ezﬁ: qg *)- (4)  derivatives of the scattering matrix and the local absolute

squares of the wave functions is obtained from a combina-

tion of Egs.(1) and (6).

The decomposition of the local DOS into injectivities repre- ~ Section Vill is devoted to the sensitiviti¢g), which can
sents thus a preselection. Similarly, we can ask about a d&€ understood as local response of the transmission prob-
composition of the local DOS intemissivitiesaccording to ~ abilities to a potential change. They are of great importance
the asymptotic region into which carriers are scattered rel? & self-consistent theory of nonlinear conductfdn]. Fi-
gardless of the channel through which the carriers entere@@lly, we discuss in Sec. IX two examples, namely, a local-

the scattering region. The emissivity into chanadk given ized impurity in a one-dimensional conduction channel and
by the local Larmor clock.

Before proceeding, we mention that there are some recent
experimental indications for the relevance of the PDOS. In
an impressive experiment with a quantum Hall system, Chen

Da(x)_E dnaﬁ(x)_ (5) et al. [12] measured capacitance coefficients in a three-
dE terminal geometry and presented an interpretation in terms of
PDOS. Christen and Biiker [13] discussed the low-
. . o frequency admittance of quantized Hall conductors with ar-
The decomposition of the local DOS into emissivities répPreéitrary topologies. The same authors found that the depen-
sents thus a postselection. o dence of the properties of a quantum point contact on the
In Sec. VIl we relate the injectivityand the emissivityto  ppOs results in steps of the capacitance and of the low-
the time a particle dwells in a narrow region. The dwell t'mefrequency admittance in synchronism with the conductance
[5—_7] is in turn connected Fo the absolute square of thg Scats'teps[14]. Leadbeater and Lambeft5] explained that an
tering wave function. For instance, E@) has a simple in- experimentally found16] asymmetry in the scanning tunnel-
terpretation in terms of the time a carrierdsvelling in an ing microscopy(STM) tunneling conductance into vortices

interval dx regardlegs of where it _is finally sca}ttered. INina superconductor is due to an asymmetry in the injectivity
terms of the scattering wave functiobi, g(x) which has  z55ociated with particle-hole channels.

unit incident amplitude in the regioa in the presence of a
uniform magnetic field, the dwell time of a particle in an
interval dx at the pointx is dr, g=dx| ¥, g|?/J whereJ is Il. SCATTERING PROBLEM

the incoming current carried by the staig, 5. We show Consider the one-dimensional scattering problem
that the injectivity is dlrectly related to. the dwell time aqd, sketched in Fig. 1. In a regior,<x<x, scattering is as-
therefore, to the wave function according to the expressiong ;med to be purely elastic. Of interest are the PDOS and the
sensitivities in this region. The global scattering properties
o are described by the scattering-matrix elemests which
dn, g |\Ifa,B(x)|2 are the ratio of the current amplitudes of the outgoing waves
d7,,8(X) =h—gg~ (X)dx=—"7——dx. ®  atx, and of the incoming waves af;. Note that the scat-
tering matrix is here defined with respect to current ampli-
tudes affinite x, (¢=1,2), and not with respest— +. In
Similarly, the emissivity in a magnetic fiel is related to the sequel, all quantities are absolute quantities rather than
the square of the amplitude of the wave functibry _g(x) defined relatively to a free particle. For example, we deal
calculated for a reversed magnetic field: with scattering phases rather than phase shifts and with total
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times rather than delay timéise., time differences relative to dN X2 dn X, 1

the free particlg dE- dXE(X):—j dx_Im{G(x,x)}. (1D
Scattering is due to a stationary potentii]x) localized 1 X

in the region [a,b]. To be definite, we assume

X;<a<0<b<x, and that an absolute maximum of the po- por example, the retarded Green’s function of a free particle
tential, if any, is located atx=0. In the regions [U(x)=0] with wave numberk=\2mE/% is given by
Q,=[xq,a] andQ,=[b,X,] the potentials are constant and G(xX)=—i/(hv)expkx—X|) with the particle velocity

take the values), andU,, respectively. Quantities associ- ,, _z/m Consequently, the local DOS of a ballistic channel
ated with these regions are labeled by roman indices in CONs 2hw. The DOS in a channel of length is then 2./ho.

trast to the greek labels which designates the boundariefs.hiS can be seen by noticing thit\ 7 gives the number
(x,) of the system(for, €.g., an electrical conductor greek gy o nodes(which count the state®f the wave function

and roman Iab(_als deS|gnafte contacts and regions n the COliith energyE; the derivative with respect to energy yields
ductor, respectively This distinction is conceptually impor- . h5g

tant. For example, in general the number of contacts differs
from the number of relevant regiof%3].
In the region(}, the wave numbek, of a partjcle is re- IV. DENSITY OF STATES AND SCATTERING MATRIX
lated to the energf by E=(%k)%/2m+U,. This energy
dispersion defines in, e.d); a scattering channel with a left Some useful results which relate the DOS to the scattering
incoming branch in which particles have the positive veloc-matrix follow [19] already from general expressions of the
ity v,=7%k,/m and an outgoing branch in which particles scattering matrix elements in terms of the transmission and
have the negative velocity v,. An analogouginverse re-  reflection probabilities and the scattering phasgsand
lation holds inQ,. o= ¢p,. Here is the total phase accumulated in a transmis-
Below, the classical turning pointg andxg at the left ~ sion event andb=* ¢, are the phases accumulated by a par-
and the right side of an opaque barrier, respectively, will bgicle which is incident from the left or the right and which is
important. For a transparent scattering obstacle, whereeflected. The phases are measuredxatand x,. The
max {U(x)}<E, we definex, =xg=0 at the maximum of scattering-matrix elements can be written in the form
the barrier. We call the system “large” ifk,—x; or
X,—Xg IS much larger then the typical wavelengthof the

particle. The semiclassicdWKB) regime is applicable, if rot
the characteristic scale of the space dependendg(xf is SE)=|t
much larger then the typical wavelength
IIl. DENSITY OF STATES AND GREEN’S FUNCTION ( - \/ﬁexm ¢+ida) ﬁexm ¢)
We recall briefly some useful results concerning the re- \/Texqu) | VReXp(i =1 ba)
tarded single-particle Green’s functio®(x,X) [17]. The (12)
scattering problem defined in the preceding section is asso-
ciated with the Hamiltonian
42 This scattering matrix is assumed to be symmetric, which
H=— — 2+ U(x). (8) holds in the absence of a magnetic field. For a spatially sym-
2m ¥ metric barrier and for symmetrically located and x, the

hase asymmetr vanishes and one has additionall
The retarded Green'’s function is then defined as the regulefr y Wa y

. =r'.
solution of Avishai and Band 18] showed that the one-dimensional

(E+ie—H)G(XX)=8(x—), ©) DOS of a I.arge system is given by the energy derivative of
the scattering phase
where one takes the limé¢— 0" and wheres(x) is the Dirac
delta function. This Green’s function can be interpreted as
- o - dN 1 ds,; ds! 1dg

the quantum mechanical probability amplitude for the propa- g —2 st af _“TaBg |27 (13)
gation of the particle fronX to x. Since we are interested dE 4mi%i \"*# dE  dE "*f] wdE
only in scattering states we concentrate on the continuous
part of the spectrum dfl. Effects of the discrete part of the _ o
spectrum(belonging to localized state®n the PDOS are In the absence of scattering the phase is givengbykL

disregarded. which again impliesiN/dE=2L/hv. However, the DOS of
The local DOS at an enerdy is given by the imaginary ~anopenandfinite system is not given by Eq13) but must
part of the Green’s function be calculated by the spatial integratidri) of the local DOS.
Gaspariaret al. [20] calculated the integralll) in a finite
dn 1 region and expressed the final results in terms of the
gg =~ _IM{G(x,x);. (10 scattering-matrix elements. The integrated DOS differs from

(13) by a correction which contains the reflection amplitudes
From the local DOS one obtains the global DOS divided by the energy:



54 PARTIAL DENSITIES OF STATES, SCATTERING ... 4025

dN 1d¢ r+r’
dE wdE "™ Z7E
1({d¢ <R
=;<d—E—ECOS(¢)COS(¢a) . (14

The relative difference of the resultd3) and (14) is of
O(N/L). This implies that the correction term can be ne-
glected for large systems, for large energies, and in the semi- / N\
classicallWKB) case(and, of course, iR is negligible. The

local DOS cannot only be obtained from E@O), but alter-
natively also from Eq(3), i.e., from the scattering matrix

: . P . . FIG. 2. Classical phase-space plot of the scattering region in
Sag and its functional dgrlvatlve with respect to .the pOtemlalFig. 1. The WKB density of states is obtained from the phase-space
U(x). In the next section we work out a relation between

N aread® (grey region between two trajectorieghin lineg of en-
these two approaches in view of the PDOS. ergy differencedE. The dashed arrows indicate tunneling.

V. PARTIAL DENSITIES OF STATES of Ref.[14]. In Fig. 2 we sketched the classical phase space

The aim now is to derive simple expressions for the basi®f the scattering problem of Fig. 1. Consider the trajectories
PDOS(1) by using the Green’s function. Before doing this, at energyE (thin curves in Fig. 2 Since the phase-space
we discuss two cases which yield some vivid insight. Firstarea per state corresponds to Planck’s constatite quasi-
we calculate the PDOS in a large system directly from theclassical DOS is related to the energy derivative of the
energy derivative of the scattering mat(ik2). Second, we Pphase-space areh enclosed by the trajectories of positive
construct the local PDOS in the WKB approximation from and negative momentuntN@9/dE=h"*d®/dE [21]. In

phase-space arguments. Fig. 2, the phase-space regid® is indicated by a grey
filling. From the classical equation of motion one obtains for
A. Global partial densities of states in a large interval the(qc|)003| DOS dn%9/dE=(2/hv)[1-U(x)/E]" ¥ and
dn'99/dE

If we are not concerned with effects G{A/L) the global =0 for real and imaginary momenta, respectively.

PDQS_in a large intervz_il can b_e found by taking energy We construct now the local PDO’S from the local DOS

derivatives of the scattering matrix and the reflection and transmission probabilities. We men-
dN 1 ds ds' tion that there exists a WKB expression fbrin both cases

R 5 s (15)  of opaque and transparent barrige]. We may restrict our-

dE A dE dE selves tox; <x<x ; for xg<X<X, the results are obtained

by appropriately interchanging the indices 1 and 2. Since a

relative fractionT of the particles with positive momentum

Using the specific from12) of the scattering matrix one

finds ) :
! are transmitted fronx, to x, (and vice verspone has
ddNEll: 25 d((ﬁd"'Ed’a) ' (16) dn&%c) dn(quc) T dn‘@©
71- = = — —
g 0= 0=5 (0. (19
dNy, dNy; T d¢
dE  dE 2w dE’ (17 A relative fractionR of the particles with positive momen-
tum and a relative fraction 2T of particles with negative
dN,, R d(¢—d¢,) momentum contribute to the local PDOS of reflected par-
4E 2.  dE (18)  ticles, hence
Note that the local quantitien,z;/dE can be written for- dn{9® dn(@©
mally by replacing the derivativet/dE in (16)—(18) by the g X =R—gg . (20

functional derivatives— 6/6U(x). Clearly, the dependence

of the PDOS(16)—(18) on the transmission and reflection ) i
probabilities had to be expected. The PDOIS,,/dE asso- Becal_Jse on.the left of the barrier there are no classical tra-
ciated with particles transmitted from the right to the left is/€ctories which both emanate at and returrxjo one con-

T/2 times the total DOS, whilelN;;/dE must be propor- ¢Udes

tional to the reflection probability. In the following para-

graph such arguments are used to construct the local PDOS dn(quC)
in the semiclassical approximation. qg_ ¥ =0. (22)

B. Quasiclassical partial densities of states Next, we calculate the quantum mechanical corrections to

In the quasiclassicdlg, ¢) case, the local PDOS can be these expressions. Interestingly, it turns out that for the fully
obtained with the help of the simple phase-space argumentgiantum mechanical probledn,,/dE does not vanish.
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C. Partial densities of states and the Green'’s function

To derive exact expressions for the local PDOS, we sta

from the Fisher-Lee relatiof23] between the scattering ma-
trix and the Green’s function

Sap= — Oap TNV 0 gG(X, , Xp). (22
Insertion of Eq.(22) in Eq. (1) gives
dﬂaﬂ(x): _ h \/UQUB s* 5G(Xa, 'XB) TH c (23)
dE A7 @B SU(X) )
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PDOS (29) can be negative. Thus one concludes that, in

general, the basic PDOS cannot be interpreted as densities of

states in the usual sense of the word.

VI. INJECTIVITY AND EMISSIVITY

In the introduction we mentioned that in many cases the
injectivity (4) and the emissivity5) are the physically rel-
evant PDOS. From their definition it follows that the sum
over all emissivities and the sum over all injectivities is
equal to the local DOS. In the absence of a magnetic field, as
is the case here, the injectivity and emissivity are equal to

where the asterisk indicates complex conjugation. The funceach othef2]. In principle, they must be calculated from Eq.

tional derivative of the Green’s functioAG/éU is calcu-
lated by adding to the Hamiltonia(8) the local potential
variation 6U (X) = 6U o 6(X—Xg) . One finds for the variation
of the Green’s functionG(x,X)(Xg) = U G(X,Xq) G(Xg,X)
which implies

8G(Xe 1 Xg)

50(x) =G(Xq,X)G(X,Xp).

(24

Equation(23) can thus be written as
dngg ﬁ VUV g
dE 4

(x)= [Sh5G(Xa , X)G(X,Xg)+H.C].

(29)

This formula represents the central result of our work. To-

gether with Eq.(22), it expresses the local PDOS fully in
terms of the Green'’s function. For certain cases,(E§). can
be transformed to simpler expressions containing Ohly
v,, anddn/dE. It is shown in the Appendix that the PDOS
of transmitted particles is

T dn
2 dE

dn;,

dn21
d_E( )=

(X) ==—(X), (26)

which has the same form as the the WKB regi). Since

(25). Again, they simplify considerably in the regions where
the potential is uniform. From Eq&6)—(29) one obtains in,
e.g.,Q

dnl B _dn T
TR 0= (0= GEM ™ for (30
d—n_zx—%x)—l (31
d V=g X =Ry,

The injectivitydn, /dE is constant in(},. This follows from
the fact that the injectivity is proportional to the absolute
square of the scattering wave function which is shown in the
next section.
The injectances and emittances of a large system can be
expressed by energy derivatives of the scattering-matrix ele-
ents

dN; _dN; 1 (d dea
d—E—d—E—z(d—H GE ) (32
dN, _dN, 1 (dé _de,
d—E—d—E—z(d—E‘Rd—E : (339

The injectancdand emittancecontains the reflected part of

the sum over all local PDOS equals the local DOS it holds the DOS associated with the phase asymmetry. In the follow-

angq

n
E(X)+ RE(X)

22
GE ¥ = (27

Unfortunately, it is not possible in general to find expres-

sions fordn,, /dE which are similarly simple as E§26). In

ing section we show that the injectan@ad the emittangas
related to a dwell time.

VII. DWELL TIMES

There exists a vast literature on characteristic tirieeg.,

the flat potential regions, however, it is possible. Considertraversal, reflection, and dwell timesor the motion of a

e.g.,xe Q,. The results fo), follow from an appropriate
exchange of the indices. We find for the local PDOS2in
(see the Appendix

dn

“() R (x) g 0, 28)
dn,, _T( 2 dn )
d_E X)_E m—d—E(X) . (29)

The WKB results, Egqs(19)—(21), are immediately recov-
ered if one recalls thatin(“9/dx=2/(hv,) in Q,. Clearly,
for vanishing transmissiol =0 there are no states on the
left side of a barrier which are scattered fromto x,, and
(29) vanishes. Below we show that for finife the local

particle in the presence of a barrier potentide, e.g., Refs.
[24,25 and references therginSuch times are closely re-
lated to PDOS. In classical mechanics the tirgeneeded by

a particle to traverse a piece of a trajectory is given by the
energy derivative of the phase-space area enclosed by the
trajectory and the space axis. If one recalls the relation be-
tween phase-space area and DOS one finds for the time the
particle resides in a given region and the semiclassical DOS
a relation of the typer,;=hdN/dE.

The definition of characteristic times in quantum dynam-
ics is a more subtle undertaking. We derive now an expres-
sion for the timedr, a particle injected ax, dwells in the
region[ x,x+dx], and we show that it is related to the injec-
tivity dn,/dE atx [6,11]. Assume that a particle curredtis
injected at, e.g.x;. The dwell time in a neighborhood of
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Xo is defined as the ratio of the particle number in the intervakensitivities are simply related to the functional derivatives

[Xg,Xgt+dx] and the incoming current: of the transmission probability. We have 74,
) = —6T/8U(X). The unitarity of the scattering matrix implies
dry(x) = ¥ (%o)| dx. (34) immediately i, =71 = — 111 = — 7y = 7. I.n.t.he present
170 J case of a two-channel scatterer the sensitivities are charac-

) ] . ] ] terized by a single quantityy which describes the depen-
Obviously, this equation describes a balance equation: thgence of the transmission probability on the local potential.

injected current equals the decay rate of the probability inyjong the lines of Sec. V one derivésee Appendix
[Xg,Xp+ dX]. To calculate the dwell time, we follow closely

Ref.[6] and introduce an infinitesimal particle absorption of
strengthdl” at x,. This absorption is described by an imagi- ST

nary perturbationrdH= —i(#%/2)8(x—X,)dI' of the Hamil- Amn=— U —2TRe{G(X,X)}. (37
tonian (8). The perturbed Hamiltonian is not Hermitian
which implies that the continuity equation for the quantum
mechanical probability density obtains a sink termxgt

This result states that the real part of the diagonal elements
of the Green’s function is essentially the sensitivity. To-
gether with Eq.(10), this leads to an expression for the di-
AW (X) |2+ 34j = — dT | W (X)|28(x—Xo). (35)  agonal elements of the Green’s function

Here,j is the usual quantum mechanical current density. The 20 dn 5

current of absorbed particlesdg= — dI'| ¥ (x,)|2. Thus, the G(X,x)=— - p(X)—i Wd_IE(X):T(Inﬁ+ i7TN).
infinitesimal dwell time can be written asdr; (%) (39)
=—dx(dj/dI')/J. Now we usedj=J(dR+dT), where
dR anddT are the variations of the reflection and the trans- o o
mission probabilitiesR=|s;,|2 and T=|s,;|2, respectively, The sensitivity plays a role WhICh is complementary to that
for particles coming from the left. These variations are®f the local DOS. We mention that from the knowledge of
obtained from an expansion of the scattering matrix elefn® sensitivity and the DOS, one cannot only derive the di-

ments.s :s(0)+(5s /5U)dH. With the help of Eq.(1) agonal element&38) of the Green'’s function, but in principle
one ’C;; \7\/lrite dclg——hdl“(.dn (x)/dE) and .dT also the nondiagonal elements. This follows immediately
- 11\0

= —hdI'(dn,(Xg)/dE). The case where particles are in- from Eq. (61) in the Appendix.

jected atx, is treated analogously. Dropping the index of
Xo, the dwell time in a regiofix,x+ dx] for particles coming IX. EXAMPLES

from x, can be expressed in the form In this section we present two examples. First, we con-
sider a channel with a delta barrier which describes, e.g., a
— one-dimensional conductor with a localized impurity. Sec-

dr,(x)=h %(x)dx, (36)  ond, we discuss the local Larmor clock which turns out to be
dE intimately related to the local PDOS.
which is proportional to the injectivity. The dwell time, of A. Delta barrier

a finite region is obtained with a spatial integration, i.e., it is
essentially the injectancgN,/dE of this region. The spe-
cific dependence on the magnetic field stated in Egsand

(7) is a consequence of reciprocity, i.edn_a,B/dE
=dn,, _g/dE [2]. The characteristic times associated with
finite regions must be calculated by spatial integration of
density (the injectivity) and are not given simply by energy
derivatives of phases. This was already clear in the discu
sion of the collision times by Smitf26] and by Jauch and

As a simple example, consider a ballistic conductor
(U;=U,=0) containing a delta-function impurity
U(x)=V¥8(x) with V=0. For convenience, we introduce the
dimensionless quantitw=V/(%v), wherev is the particle
velocity. The local PDOS can be calculated either directly by
a}ntroducing a furtherd potential of infinitesimal strength

U, calculating the scattering matrix from the transfer ma-
St'rix, and using the definitiofil). Or it can be calculated with
the help of the diagonal elements of the Green’s function and

Mz;rcgaﬂdlgzgg. It Eas ztirI]SO been poir:jtefl out byl G‘Esgarianusing the results derived above. The diagonal elements of the
and Pollak[28] when they compared Larmor-clock times retarded Green’s function are given by

with times derived from energy derivatives. Recently, a re-
lation between DOS and dwell times has been investigated

by lannaccon§29]. To which extent the times obtained from i w(i +w)

energy derivatives provide a reasonable approximation fol- G(X,x)=— ol 1T W(coskaHsinZklxD),
lows from the remark at the end of Sec. IV. In particular, for (39)
large systems this approximation can be accepted.

and the transmission and reflection probabilities are
T=1/(1+w?) and R=w?/(1+w?), respectively. With the

Let us next investigate the sensitivitié® and their con- help of the functionf(x)=wcos(xx)—sin(X|x]) we can
nection to the Green’s function. We first mention that thewrite the PDOS in the regior; <x<0 in the form

VIIl. SENSITIVITIES
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FIG. 3. Partial densities of statels,,/dE (dasheg, dn;,/dE
(dotted, dny,/dE (dashed-dotted and dn/dE (solid) for the &
barrier withT=0.8.
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FIG. 4. Injectivity (or absolute square of the scattering wave
function) dn, /dE for the § barrier withT=0.8.

the absolute square of the scattering wave function and is, at

dnl1 R 1 1+2w? the right side of the barrier, proportional { and space

( )= ho _w 1+w? fO ] (40 independent. For a symmetric systery€ —x;=L/2), the
global DOS is
( )= ——=X)=—|1-—f(X)|, (4D dN 2L +RT i
dE h 1+w BT A _
v 4E = o + 27TE[1 cogkL)—wsin(kL)]. (46

dny, T w A calculation of the global DOS fronil3) yields a wrong
4E X~ ho T3 w2 f(x). (42)  result without oscillation terms. Such oscillations in the DOS

and the PDOS should influence the conduction properties of
sufficiently small conductorg30].

Note thatf(x) contains fast Friedel-like oscillations. In par- Using Eq.(39) one obtains for the sensitivity

ticular, dny,/dE which vanishes in a semiclassical consider-
ation contains oscillating quantum-mechanical correction

terms. Usingw/(1+w?)={RT, the injectivities (and the wT? _
emissivitie3 can be written as n= W[cos{ka)+w3|n(2k|x|)]. (47)
dny 2-T 2 e : : -
d—E(x) ~Tho h—\/RTf(x), (43)  The sensitivity for this example is a strongly oscillating func-
v v tion, i.e., it contains only Friedel-like terms. Note that the
corresponding global quantity, the spatially integrated sensi-
dn, T u tivity,
JEX = ho (44)

+LI2 wT? .
fﬁuz dxn(x) =m[w+sm(kL)—wcos{kL)] (48)

The local DOS is
differs strongly from the result obtained from an energy de-
rivative of T which yields only the average value but not the
dn oscillation terms. Since the sensitivity is not the density of an
E = _[1 \/_Tf(x)] (45) extensive quantity, it must be calculated by functional de-
rivatives with respect to the potential even in a large system.

The local PDOSdN,z/dE and the local DOSIn/dE are
plotted in Fig. 3. Note that the local PDQ8,,/dE asso-
ciated with reflection can be negative. The injectivity The Larmor clock is a system where spin-polarized elec-

dn, /dE is shown in Fig. 4. This injectivity is proportional to trons are scattered by a rectangular potential barrier and an

B. Local Larmor clock
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additional perpendicular magnetic figlfl]. Outside the bar- are related todr, and dr, by dr,r=—Im{d7}, dr,g
rier the magnetic field vanishes but inside it is assumed to be. _ Im{dr,}, dry 1= Re{dr}, anddr, g= Re{dr,}. A short
constant and to point in the direction. We denote the Lar- cajcylation yields '

mor frequency byw, , and the space coordinate of the par-

ticle by y rather than by. Consider electrons coming from

the left side and with spin being initially polarized in thke h/{dny, ]

direction. Due to a Larmor precession of the spin in the dTF?(d_E(X)_' 721) dX, (54)
barrier, the expectation values of the spin components de-

pend on the time the particle spends in the barrier. This mo-

tivates the introduction of characteristic times. In fact, one h(dny

can formally define quantities,, 7,, and 7, having the dTrzﬁ(E(X)_inll dx. (55

dimension of a time and being associated with the precession
of each spin componery,, s,, ands,, respectively. For . ) o
small , the quantum mechanical expectation values of thé\s it must be[7] the dwell time(36) satisfies
spin components of the transmitted particles are givefbby

d7;=Tdr+Rdr,. (56)
1
_ 2 2
<SX>T_§( 1- E“’L(TXVT) ) (49 Furthermore, we obtain for the Larmor times
5 Td7, r=hny(X)dX, (57
(sy)r=—ZoLmyT, (50)
Rdr, g=hn1(X)dX, (58
h
<Sz>T:§wLTz,T- (51 .
n
Tdr, 1= hd—él(x)dx, (59)
The conservation of the spin length implies, 1
= (75 1+ 751)¥2 i.e., only two of the times are independent.
Similarly, one can introduce times g, 7, g, andr, for dn
the reflected particles. Expressions for these times have been Rdry g= h—ll(x)dx. (60)
derived[5] in terms of derivatives with respect to the height ' dE

of the potential barrier rather than with respect to the particle

energy. We emphasize the quantitieslefined here can be Similar relations hold for particles coming from the right.

negative and, therefore, do not correspond in general to &he results(57)—(60) connect the local PDOS with physi-

physical time, although they are called “Larmor times.” cally well-defined quantities, which indicates the relevance

Note that the only times which are positive per definition areof the PDOS.

7«7 and 7, r. However, all of these quantities have a clear We reemphasize again that it is tempting to associate the

physical meaning independent of their sign. basic PDOSdn,z/dE with physically meaningful times
Leavens and Aer$7] discussed a local version of the characterizing the tunneling process. In fact this is done in a

Larmor clock with an arbitrary barrier potenti@s described number of workgwhich do not explicitly use the terms DOS

in Sec. 1) and alocalizedmagnetic field inside the barrier. or even the notation used hgrélowever, as we mentioned

This means thatB is finite only in the small interval already some of the PDOS can be negative which would lead

[x,x+dx] with a<x<b. The Larmor times are now infini- to negative times. Physical times are positive andreaer-

tesimal quantities proportional to the sid& of the interval.  pretationof the PDOS in this direction is misleading.

Consider particles incident from the left. It is then conve-

nient to introduce the following complex quantitigs]: X. SUMMARY

In this work we discussed the decomposition of the local
density of states into partial density of states which carry the

dr=i% 5In(t)dx, (52)  information about the past and the future of the scattered
oU(x) particles. We defined the sensitivities which describe the re-
sponse of the transmission probability to a variation of the

potential. All these quantities were defined in terms of func-

~68In(r) tional derivatives of the scattering matrix with respect to the

dr r=lﬁde, (53  effective single-particle potential which appears in the

Schralinger equation. We have discussed their formal rela-
tion to the Green’s function. While the PDOS turn out to be
wheret andr are the transmission and the reflection ampli-connected to the imaginary part of the Green’s function, the
tudes, respectively, introduced in Eq2). The Larmor times  sensitivity is related to its real part. Also, their connection to
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characteristic times of the scattering process was investigategrly, one shows thas;;=s,,exg2ik(x—x;)] wheres,, de-
and, consequently, to the absolute square of the scatteringbtes the reflection amplitude at With the help of the
states. Finally, we considered as simple illustrative exampleFisher-Lee relatiori22) one shows

a & barrier in a ballistic channel and the local Larmor clock.
It should be clear that the concepts discussed in this ar-

. . . dn22 ﬁl}z

ticle apply not only to the two-channel situation but can be —(X)=— —[s’z*sz(xz,x)+ H.c]
generalized to many-channel scattering problems. Further- dE 4m

more, a similar point of view can very likely be developed 1

even for problems with interaction for which the notion of an =17 i \/ﬁexm d+icdy)T
effective single-particle scattering matrix is not appropriate. U,
X exfg —2ik(x—xq)]+H.c}
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[ — —_ _ *
APPENDIX _hvl+47ri[G(X’X) G*(x,x)], (A3)

We derive first Eq(26). The relation which yields Eq.(29). In similar way, one has

- — maxxx) d dn h
G(x,x)z\/G(x,x)G(x,x)ex;{ fmmz}))miz)) d—él(x)z—ﬁ(s’fle(xl,x)nLH.c)
(A1) ) ﬁvl( , G2(x, )G, ) )
T 4n \C1 GE(x,,x) H.c

provided by Ref.[30] implies for x,<x<Xx,z immediately
G(X4,X)G(X,X5) =G(X4,X5) G(X,X). It follows that fivg G2(Xq,%2) G3(X,X)
_ oei * ’ il
47T( L G3(xp,X) H )

dng, H%010, 2 hv R+1
4E (0= 1601, %) [G(x,%) = G* (x,X)], I—4—;[S§XG2(X,X)+H-C]=m(sxﬁs’;x),
(A2)

(A4)
which is equivalent to Eq26). Next, we prove the validity
of Egs.(28) and(29) for xe 4. To do this we mention first
a relation between the scattering matrix elemesytsand
Sy, Wheres,, connects current amplitudes &t and atx.

which yields Eq.(28). Finally, the expressioni37) for the
sensitivity follows from

Using the technique of transfer matrices and their relation to 8/s14 0 2%
scattering matrices, one obtaisis= S,,exik(x—x;)]. Simi- sU(X) =h%012[|G(X1,x2) (G (x,x) +H.c]. (AS)
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