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Département de Physique The´orique, Universite´ de Gene`ve, 24 Quai Ernest-Ansermet, CH-1211 Gene`ve, Switzerland

~Received 20 March 1996!

The response of an arbitrary scattering problem to quasistatic perturbations in the scattering potential is
naturally expressed in terms of a set of local partial densities of states and a set of sensitivities each associated
with one element of the scattering matrix. We define the local partial densities of states and the sensitivities in
terms of functional derivatives of the scattering matrix and discuss their relation to the Green’s function.
Certain combinations of the local partial densities of states represent the injectivity of a scattering channel into
the system and the emissivity into a scattering channel. It is shown that the injectivities and emissivities are
simply related to the absolute square of the scattering wave function. We discuss also the connection of the
partial densities of states and the sensitivities to characteristic times. We apply these concepts to ad barrier
and to the local Larmor clock.@S1050-2947~96!10110-4#

PACS number~s!: 03.80.1r, 72.10.Bg

I. INTRODUCTION

Densities of states~DOS! play an important role in a num-
ber of different physical contexts. For example, thermody-
namic properties, tunneling spectroscopy, electrical conduc-
tion phenomena, and charging effects depend strongly on the
DOS of the respective system under consideration. In recent
works on ac transport in mesoscopic conductors@1,2# it was
found that many results can be expressed in a very transpar-
ent way if the concept of the DOS is generalized. In particu-
lar, it was shown that it is not only the total DOS but also
parts of it which have physical significance. In this work we
point to the generality of this decomposition of the total DOS
and present expressions forpartial densities of states
~PDOS! in terms of the scattering matrix, the Green’s func-
tion, and the absolute square of scattering wave functions.
Decompositions of the total DOS into partial DOS appear
naturally in scattering problems in which one is concerned
with the response of the system to a small perturbation
dU(x) of the potentialU(x). An example is the mentioned
self-consistent treatment of electrical ac transport in meso-
scopic conductors. Other examples are the Larmor clock
@3–8# and the optical clock@9#, where the tunneling of elec-
trons and photons, respectively, through a barrier containing
a magnetic field is investigated. It turns out that the PDOS
determine the rotation of the spin polarization and the Fara-
day rotation, respectively.

A one-dimensional scattering problem is characterized by
a scattering matrix with elementssab . The indicesa and
b label outgoing and incoming scattering channels, respec-
tively, of the system under consideration. For the two-
channel case as discussed below, these indices take the val-
ues 1 and 2 to designate reference pointsx1 andx2 at the left
and the right sides of the scattering region, respectively. The
absolute squares of the scattering matrix elements determine
the transmission probabilityT5us21u25us12u2 and the reflec-

tion probability R512T5us11u25us22u2. The response of
the system can be characterized by a set oflocal PDOS,
dnab(x)/dE, and a set ofsensitivities, hab(x), which are
directly connected to the scattering-matrix elementsab . In
general, the scattering matrixsab„E,U(x)… is a function of
the incident energy of the carriers and is a functional of the
potentialU(x). To linear order in a perturbation,dU(x), the
density response and the current response of the scattering
problem can be expressed with the help of the local PDOS
@2#

dnab

dE
~x![2

1

4p i S sab
† dsab

dU~x!
2

dsab
†

dU~x!
sabD ~1!

and with the help of the sensitivities
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where d/dU(x) denotes a functional derivative. The local
PDOS represent a decomposition of the total local DOS@2#

dn

dE
~x!5(

ab

dnab

dE
~x!. ~3!

They are based on both a preselection and postselection of
carriers, i.e., they group carriers according to the asymptotic
region from which they arrive (b) and according to the as-
ymptotic region into which they are scattered (a). We em-
phasize that the PDOS are mathematical constructions.
Whether these quantities are by themselves of physical rel-
evance might well depend on the problem under investiga-
tion. While we find that the off-diagonal PDOS are positive
this is not always the case for the diagonal elements. All
local DOS can be obtained by summation of the local PDOS,
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and the global quantities associated with an entire segment or
volume of the system are obtained by spatial integration.

It is the purpose of this work to present a discussion of the
PDOS and to relate them to the Green’s function, to dwell
times, and to scattering wave functions. The paper is orga-
nized as follows. The scattering problem to be considered is
introduced in Sec. II. Some well-known results concerning
the local DOS in terms of the Green’s function and in terms
of the scattering matrix are recalled in Secs. III and IV, re-
spectively. Section V provides the relation between the basic
PDOS~1! and the Green’s function. In Sec. VI, we encounter
decompositions of the local DOS on a next-higher level,
based only on a preselection or based only on a postselec-
tion. We call the local PDOS which is generated by carriers
incident from the asymptotic regiona regardless into which
region the carriers are finally scattered theinjectivity @10# of
channela:

dn̄a

dE
~x![(

b

dnba

dE
~x!. ~4!

The decomposition of the local DOS into injectivities repre-
sents thus a preselection. Similarly, we can ask about a de-
composition of the local DOS intoemissivitiesaccording to
the asymptotic region into which carriers are scattered re-
gardless of the channel through which the carriers entered
the scattering region. The emissivity into channela is given
by

dnI a

dE
~x!5(

b

dnab

dE
~x!. ~5!

The decomposition of the local DOS into emissivities repre-
sents thus a postselection.

In Sec. VII we relate the injectivity~and the emissivity! to
the time a particle dwells in a narrow region. The dwell time
@5–7# is in turn connected to the absolute square of the scat-
tering wave function. For instance, Eq.~4! has a simple in-
terpretation in terms of the time a carrier isdwelling in an
interval dx regardless of where it is finally scattered. In
terms of the scattering wave functionCa,B(x) which has
unit incident amplitude in the regiona in the presence of a
uniform magnetic fieldB, the dwell time of a particle in an
intervaldx at the pointx is dta,B5dxuCa,Bu2/J whereJ is
the incoming current carried by the stateCa,B . We show
that the injectivity is directly related to the dwell time and,
therefore, to the wave function according to the expression

dta,B~x!5h
dn̄a,B

dE
~x!dx5

uCa,B~x!u2

J
dx. ~6!

Similarly, the emissivity in a magnetic fieldB is related to
the square of the amplitude of the wave functionCa,2B(x)
calculated for a reversed magnetic field2B:

dta,2B~x!5h
dnI a,B

dE
~x!dx5

uCa,2B~x!u2

J
dx. ~7!

The injectivity and the emissivity are identical in the absence
of a magnetic field. A connection between the functional
derivatives of the scattering matrix and the local absolute
squares of the wave functions is obtained from a combina-
tion of Eqs.~1! and ~6!.

Section VIII is devoted to the sensitivities~2!, which can
be understood as local response of the transmission prob-
abilities to a potential change. They are of great importance
in a self-consistent theory of nonlinear conduction@11#. Fi-
nally, we discuss in Sec. IX two examples, namely, a local-
ized impurity in a one-dimensional conduction channel and
the local Larmor clock.

Before proceeding, we mention that there are some recent
experimental indications for the relevance of the PDOS. In
an impressive experiment with a quantum Hall system, Chen
et al. @12# measured capacitance coefficients in a three-
terminal geometry and presented an interpretation in terms of
PDOS. Christen and Bu¨ttiker @13# discussed the low-
frequency admittance of quantized Hall conductors with ar-
bitrary topologies. The same authors found that the depen-
dence of the properties of a quantum point contact on the
PDOS results in steps of the capacitance and of the low-
frequency admittance in synchronism with the conductance
steps@14#. Leadbeater and Lambert@15# explained that an
experimentally found@16# asymmetry in the scanning tunnel-
ing microscopy~STM! tunneling conductance into vortices
in a superconductor is due to an asymmetry in the injectivity
associated with particle-hole channels.

II. SCATTERING PROBLEM

Consider the one-dimensional scattering problem
sketched in Fig. 1. In a regionx1,x,x2 scattering is as-
sumed to be purely elastic. Of interest are the PDOS and the
sensitivities in this region. The global scattering properties
are described by the scattering-matrix elementssab which
are the ratio of the current amplitudes of the outgoing waves
at xa and of the incoming waves atxb . Note that the scat-
tering matrix is here defined with respect to current ampli-
tudes atfinite xa (a51,2), and not with respectx→6`. In
the sequel, all quantities are absolute quantities rather than
defined relatively to a free particle. For example, we deal
with scattering phases rather than phase shifts and with total

FIG. 1. One-dimensional scattering problem described in the
text. The dashed and dotted curves belong to Fermi energies asso-
ciated with a transparent and an opaque barrier, respectively.
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times rather than delay times~i.e., time differences relative to
the free particle!.

Scattering is due to a stationary potentialU(x) localized
in the region @a,b#. To be definite, we assume
x1,a,0,b,x2 and that an absolute maximum of the po-
tential, if any, is located atx50. In the regions
V15@x1 ,a# andV25@b,x2# the potentials are constant and
take the valuesU1 andU2, respectively. Quantities associ-
ated with these regions are labeled by roman indices in con-
trast to the greek labels which designates the boundaries
(xa) of the system~for, e.g., an electrical conductor greek
and roman labels designate contacts and regions in the con-
ductor, respectively!. This distinction is conceptually impor-
tant. For example, in general the number of contacts differs
from the number of relevant regions@13#.

In the regionV l the wave numberkl of a particle is re-
lated to the energyE by E5(\kl)

2/2m1Ul . This energy
dispersion defines in, e.g.,V1 a scattering channel with a left
incoming branch in which particles have the positive veloc-
ity v15\k1 /m and an outgoing branch in which particles
have the negative velocity2v1. An analogous~inverse! re-
lation holds inV2.

Below, the classical turning pointsxL and xR at the left
and the right side of an opaque barrier, respectively, will be
important. For a transparent scattering obstacle, where
maxx$U(x)%,E, we definexL5xR50 at the maximum of
the barrier. We call the system ‘‘large’’ ifxL2x1 or
x22xR is much larger then the typical wavelengthl of the
particle. The semiclassical~WKB! regime is applicable, if
the characteristic scale of the space dependence ofU(x) is
much larger then the typical wavelengthl.

III. DENSITY OF STATES AND GREEN’S FUNCTION

We recall briefly some useful results concerning the re-
tarded single-particle Green’s functionG(x,x̃) @17#. The
scattering problem defined in the preceding section is asso-
ciated with the Hamiltonian

H52
\2

2m
]x
21U~x!. ~8!

The retarded Green’s function is then defined as the regular
solution of

~E1 i e2H !G~x,x̃!5d~x2 x̃!, ~9!

where one takes the limite→01 and whered(x) is the Dirac
delta function. This Green’s function can be interpreted as
the quantum mechanical probability amplitude for the propa-
gation of the particle fromx̃ to x. Since we are interested
only in scattering states we concentrate on the continuous
part of the spectrum ofH. Effects of the discrete part of the
spectrum~belonging to localized states! on the PDOS are
disregarded.

The local DOS at an energyE is given by the imaginary
part of the Green’s function

dn

dE
~x!52

1

p
Im$G~x,x!%. ~10!

From the local DOS one obtains the global DOS

dN

dE
5E

x1

x2
dx

dn

dE
~x!52E

x1

x2
dx

1

p
Im$G~x,x!%. ~11!

For example, the retarded Green’s function of a free particle
@U(x)[0# with wave numberk5A2mE/\ is given by
G(x,x̃)52 i /(\v)exp(ikux2x̃ u) with the particle velocity
v5\k/m. Consequently, the local DOS of a ballistic channel
is 2/hv. The DOS in a channel of lengthL is then 2L/hv.
This can be seen by noticing thatkL\p gives the number
N(E) of nodes~which count the states! of the wave function
with energyE; the derivative with respect to energy yields
the DOS.

IV. DENSITY OF STATES AND SCATTERING MATRIX

Some useful results which relate the DOS to the scattering
matrix follow @19# already from general expressions of the
scattering matrix elements in terms of the transmission and
reflection probabilities and the scattering phasesf and
f6fa . Heref is the total phase accumulated in a transmis-
sion event andf6fa are the phases accumulated by a par-
ticle which is incident from the left or the right and which is
reflected. The phases are measured atx1 and x2. The
scattering-matrix elements can be written in the form

s~E!5S r t

t r 8D
5S 2 iARexp~ if1 ifa! ATexp~ if!

ATexp~ if! 2 iARexp~ if2 ifa!D .
~12!

This scattering matrix is assumed to be symmetric, which
holds in the absence of a magnetic field. For a spatially sym-
metric barrier and for symmetrically locatedx1 and x2 the
phase asymmetryfa vanishes and one has additionally
r5r 8.

Avishai and Band@18# showed that the one-dimensional
DOS of a large system is given by the energy derivative of
the scattering phase

dN

dE
5

1

4p i(ab
S sab

† dsab

dE
2
dsab

†

dE
sabD 5

1

p

df

dE
. ~13!

In the absence of scattering the phase is given byf5kL
which again impliesdN/dE52L/hv. However, the DOS of
an openandfinite system is not given by Eq.~13! but must
be calculated by the spatial integration~11! of the local DOS.
Gasparianet al. @20# calculated the integral~11! in a finite
region and expressed the final results in terms of the
scattering-matrix elements. The integrated DOS differs from
~13! by a correction which contains the reflection amplitudes
divided by the energy:
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dN

dE
5
1

p

df

dE
1ImH r1r 8

4pE J
5
1

p S df

dE
2

AR
2E

cos~f!cos~fa! D . ~14!

The relative difference of the results~13! and ~14! is of
O(l/L). This implies that the correction term can be ne-
glected for large systems, for large energies, and in the semi-
classical~WKB! case~and, of course, ifR is negligible!. The
local DOS cannot only be obtained from Eq.~10!, but alter-
natively also from Eq.~3!, i.e., from the scattering matrix
sab and its functional derivative with respect to the potential
U(x). In the next section we work out a relation between
these two approaches in view of the PDOS.

V. PARTIAL DENSITIES OF STATES

The aim now is to derive simple expressions for the basic
PDOS~1! by using the Green’s function. Before doing this,
we discuss two cases which yield some vivid insight. First,
we calculate the PDOS in a large system directly from the
energy derivative of the scattering matrix~12!. Second, we
construct the local PDOS in the WKB approximation from
phase-space arguments.

A. Global partial densities of states in a large interval

If we are not concerned with effects ofO(l/L) the global
PDOS in a large interval can be found by taking energy
derivatives of the scattering matrix

dNab

dE
5

1

4p i S sab
† dsab

dE
2
dsab

†

dE
sabD . ~15!

Using the specific from~12! of the scattering matrix one
finds

dN11

dE
5

R

2p

d~f1fa!

dE
, ~16!

dN12

dE
5
dN21

dE
5

T

2p

df

dE
, ~17!

dN22

dE
5

R

2p

d~f2fa!

dE
. ~18!

Note that the local quantitiesdnab /dE can be written for-
mally by replacing the derivativesd/dE in ~16!–~18! by the
functional derivatives2d/dU(x). Clearly, the dependence
of the PDOS~16!–~18! on the transmission and reflection
probabilities had to be expected. The PDOSdN12/dE asso-
ciated with particles transmitted from the right to the left is
T/2 times the total DOS, whiledN11/dE must be propor-
tional to the reflection probability. In the following para-
graph such arguments are used to construct the local PDOS
in the semiclassical approximation.

B. Quasiclassical partial densities of states

In the quasiclassical~q, c! case, the local PDOS can be
obtained with the help of the simple phase-space arguments

of Ref. @14#. In Fig. 2 we sketched the classical phase space
of the scattering problem of Fig. 1. Consider the trajectories
at energyE ~thin curves in Fig. 2!. Since the phase-space
area per state corresponds to Planck’s constanth, the quasi-
classical DOS is related to the energy derivative of the
phase-space areaF enclosed by the trajectories of positive
and negative momentum:dN(qc)/dE5h21dF/dE @21#. In
Fig. 2, the phase-space regiondF is indicated by a grey
filling. From the classical equation of motion one obtains for
the local DOS dn(qc)/dE5(2/hv)@12U(x)/E#21/2 and
dn(qc)/dE
50 for real and imaginary momenta, respectively.

We construct now the local PDOS from the local DOS
and the reflection and transmission probabilities. We men-
tion that there exists a WKB expression forT in both cases
of opaque and transparent barrier@22#. We may restrict our-
selves tox1,x,xL ; for xR,x,x2 the results are obtained
by appropriately interchanging the indices 1 and 2. Since a
relative fractionT of the particles with positive momentum
are transmitted fromx1 to x2 ~and vice versa! one has

dn12
~qc!

dE
~x!5

dn21
~qc!

dE
~x!5

T

2

dn~qc!

dE
~x!. ~19!

A relative fractionR of the particles with positive momen-
tum and a relative fraction 12T of particles with negative
momentum contribute to the local PDOS of reflected par-
ticles, hence

dn11
~qc!

dE
~x!5R

dn~qc!

dE
~x!. ~20!

Because on the left of the barrier there are no classical tra-
jectories which both emanate at and return tox2, one con-
cludes

dn22
~qc!

dE
~x!50. ~21!

Next, we calculate the quantum mechanical corrections to
these expressions. Interestingly, it turns out that for the fully
quantum mechanical problemdn22/dE does not vanish.

FIG. 2. Classical phase-space plot of the scattering region in
Fig. 1. The WKB density of states is obtained from the phase-space
areadF ~grey region! between two trajectories~thin lines! of en-
ergy differencedE. The dashed arrows indicate tunneling.
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C. Partial densities of states and the Green’s function

To derive exact expressions for the local PDOS, we start
from the Fisher-Lee relation@23# between the scattering ma-
trix and the Green’s function

sab52dab1 i\AvavbG~xa ,xb!. ~22!

Insertion of Eq.~22! in Eq. ~1! gives

dnab

dE
~x!52

\Avavb

4p S sab*
dG~xa ,xb!

dU~x!
1H.c.D , ~23!

where the asterisk indicates complex conjugation. The func-
tional derivative of the Green’s functiondG/dU is calcu-
lated by adding to the Hamiltonian~8! the local potential
variationdU(x)5dU0d(x2x0). One finds for the variation
of the Green’s functiondG(x,x̃)(x0)5dUG(x,x0)G(x0 ,x̃)
which implies

dG~xa ,xb!

dU~x!
5G~xa ,x!G~x,xb!. ~24!

Equation~23! can thus be written as

dnab

dE
~x!52

\Avavb

4p
@sab* G~xa ,x!G~x,xb!1H.c.#.

~25!

This formula represents the central result of our work. To-
gether with Eq.~22!, it expresses the local PDOS fully in
terms of the Green’s function. For certain cases, Eq.~25! can
be transformed to simpler expressions containing onlyT,
va , anddn/dE. It is shown in the Appendix that the PDOS
of transmitted particles is

dn12
dE

~x!5
dn21
dE

~x!5
T

2

dn

dE
~x!, ~26!

which has the same form as the the WKB result~19!. Since
the sum over all local PDOS equals the local DOS it holds

dn11
dE

~x!1
dn22
dE

~x!5R
dn

dE
~x!. ~27!

Unfortunately, it is not possible in general to find expres-
sions fordnaa /dE which are similarly simple as Eq.~26!. In
the flat potential regions, however, it is possible. Consider,
e.g.,xPV1. The results forV2 follow from an appropriate
exchange of the indices. We find for the local PDOS inV1
~see the Appendix!

dn11
dE

~x!5R
dn

dE
~x!2

dn22
dE

~x!, ~28!

dn22
dE

~x!5
T

2 S 2

hv1
2
dn

dE
~x! D . ~29!

The WKB results, Eqs.~19!–~21!, are immediately recov-
ered if one recalls thatdn(qc)/dx52/(hv l) in V l . Clearly,
for vanishing transmissionT50 there are no states on the
left side of a barrier which are scattered fromx2 to x2, and
~29! vanishes. Below we show that for finiteT the local

PDOS ~29! can be negative. Thus one concludes that, in
general, the basic PDOS cannot be interpreted as densities of
states in the usual sense of the word.

VI. INJECTIVITY AND EMISSIVITY

In the introduction we mentioned that in many cases the
injectivity ~4! and the emissivity~5! are the physically rel-
evant PDOS. From their definition it follows that the sum
over all emissivities and the sum over all injectivities is
equal to the local DOS. In the absence of a magnetic field, as
is the case here, the injectivity and emissivity are equal to
each other@2#. In principle, they must be calculated from Eq.
~25!. Again, they simplify considerably in the regions where
the potential is uniform. From Eqs.~26!–~29! one obtains in,
e.g.,V1

dn̄1
dE

~x!5
dnI 1
dE

~x!5
dn

dE
~x!2

T

hv1
, ~30!

dn̄2
dE

~x!5
dnI 2
dE

~x!5
T

hv1
. ~31!

The injectivitydn̄2 /dE is constant inV1. This follows from
the fact that the injectivity is proportional to the absolute
square of the scattering wave function which is shown in the
next section.

The injectances and emittances of a large system can be
expressed by energy derivatives of the scattering-matrix ele-
ments

dN̄1

dE
5
dNI 1

dE
5

1

2p S df

dE
1R

dfa

dE D , ~32!

dN̄2

dE
5
dNI 2

dE
5

1

2p S df

dE
2R

dfa

dE D . ~33!

The injectance~and emittance! contains the reflected part of
the DOS associated with the phase asymmetry. In the follow-
ing section we show that the injectance~and the emittance! is
related to a dwell time.

VII. DWELL TIMES

There exists a vast literature on characteristic times~e.g.,
traversal, reflection, and dwell times! for the motion of a
particle in the presence of a barrier potential~see, e.g., Refs.
@24,25# and references therein!. Such times are closely re-
lated to PDOS. In classical mechanics the timetcl needed by
a particle to traverse a piece of a trajectory is given by the
energy derivative of the phase-space area enclosed by the
trajectory and the space axis. If one recalls the relation be-
tween phase-space area and DOS one finds for the time the
particle resides in a given region and the semiclassical DOS
a relation of the typetcl5hdN/dE.

The definition of characteristic times in quantum dynam-
ics is a more subtle undertaking. We derive now an expres-
sion for the timedta a particle injected atxa dwells in the
region@x,x1dx#, and we show that it is related to the injec-
tivity dn̄a /dE at x @6,11#. Assume that a particle currentJ is
injected at, e.g.,x1. The dwell time in a neighborhood of
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x0 is defined as the ratio of the particle number in the interval
@x0 ,x01dx# and the incoming current:

dt1~x0!5
uC~x0!u2

J
dx. ~34!

Obviously, this equation describes a balance equation: the
injected current equals the decay rate of the probability in
@x0 ,x01dx#. To calculate the dwell time, we follow closely
Ref. @6# and introduce an infinitesimal particle absorption of
strengthdG at x0. This absorption is described by an imagi-
nary perturbationdH52 i (\/2)d(x2x0)dG of the Hamil-
tonian ~8!. The perturbed Hamiltonian is not Hermitian
which implies that the continuity equation for the quantum
mechanical probability density obtains a sink term atx0:

] tuC~x!u21]xj52dGuC~x!u2d~x2x0!. ~35!

Here, j is the usual quantum mechanical current density. The
current of absorbed particles isd j52dGuC(x0)u2. Thus, the
infinitesimal dwell time can be written asdt1
52dx(d j /dG)/J. Now we use d j5J(dR1dT), where
dR anddT are the variations of the reflection and the trans-
mission probabilities,R5us11u2 andT5us21u2, respectively,
for particles coming from the left. These variations are
obtained from an expansion of the scattering matrix ele-
ments,sa15sa1

(0)1(dsa1 /dU)dH. With the help of Eq.~1!
one can write dR52hdG„dn11(x0)/dE… and dT
52hdG„dn21(x0)/dE…. The case where particles are in-
jected atx2 is treated analogously. Dropping the index of
x0, the dwell time in a region@x,x1dx# for particles coming
from xa can be expressed in the form

dta~x!5h
dn̄a

dE
~x!dx, ~36!

which is proportional to the injectivity. The dwell timeta of
a finite region is obtained with a spatial integration, i.e., it is
essentially the injectancedN̄a /dE of this region. The spe-
cific dependence on the magnetic field stated in Eqs.~6! and
~7! is a consequence of reciprocity, i.e.,dn̄a,B /dE
5dna,2B /dE @2#. The characteristic times associated with
finite regions must be calculated by spatial integration of a
density~the injectivity! and are not given simply by energy
derivatives of phases. This was already clear in the discus-
sion of the collision times by Smith@26# and by Jauch and
Marchand@27#. It has also been pointed out by Gasparian
and Pollak@28# when they compared Larmor-clock times
with times derived from energy derivatives. Recently, a re-
lation between DOS and dwell times has been investigated
by Iannaccone@29#. To which extent the times obtained from
energy derivatives provide a reasonable approximation fol-
lows from the remark at the end of Sec. IV. In particular, for
large systems this approximation can be accepted.

VIII. SENSITIVITIES

Let us next investigate the sensitivities~2! and their con-
nection to the Green’s function. We first mention that the

sensitivities are simply related to the functional derivatives
of the transmission probability. We have 4ph12
52dT/dU(x). The unitarity of the scattering matrix implies
immediatelyh12 5h21 52h11 52h22 [h. In the present
case of a two-channel scatterer the sensitivities are charac-
terized by a single quantityh which describes the depen-
dence of the transmission probability on the local potential.
Along the lines of Sec. V one derives~see Appendix!

4ph52
dT

dU~x!
522TRe$G~x,x!%. ~37!

This result states that the real part of the diagonal elements
of the Green’s function is essentially the sensitivity. To-
gether with Eq.~10!, this leads to an expression for the di-
agonal elements of the Green’s function

G~x,x!52
2p

T
h~x!2 ip

dn

dE
~x!5

d

dU~x!
~ lnAT1 ipN!.

~38!

The sensitivity plays a role which is complementary to that
of the local DOS. We mention that from the knowledge of
the sensitivity and the DOS, one cannot only derive the di-
agonal elements~38! of the Green’s function, but in principle
also the nondiagonal elements. This follows immediately
from Eq. ~61! in the Appendix.

IX. EXAMPLES

In this section we present two examples. First, we con-
sider a channel with a delta barrier which describes, e.g., a
one-dimensional conductor with a localized impurity. Sec-
ond, we discuss the local Larmor clock which turns out to be
intimately related to the local PDOS.

A. Delta barrier

As a simple example, consider a ballistic conductor
(U15U250) containing a delta-function impurity
U(x)5Vd(x) with V>0. For convenience, we introduce the
dimensionless quantityw5V/(\v), wherev is the particle
velocity. The local PDOS can be calculated either directly by
introducing a furtherd potential of infinitesimal strength
dU, calculating the scattering matrix from the transfer ma-
trix, and using the definition~1!. Or it can be calculated with
the help of the diagonal elements of the Green’s function and
using the results derived above. The diagonal elements of the
retarded Green’s function are given by

G~x,x!52
i

\v S 12
w~ i1w!

11w2 ~cos2kx1 isin2kuxu! D ,
~39!

and the transmission and reflection probabilities are
T51/(11w2) and R5w2/(11w2), respectively. With the
help of the function f (x)5wcos(2kx)2sin(2kuxu) we can
write the PDOS in the regionx1,x,0 in the form
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dn11
dE

~x!5
R

hv S 22
1

w

112w2

11w2 f ~x! D , ~40!

dn12
dE

~x!5
dn12
dE

~x!5
T

hv S 12
w

11w2 f ~x! D , ~41!

dn22
dE

~x!5
T

hv
w

11w2 f ~x!. ~42!

Note thatf (x) contains fast Friedel-like oscillations. In par-
ticular,dn22/dE which vanishes in a semiclassical consider-
ation contains oscillating quantum-mechanical correction
terms. Usingw/(11w2)5ART, the injectivities ~and the
emissivities! can be written as

dn̄1
dE

~x!5
22T

hv
2

2

hv
ARTf~x!, ~43!

dn̄2
dE

~x!5
T

hv
. ~44!

The local DOS is

dn

dE
~x!5

2

hv
@12ARTf~x!#. ~45!

The local PDOSdnab /dE and the local DOSdn/dE are
plotted in Fig. 3. Note that the local PDOSdnaa /dE asso-
ciated with reflection can be negative. The injectivity
dn̄1 /dE is shown in Fig. 4. This injectivity is proportional to

the absolute square of the scattering wave function and is, at
the right side of the barrier, proportional toT and space
independent. For a symmetric system (x252x15L/2), the
global DOS is

dN

dE
5
2L

hv
1

ART
2pE

@12cos~kL!2wsin~kL!#. ~46!

A calculation of the global DOS from~13! yields a wrong
result without oscillation terms. Such oscillations in the DOS
and the PDOS should influence the conduction properties of
sufficiently small conductors@30#.

Using Eq.~39! one obtains for the sensitivity

h5
wT2

hv
@cos~2kx!1wsin~2kuxu!#. ~47!

The sensitivity for this example is a strongly oscillating func-
tion, i.e., it contains only Friedel-like terms. Note that the
corresponding global quantity, the spatially integrated sensi-
tivity,

E
2L/2

1L/2

dxh~x!5
wT2

4pE
@w1sin~kL!2wcos~kL!# ~48!

differs strongly from the result obtained from an energy de-
rivative ofT which yields only the average value but not the
oscillation terms. Since the sensitivity is not the density of an
extensive quantity, it must be calculated by functional de-
rivatives with respect to the potential even in a large system.

B. Local Larmor clock

The Larmor clock is a system where spin-polarized elec-
trons are scattered by a rectangular potential barrier and an

FIG. 3. Partial densities of statesdn11/dE ~dashed!, dn12/dE
~dotted!, dn22/dE ~dashed-dotted!, and dn/dE ~solid! for the d
barrier withT50.8.

FIG. 4. Injectivity ~or absolute square of the scattering wave
function! dn̄1 /dE for the d barrier withT50.8.
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additional perpendicular magnetic field@5#. Outside the bar-
rier the magnetic field vanishes but inside it is assumed to be
constant and to point in thez direction. We denote the Lar-
mor frequency byvL , and the space coordinate of the par-
ticle by y rather than byx. Consider electrons coming from
the left side and with spin being initially polarized in thex
direction. Due to a Larmor precession of the spin in the
barrier, the expectation values of the spin components de-
pend on the time the particle spends in the barrier. This mo-
tivates the introduction of characteristic times. In fact, one
can formally define quantitiestx , ty , and tz having the
dimension of a time and being associated with the precession
of each spin componentsx , sy , and sz , respectively. For
smallvL the quantum mechanical expectation values of the
spin components of the transmitted particles are given by@5#

^sx&T5
\

2 S 12
1

2
vL
2~tx,T!2D , ~49!

^sy&T52
\

2
vLty,T , ~50!

^sz&T5
\

2
vLtz,T . ~51!

The conservation of the spin length impliestx,T
5(ty,T

2 1tz,T
2 )1/2, i.e., only two of the times are independent.

Similarly, one can introduce timestx,R , ty,R , and tz,R for
the reflected particles. Expressions for these times have been
derived@5# in terms of derivatives with respect to the height
of the potential barrier rather than with respect to the particle
energy. We emphasize the quantitiest defined here can be
negative and, therefore, do not correspond in general to a
physical time, although they are called ‘‘Larmor times.’’
Note that the only times which are positive per definition are
tx,T andtx,R . However, all of these quantities have a clear
physical meaning independent of their sign.

Leavens and Aers@7# discussed a local version of the
Larmor clock with an arbitrary barrier potential~as described
in Sec. II! and alocalizedmagnetic field inside the barrier.
This means thatB is finite only in the small interval
@x,x1dx# with a,x,b. The Larmor times are now infini-
tesimal quantities proportional to the sizedx of the interval.
Consider particles incident from the left. It is then conve-
nient to introduce the following complex quantities@7#:

dt t5 i\
d ln~ t !

dU~x!
dx, ~52!

dt r5 i\
d ln~r !

dU~x!
dx, ~53!

wheret and r are the transmission and the reflection ampli-
tudes, respectively, introduced in Eq.~12!. The Larmor times

are related todt r and dt t by dtz,T52Im$dt t%, dtz,R
52Im$dt r%, dty,T5Re$dt t%, anddty,R5Re$dt r%. A short
calculation yields

dt t5
h

T S dn21dE
~x!2 ih21Ddx, ~54!

dt r5
h

R S dn11dE
~x!2 ih11Ddx. ~55!

As it must be@7# the dwell time~36! satisfies

dt15Tdt t1Rdt r . ~56!

Furthermore, we obtain for the Larmor times

Tdtz,T5hh21~x!dx, ~57!

Rdtz,R5hh11~x!dx, ~58!

Tdty,T5h
dn21
dE

~x!dx, ~59!

Rdty,R5h
dn11
dE

~x!dx. ~60!

Similar relations hold for particles coming from the right.
The results~57!–~60! connect the local PDOS with physi-
cally well-defined quantities, which indicates the relevance
of the PDOS.

We reemphasize again that it is tempting to associate the
basic PDOSdnab /dE with physically meaningful times
characterizing the tunneling process. In fact this is done in a
number of works~which do not explicitly use the terms DOS
or even the notation used here!. However, as we mentioned
already some of the PDOS can be negative which would lead
to negative times. Physical times are positive and aninter-
pretationof the PDOS in this direction is misleading.

X. SUMMARY

In this work we discussed the decomposition of the local
density of states into partial density of states which carry the
information about the past and the future of the scattered
particles. We defined the sensitivities which describe the re-
sponse of the transmission probability to a variation of the
potential. All these quantities were defined in terms of func-
tional derivatives of the scattering matrix with respect to the
effective single-particle potential which appears in the
Schrödinger equation. We have discussed their formal rela-
tion to the Green’s function. While the PDOS turn out to be
connected to the imaginary part of the Green’s function, the
sensitivity is related to its real part. Also, their connection to
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characteristic times of the scattering process was investigated
and, consequently, to the absolute square of the scattering
states. Finally, we considered as simple illustrative examples
a d barrier in a ballistic channel and the local Larmor clock.

It should be clear that the concepts discussed in this ar-
ticle apply not only to the two-channel situation but can be
generalized to many-channel scattering problems. Further-
more, a similar point of view can very likely be developed
even for problems with interaction for which the notion of an
effective single-particle scattering matrix is not appropriate.
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APPENDIX

We derive first Eq.~26!. The relation

G~x,x̃!5AG~x,x!G~ x̃,x̃!expS E
min~x,x̃!

max~x,x̃! dz

2G~z,z! D
~A1!

provided by Ref.@30# implies for xa,x,xb immediately
G(xa ,x)G(x,xb)5G(xa ,xb)G(x,x). It follows that

dn12
dE

~x!5 i
\2v1v2
4p

uG~x1 ,x2!u2@G~x,x!2G* ~x,x!#,

~A2!

which is equivalent to Eq.~26!. Next, we prove the validity
of Eqs.~28! and~29! for xPV1. To do this we mention first
a relation between the scattering matrix elementss12 and
sx2, wheresx2 connects current amplitudes atx2 and atx.
Using the technique of transfer matrices and their relation to
scattering matrices, one obtainss125sx2exp@ik(x2x1)#. Simi-

larly, one shows thats115sxxexp@2ik(x2x1)# wheresxx de-
notes the reflection amplitude atx. With the help of the
Fisher-Lee relation~22! one shows

dn22
dE

~x!52
\v2
4p

@s22* G
2~x2 ,x!1H.c#

5
1

4p\v1
$ iARexp~ if1 ifa!T

3exp@22ik~x2x1!#1H.c.%

52
T

2hv1
~sxx1sxx* !

5
T

hv1
1

T

4p i
@G~x,x!2G* ~x,x!#, ~A3!

which yields Eq.~29!. In similar way, one has

dn11
dE

~x!52
\v1
4p

~s11* G
2~x1 ,x!1H.c!

52
\v1
4p S s11* G2~x1 ,x!G2~x2 ,x!

G2~x2 ,x!
1H.cD

52
\v1
4p S s11* G2~x1 ,x2!G

2~x,x!

G2~x2 ,x!
1H.cD

52
\v1
4p

@sxx* G
2~x,x!1H.c#5

R11

2hv1
~sxx1sxx* !,

~A4!

which yields Eq.~28!. Finally, the expression~37! for the
sensitivity follows from

dus12u
dU~x!

5\2v1v2@ uG~x1 ,x2!u2G* ~x,x!1H.c.#. ~A5!
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