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We find the dependence of the ensemble-averaged resistance, {p; ), of a one-dimensional chain
consisting of periodically spaced random delta-function potentials of the chain length L,

the incident-electron energy, and the chain disorder parameter w. We show that generally the
{p.) vs L dependence can be written as a sum of three exponential functions, two of

which tend to zero as L— o0, Hence the asymptotic expression for (p;) is always an exponential
function of L. Such an expression for (p;) means that the electronic states are indeed

localized and makes it possible (which is important) to find the dependence of the localization
radius on the incident-electron energy and the force with which an electron interacts with

the sites of the chain. We also derive a recurrence representation for {p; ), which proves convenient
in numerical calculations. © 1997 American Institute of Physics. [S1063-7761(97)01302-4]

1. INTRODUCTION

It is well known that the procedure of averaging and
calculating the averages of the physical properties for disor-
dered systems is difficult primarily from the mathematical
viewpoint. The phenomenon of electron localization in sys-
tems with random interaction potentials makes it possible
occasionally to draw certain conclusions about the nature of
the possible solutions without actually solving the problem.
For instance, in the one-dimensional case, as shown in Refs.
1-4, the dependence of the average resistance of a metal
with fixed impurities, where all the electronic states are lo-
calized , on the length L of the impurity chain can be ex-
pressed, for L— o at absolute zero, by the following formula
(h=e%=1):

(pry=4"¢-1),

where £ is the electronic-state localization radius, which is
independent of L. Here the ‘‘nonideal region’’ is assumed to
exist between two semi-infinite electrodes in which electrons
move freely. It is the fraction of electrons that have passed
through the ‘‘nonideal region’’ from one electrode to the
other that determines the transmissivity of the system, which
is inversely proportional to (p,). Thus, such a one-to-one
correspondence between the Landauer resistance (p;) with
L— and the localization radius £ of one-electron states, the
latter depending only on the electron energy and the force of
the electron—impurity interaction, reduces the problem of
finding ¢ to that of finding (p,) with L— o0, and vice versa.

For instance, for the entire class of random potentials in
which the average potential is zero, i.e., potentials of the
white-noise type, the localization radii have been calculated
both in the presence of an external field and in the absence of
such a field.> The well-known method of transfer matrices,
when applied to the model of short-range potentials,® has
made it possible to effectively perform numerical calcula-
tions but proved ineffective in obtaining analytic results. The
determinant method, suggested in Refs. 7 and 8 for one-
dimensional systems consisting of random single barriers,
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made it possible to obtain analytic results only under the
assumption of weak or strong scattering of an electron by a
single barrier and in the event of resonant passage. Calcula-
tions of the localization radius from the behavior of (p;) as
L-—» were also done in Refs. 9-11.

In Ref. 12 it was shown that for the model of periodi-
cally spaced delta-function potentials whose amplitudes are
independent random quantities with a zero average value, the
average Landauer resistance (p;) can be represented by a
series expansion. In Ref. 13 we were able to sum this series
and to derive a finite-difference equation for determining
{pr). There we also gave solutions for this equation in par-
ticular cases, i.e., for electron energies corresponding to the
edge and center of the energy band.

In the present paper we find the analytic solution of the
finite-difference equation for {(p,) in the general case. This
solution actually gives (p,) as a function of the chain length
L, the energy of the impinging electron, and the intensity of
electron scattering on a single barrier. We show that the so-
lution for {p;) with L— can always be reduced to the form
{pr) = exp(L/§), with £ independent of L. We also calculate
the localization radius.

In Sec. 2 we formulate the problem and give the results
obtained in Ref. 13 that are needed for our present study. In
Sec. 3 we find the general solution of the finite-difference
equation that the unknown function {(p,) satisfies. Here we
also derive a recurrence relation for {p,). Section 4 is de-
voted to an analysis of the characteristic equation whose
roots are used, as shown in Sec. 3, to express the dependence
of (p;) on L. We also find the solution of the equation for
{pr), with L—co, from which we derive an expression for
the electron localization radius. In Sec. 5 we analyze the
results.

2. STATEMENT OF THE PROBLEM

We take a chain of N delta-function potentials with ar-
bitrary amplitudes V,, and corresponding coordinates x,, :
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N
V(x)= 2 V,8(x—x,), n=1,2,...,N.

n=1
Let the solution of the Schrodinger equation for an electron
with an energy E=k? (A=2my=1, with m, the electron
mass) outside the structure be

e tryk)e ™, x=x,,

(Ij(k’x) = tN(k)eikx,

x=x N>

where ry(k) and ty(k) are, respectively, the electron reflec-
tion and transmission amplitudes. The Landauer resistance
can be expressed in terms of ry(k) and ty(k) by the well-
known formula

1
pv=r—rmr— L [rv(R)[*=1—en(R)|%. (D
len(k)|
This formula holds for any type of scattering potential.
In Ref. 13 we found that the quantity py averaged over the
different realizations of the random field for a model in
which N delta-function potentials occupy arbitrary points

X1, X2, ...,Xy can be expressed as
N N
(oy=1+2 2 277'a?
p=1 lsjls---sjp
p—1
X ,1:[1 {1—cos[2k(x;,, —x;)1}, ()
where
1 w2
—"f f(V )W ;f—wlzf(vj)dvj_ L.

Here f(V)) is the distribution function of the potentials V;,
which is defined in the interval [w/2,—w/2], is assumed
equal for all the V; (j=1,2,...,N), and is an arbitrary even
function of V;. In particular, for f(V;))=1 we have
a=w?/48k>.

Direct summation of the series (2), even assuming that
the scatterers are positioned equidistantly, runs into unsur-
mountable difficulties. Equation (2) can be summed only in
some particular cases, when the electron energy corresponds
either to the center of the energy band or to the edge
(ka= /2 or ka=m, where a is the chain period).m3 How-
ever, as shown in Ref. 13, we can sum over the inner indices
in (2). The result is a finite-difference equation for the un-
known quantity {py). This equation has the form

N

(pw)=aN+ 21 cN—n{Pn)> (3
where

=1, c,=2a[l—cos(2kan)].

Note that Eq. (3) can be interpreted as a system of linear
algebraic equations in the unknowns (p,),(p1), ... .{pn),
with the result that (py) can be written in the form of a
determinant.

318 JETP 84 (2), February 1997

The solution of Eq. (3) for the particular case of
ka= can be obtained immediately because c,=0 for all
n:

(pn)=eaN. @

This result corresponds to resonant passage of electrons and
was first derived in Ref. 6. In Ref. 13 we found the solution
of Eq. (3) for another particular case, where the incident
electron energy corresponds to the center of the energy band,
ka=m/2. The solution is

(a+b)N+(a b)N (a+b)Y¥—=(a-b)N

(pN> 2 2b ’
(5)
where
a=2a, b=41 +4a2.

As the solution (5) shows, for any @ and N—  we can write
(py) in the form {py) « exp{Na/&}, where ¢ is independent of
N and is the electron localization radius.

Below we show, however, that Eq. (3) can also be
solved in the general case, i.e., for any values of the incident-
electron energy and the parameter c.

3. SOLVING THE FINITE DIFFERENCE EQUATION FOR (p)(

Let us now solve Eq. (3) in the general case. We seek the
solution in the following form:

{pn)= 2 ij +A,, (6)

where the x;, A;, and A, are assumed independent of N.
The quantity p, determining the number of terms in (6), will
be left undefined for the time being. Substituting the solution
(6) in Eq. (3) and requiring that the latter hold for all values
of N, we arrive at the necessary relationships determining
x;, Aj, and Ay. These conditions are

> 1
Axi=—~+a, 7
jgl KTy T @)
s A _le ®
j=1 1+xj_ 4 °
i A - A - )
Aty T
Here the x; are the roots of the characteristic equation
B=x2+m)+x(l—-m)—~1=0, (10)
where

=142 cos(2ka), m=2ca[l—cos(2ka)]. an

Note that Eq. (10) implies, among other things, that p=3 in
Egs. (7)—(9). Simultaneous solution of Eqs. (7)~(9) and Eq.
(10) determines the coefficients A; (j=1,2,3):
1 (A-a)(1+D—(1+x)(+m=x,—-2a)
1 2 (xz—x,)(x3—x1)

(12)
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A, and A, can be obtained from (12) via cyclic permutation
of xy, x3, and x3. The quantities x;, which are the roots of
the cubic equation (10), are given by the standard formulas

I+m
x=C+D+ —,

3
(13)
Cc+D C-D I+m
xZ3=_T+l\/_T+_3‘—‘.
Here
‘/__+\/__ D‘_‘\, 1_
2 2+3m? 12— 2—m +1 »
Q"?9123‘6Z’()
21+m3 >~ m?
9==2{—3— 3L

From the general solution given by (6), (12), and (13) we can
easily find the particular solution for electrons with an en-
ergy corresponding to the center of the energy band. Indeed,
for ka=7/2 Eqgs. (11) yield /I=—1 and m=4a. Then the
solutions of Eq. (10) are

x2,3=2ai \/1+4a B (15)

Plugging (15) into (6) and (12) and noting that the coefficient
Ay, corresponding to the root x; = —1, is zero, we arrive at
the solution (5) found in Ref. 13.

Combining (6) and the characteristic equation (10), we
obtain the following recurrence equation for {py):

(pn)=UU—m){py_1)—(I+m){py_2)+{pn-3)+tm,

xl=—1,

where the initial values {p;), {(p,), and {p3) for (16) can be
found from (3):

(p1)=a, (p)=2a+2a’[1—cos(2ka)],
(p3)=3a+2a*[3~2cos(2ka)—cos(4ka)]
+4a3[1-cos(2ka)]’.

The recurrence equation (16) can be used for numerical cal-
culations and for studying {py) for moderate values of N.

We note that, as solution (6) shows, the dependence of
the average Landauer resistance of a chain of periodically
spaced random delta-function potentials on the chain length
L=Na generally has the form of a sum of three exponential
functions.

4. LOCALIZATION OF ONE-ELECTRON STATES

Now let us discuss the behavior of {p, ), the solution (6),
as L-—o, We wish to demonstrate that for all reasonable
values of the parameters I and m the quantity {(p,) increases
in the limit L—o according to an exponential law. This
means that in our model all the one-electron states are local-
ized. The only exceptions are the edges of the energy bands
(ka=mm, m=1,2,...), for which the (p,) vs L depen-
dence is linear.’
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To prove the above statement we must first establish
certain properties of the real roots of the characteristic equa-
tion (10). This requires writing Eq. (10) in the form
+x+1 x+1

x x—1

m. (17)

Here we allowed for the fact that x; # 0 and excluded the
solution x;=1, j=1,2, 3, which corresponds to the edges of
the energy bands (see above). If we substitute any real solu-
tion x; of Eq. (10) in (17), then in the plane specified by the
coordinates ! and m Eq. (17) specifies a straight line contain-
ing all the pairs / and m for which x; is a solution of Eq.
(10). This statement provides the Key to establishing whether
or not a fixed real x; is a solution of Eq. (10). To this end we
need only to plug x; into Eq. (17) and see whether the
straight line (17) passes through the range of possible values
of the parameter / and m. If it does, x; is a solution of Eq.
(10).

As the definitions (11) of the parameters [ and m imply,
the ranges of their allowed values are

—-1<i<3, m=0, (18)

Examining the various straight lines in the I, m plane for a
fixed x;, we can easily see that these straight lines pass
through the region specified in (18) only if

—-1sx;<0, x;=1. (19)

J

Hence the conditions (19) determine the range of values of
the real roots of Eq. (10) for arbitrary values of the electron
energy (or ka) and the parameter a.

As is well known, for Q>0 Eq. (10) has only one real
root. Then the other two roots are complex-valued and

x,=x%. This means that we can always write
x,=pe'®, x;=pe ¥, (20)

where p and ¢ are real numbers. According to Viete’s theo-
rem, we have the following relationship for the roots of Eq.
(10):

x1x2x3=l. (21)
Plugging (20) into (21) yields
xp3=1. (22)

Since by definition p? is positive, Eq. (22) implies that the
only real root x, is positive, so that according to (19) we
have

x1>1. (23)

Then from (22) it follows that 0<<p?<1. The real root x, in
the given case (Q>0) can be found from (13). Using (20)
and (22), we write the solution (6) in the following form:

(on)y=Ax)+2ax;Mcos(No+ ) — 1. (24)

The coefficients A, and A; of the solution (6) can be written
as
A,=ae'¥, Ay=ae ¥,
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since A;=A¥ . If we let N go to infinity and allow for the
condition (23), from (24) we obtain the following asymptotic
expression for {py):

(py)=Ax) -3 (25)

Reducing this expression to the form {p;) = exp{L/&}, we ar-
rive at a simple formula for the localization radius ¢:

a

3 (26)

- In x 1 ’

Let us now examine another case, where O <0. Equation
(10) then has three real roots. As Eq. (21) shows, all three
roots cannot be greater than unity simultaneously, since in
this case their product would be greater than unity, which
contradicts (21). The case where all three roots are equal to
unity, x;=x,=x3=1 (Q=0), corresponds to the edge of
the energy band and is a feature of this model; it has been
repeatedly discussed in the literature.®® The case when one
of the roots is negative and the other two are positive is also
impossible, since x;x,x; would be negative, which contra-
dicts condition (21). Hence the only variant that does not
contradict conditions (19)—(21) is the one in which x;=1
and —1=<x,3<0. In this case one of the negative roots, say
x3, can be found from (13) by using the formula

I+m
x3=C+D+ 5 2n

with C=D*. The other two roots are also determined by
(13) and can be written as

x1,2=aib, (28)

with a and b expressed in terms of x3 in the following man-
ner:

I+m—x;

=3

3/1+m
b= \/4—(7+x3)(l+m—x3)+m—l.

Instead of a and b we introduce other variables, p and x, by
the formulas

(29)

a=p sinh x, b=p coshx. (30)

Then b%—a%=p?=—x; . Plugging (30) and (29) into the
solution (6) for (py), we arrive at the following expressions:
H(=1)YA3p™ "+ pM] Ksinh(xN)
+Kycosh(xN)] =1, N=2n+1,

(pn)= - (31)
H(=1DVA5p 2N+pN[K|cosh()cN)
+K,sinh(xN) | =1, N=2n,

where
Aj*A
Ki,=—""2, n=1,2,....

2

As noted earlier, for the electron energy corresponding to the
center of the energy band, ka = 7/2, we have A;=0. For this
particular case we can easily see that K,=p=1 and
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K,=1/cosh x hold, and the solutions (31) become the solu-
tions (53) and (54) of Ref. 13. If we take N to infinity, as in
the case Q>>0, the solutions (31) become the solutions (25),
in which x;=a+ b>1. Hence in this case too the localiza-
tion radius is determined by formula (26).

We have proved that the solution (6) with L— always
leads to an exponential dependence of the average Landauer
resistance {p;) on L. This means, in particular, that all the
one-electron states are localized, with the localization radius
given by formula (26).

5. THE LOCALIZATION RADIUS OF ONE-ELECTRON
STATES

Before proceeding with the calculation of the localiza-
tion radius of one-electron states we would like to mention
several general properties of the solution obtained for (py).

As noted earlier, the average Landauer resistance {py),
expressed by (24) and (31), in the asymptotic case N—® is
a power function of N, i.e., (py) = x¥, with x,;>1, and is
independent of N. The nature of the transition to such a
dependence is determined by the values of the roots x, and
x5 of the characteristic equation (10). The farther the electron
energy is from the edges of the energy bands, the closer the
absolute values of x, and x5 are to zero, and hence the more
rapidly the solutions (24) and (31) acquire the form (25) as
N grows. The dependence of {p;) on L is oscillatory for any
electron energy, but such behavior becomes less and less
evident as L increases. The average Landauer resistance
(pL) depends on the incident-electron energy in a similar
way, provided that L and w are fixed.

We calculated the dependence of £ on ka and w numeri-
cally, with the results depicted in Fig. 1. Clearly, at a fixed
w the value of the localization radius increases as a function
of the electron energy within the first energy band
(0<ka=ar), tending to infinity as ka— 7. Note that the
localization radius has a minimum when the electron energy
varies within the second band (w<ka<2m), and the value
of this minimum tends to the center of the energy band as
w increases. The diagram in Fig. 1 clearly demonstrates a
natural physical result: at fixed electron energies the local-
ization radius monotonically decreases as the chain disorder
parameter w increases. Figure 1 also depicts the curves of
equal values of the localization radius of electronic states.
The universal result obtained here is that the electron energy
must grow with w for the localization radius to remain un-
changed.

In conclusion we note that in the cases of weak and
strong electron scattering, simple analytic expressions can be
obtained for the dependence of the localization radius on the
electron energy and the chain disorder parameter w.

Let us start with weak electron scattering, i.e., @<<1. In
this limit the root of Eq. (10) determining the localization
radius can be found in the form

x1=1+Ax, (32)

where 0<Ax<1. Plugging (32) into (10) and keeping only

terms linear in a, we arrive at the following expression for
Ax:
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e

A= =g 33
xX= 3—_7— o. ( )
Plugging (32) and (33) into (26) and taking In(1+2a)~2a,
we finally obtain

k 2
&= 96(;;) a. (34)

Here the value of £ exceeds by a factor of two the value
obtained by Perel’ and Polyakov.’ The reason is that in Ref.
9 the localization radius was determined from the value of
(In p), which for @<1 is two times the value of In{p).

In the limit of strong electron scattering, i.e., > 1, and
with the additional requirement that

a sin®(ka)>1, (35)

we arrive at the following simple expression for the electron
localization radius:

a
&= In[4« sin(ka)]’

The same result was obtained in Ref. 13 for a>1. We see
that to derive formula (36) we need a stronger requirement
than a> 1, namely, condition (35) must be met.
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