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Traversal time in periodically loaded waveguides

E. Cuevas1, V. Gasparian1,2, M. Ortun8 o1, J. Ruiz1

1Departamento de Fı́sica, Universidad de Murcia, E-30080 Murcia, Spain
2Department of Physics, University of Yerevan, Yerevan, Armenia

Received: 7 March 1995/Revised version: 13 October 1995

Abstract. We derive general expressions for the transmis-
sion coefficient and the traversal time in waveguides peri-
odically loaded with dielectric slabs. We apply the results
to resonant tunneling between two regions below cut-off,
with exponentially decaying modes. At the resonant fre-
quencies, we found a relationship between the traversal
time and the lifetime. We also study the photonic band
gap in a periodic quarter wavelength structure. As in
several experiments, we found superluminal velocities.

PACS: 41.20.Jb; 73.40.Gk; 84.40.Cb

1. Introduction

The question of the time required by an evanescent elec-
tromagnetic wave to cross a given region is a problem that
has aroused much interest recently. This mode has a pure-
ly imaginary wavevector and we do not know the ana-
logue of the classical velocity. The most direct method of
calculating this time would be to follow the behavior of
a wave packet and determine the delay due to the evan-
escent region, as was done by Martin and Landauer [1]
for a waveguide with a dielectric slab. But this type of
approach presents the problem that an emerging peak is
not necessarily related to the incident peak in a causative
way [2]. Also of physical significance is the time during
which the mode interacts with the barrier, as measured by
some physical clock which can detect the mode’s presence
within the barrier. As a clock we used the Faraday rota-
tion of the polarization plane, produced by a weak mag-
netic field acting within the barrier region [3].

Evanescent waves are found in waveguides below
their cut-off frequency. Enders and Nimtz [4, 5] found
superluminal velocities in experiments on microwave
evanescent mode transmission through undersized
waveguides. The same was found by Ranfagni et al. using
evanescent microwave pulses between two antenna horns
[6]. Further confirmation of superluminal velocities was
afforded by the measurements of single photon tunneling

times, using a two-photon interferometer, on a periodic
array of layers of material with an alternately high and
low refractive index, which reflects most of the light in
a given frequency range, due to interference effects [7].

Double-barrier potential structures present resonant
tunneling, which has been studied for electrons since the
early days of quantum mechanics [8—10]. Much of the
physics of this phenomenon is also present in double
undersized waveguides devices. Resonant tunneling for
electromagnetic waves is easier to carry out than corres-
ponding experiments on electrons [11]. Enders and Nimtz
performed a series of microwaves experiments on double
barrier systems and on the photonic band gap or non-
propagating frequency region of periodic structures [4,
11]. These authors measured the transmission coefficient
and the traversal time as a function of frequency and
found an interesting structure in both magnitudes. In this
paper we explain theoretically all their main results, using
a previously developed method to calculate the traversal
time [3, 12].

In the next section we summarize the method for
calculating of the transmission coefficient and the tunnel-
ing time in layered systems, particularly, in waveguides. In
Sect. 3 we apply these results to the experimental system
used by Enders and Nimtz [5], i.e., a rectangular wavegu-
ide with two barriers. In Sect. 4 we analyze, for the same
system, the relationship between lifetime and traversal
time of a resonance. In Sect. 5, we obtain the transmission
coefficient and the traversal time in the photonic band gap
of a waveguide with a periodic arrangement of dielectric
slabs. We finally discuss our theoretical predictions and
reach some conclusions.

2. Tunneling time for layered waveguides

Let us consider a waveguide of uniform cross section filled
with a material of dielectric constant e

1
and with a differ-

ent material, of dielectric constant e
2

(we assume e
2
'e

1
),

arranged in a periodic structure. We assume that both
materials are non-magnetic. Experiments concerning
traversal times of evanescent modes are made in the



frequency window where only the fundamental mode can
propagate in the regions of the bigger dielectric constant
since there is no propagating mode in the other regions.
Alternatively, these experiments are made in the photonic
band gap of periodic structures, where the non-propagat-
ing nature of the system is due to destructive interference
of waves corresponding to different optical paths. Let us
call c the eigenvalue of the fundamental mode in the
propagating regions (for a rectangular waveguide c"n/a,
where a is the larger edge of the rectangular section).
The corresponding wavenumber is given by k\

Je
1
u2/c2!c2 and the wavefunctions are of the form

A
l
eikz#B

l
e~ikz , (1)

where A
l
and B

l
are constant and the index l denotes the

region. The temporal dependence has been omitted. In the
evanescent regions, the inverse decaying length is equal to
i"Jc2!e

2
u2/c2 and the wavefunctions are now of the

form

A
l
ekz#B

l
e~kz . (2)

Again A
l
and B

l
are constant and the index l denotes the

region.
In this situation, where only one mode is relevant in

each region, we can approximate the problem using a one-
dimensional model. The boundary conditions for the elec-
tromagnetic field become equivalent to the continuity of
the wavefunction and of its derivative (for TE modes; for
TM modes in the continuity equation for the derivatives
we have to multiply the derivative of the wavefunction by
the inverse of the dielectric constant of each region) in
analogy with the electron tunneling problem [1].

We can also obtain evanescent regions by diminishing
the cross-section of the waveguide, the practice usually
followed in experiments. The one mode approximation is
not valid in this case because the higher order modes
couple to the propagating modes, changing the reflection
and transmission amplitudes. In the next section, we will
explain how to modify the present results to include the
effects of higher order modes.

Resolving the coefficients A
l
and B

l
, with the appropri-

ate initial conditions, allows us, in principle, to calculate
the transmission amplitude t. This can be done systemati-
cally by different methods and we choose the method
based on the characteristic determinant [13], because of
its very high efficiency. The details of this method can be
found in [12].

We have used the Faraday rotation as a clock to
measure the time spent by an electromagnetic wave in
a given region. We found that, as for electrons, this time
q is a complex magnitude given by [3]

q"!i C
L ln t

Lu
!

r

uD,q
1
#iq

2
, (3)

where r is the reflection amplitude. The real component of
this time q

1
corresponds to the delay time that is measured

by keeping track of the peaks of the incident and the
transmitted wavepackets. Experiments related to inter-
action times often measure the modulus of this complex
time [14].

The characteristic determinant method allows us to
calculate exactly the transmission amplitude and the
traversal time of a periodic waveguide structure. Let us
call d

2
the width of the evanescent regions and d

1
their

separation. The periodicity of the system allows us to
solve analytically the recurrence relationship for the char-
acteristic determinant D

N
(N is the number of interfaces)
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where b plays the role of quasimomentum of the system,
and is defined by

cos ba"cos kd
1
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. (5)

When the modulus of the RHS of (5) is greater than 1,
b has to be taken as imaginary. This situation corresponds
to a forbidden energy gap.

The previous expressions are also valid in those cases
where two types of propagating regions exist, as in many
experiments with periodic structures. We merely have to
replace i by ik

2
, where k

2
"Je

2
u2/c2!c2.

The transmission amplitude t is the inverse of the
characteristic determinant, t"1/D

N
. From (4), we find

that the inverse of the transmission coefficient is given by

DtD~2"1#C
1

2 A
i
k
#

k

iB sinh id
2D

2 sin2 (Nba/2)

sin2 ba
. (6)

The term within brackets only depends on the properties
of one barrier, while the quotient of the sine functions
contains the information about the interference between
different barriers. The transmission coefficient is equal to
1 when sin(Nba/2)"0 and b is different from 0. This
condition occurs for

ba"
2nn

N
(n"1,2, N/2!1) , (7)

and we say that it corresponds to a resonant frequency.
For the reflection amplitude we have

r"
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2
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. (8)

3. Transmission coefficient for a double barrier

We first analyze the behavior of the transmission coeffic-
ient as a function of frequency when there are two evan-
escent regions separated by a propagating one (N"4).
Our aim is to reproduce the experimental results by En-
ders and Nimtz [5]. As the evanescent regions used by
them are undersized waveguides, it is necessary to modify
our previous theory to include the effects of higher order
modes. Even if these do not propagate, they couple to the
propagating modes and change the transmission and re-
flection amplitudes.
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The consideration of higher order modes at one inter-
face between two waveguides of different cross section is
equivalent to the inclusion of a shunt capacitive suscep-
tance iB at the junction of the equivalent circuit. The value
of this susceptance for an asymmetric E-plane step in the
quasistatic approximation is [15, 16]

B"
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b

aB ln
a#b

a!bD , (9)

where a and b are the width of the larger and smaller
rectangular sections, respectively. We go beyond the
quasistatic approximation by including the following cor-
rection term in the susceptance [15]:
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The effect of the susceptance on the transmission and
reflection amplitudes is, in second order in the variational
solution [17], to replace the factor i/k appearing in the
expressions of the latter section by the factor (i/k)!iB.

In Fig. 1 we plot the transmission coefficient versus
frequency for the double barrier used in the experimental
work of Enders and Nimtz [5]. We choose for the different
parameters of the system the same values as in this refer-
ence. The three curves in Fig. 1 correspond to different
values of the length of the propagating region, where the
wave resonates between the two barriers. This length
determines the number of resonances in the frequency
window between the two cut-offs of the problem, corres-
ponding to the propagating and the evanescent regions,
respectively. The curves have been shifted, so the logarith-
mic vertical axis only represents relative values (one unit
corresponds to one order of magnitude).

Fig. 1. Transmission coefficient versus frequency for a double bar-
rier. The three curves correspond to different values of the separ-
ation between the two barriers. The curves have been shifted, so the
logarithmic vertical axis only represents relative values. The vertical
dotted line is the cut-off frequency of the barriers

Our results fit the experiments fairly well. If we would
not consider the effects of higher order modes, there would
be two small deviations between our theoretical results
and the experimental ones: the peaks would be slightly
shifted towards higher frequencies in the experimental
results, and the slopes of the overall curves would be
greater in the experiments. The inclusion of higher order
modes in our treatment drastically reduces these two
discrepancies and brings our results in line with the ex-
perimental ones.

The height of the peaks in Fig. 1 depends on the
frequency resolution that we use. To simulate the finite
resolution of the experimental set up, we convolute the
ideal results with a gaussian distribution function with
a given standard deviation, which is our only fitting para-
meter. In the graphs shown, we used a standard deviation
of 6 MHz, of the order of the frequency width of the pulses
used in the experiment, and which reproduces the same
average height of the peak as the experiments [5].

4. Traversal time in a resonance

We calculate the traversal time q of an electromagnetic
wave through a double barrier structure by applying
Eq. (3) to the previously obtained transmission and reflec-
tion amplitudes, once they have been convoluted with the
corresponding gaussian distribution. In Fig. 2 we plot this
traversal time (solid line) as a function of frequency to-
gether with the values measured by Enders and Nimtz (full
circles) at the resonant frequencies [5]. The agreement is
relatively good.

If we do not include the previously mentioned gaus-
sian spreading, the traversal times at the resonances are
much greater than the experimental values. This discrep-

Fig. 2. Traversal time (solid line) and experimental resonant state
decay times (full circles) versus frequency for a double barrier
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Fig. 3. Transmission coefficient of a periodic quarter wavelength
structure as a function of frequency

ancy is especially important at low frequencies. Note,
however, that the experimental measurement implicitly
performs a similar spreading procedure due to the finite
size of the wavepackets used.

The behavior of the traversal time at a resonance is
fairly universal. The phase of the transmission amplitude
changes by an angle of n at each resonance, as predicted
for electrons by Friedel’s sum rule and checked empiric-
ally by us for electromagnetic waves. Its frequency de-
pendence can be fitted quite accurately by an arc tangent
function. The time, proportional to the derivative of this
phase is Lorentzian, with the same central frequency and
width as the Lorentzian corresponding to the transmis-
sion coefficient. As the lifetime q

-
of the resonant state is

the inverse of the width of the transmission coefficient at
half maximum, we conclude that it must be equal to half
the traversal time q

3%4
at the maximum of the resonant

peak

q
-
"1

2
q
3%4

. (11)

This result was previously obtained by Gasparian and
Pollak [18] for the electronic case by considering the
traversal time for an electron tunneling through a barrier
with losses, i.e., with a decay time.

5. Results for periodically loaded waveguides

We have calculated the transmission coefficient and the
traversal time for waveguides loaded with periodic ar-
rangements of dielectric layers. We apply our results to the
experimental system used by Nimtz et al. [11], with seven
dielectric layers (N"14 in our expressions). The thickness
of each dielectric layer is d

1
"6 mm and the separation

between them is d
2
"12 mm. These values correspond to

quarter wavelength layers for the central frequency (8.7
GHz) and the refractive index (n"1.6) of the dielectric
layer used. In Fig. 3 we show the transmission coefficient
as a function of frequency for this system. Our results
agree with the experimental results. We find a first photo-
nic band gap between approximately 7.5 and 10 GHz, the
region where most of the incident wave is reflected.

Fig. 4. Traversal time as a function of frequency for the same system
as in Fig. 3. The dot corresponds to the experimental value of Nimtz
et al. [11] and the horizontal line to the time needed to cross the
sample at the vacuum speed of light

In Fig. 4 we present the traversal time as a function of
frequency. The value of q

1
at 8.7 GHz is 88 ps, while the

experimental result [11], represented by a dot in the
figure, is 81ps. In the non-propagating frequency window,
where superluminal velocities are obtained, the traversal
time is very small, in agreement with many previous
theoretical and experimental results on exponentially
decaying wave functions [2—7, 19]. The dotted horizontal
line corresponds to the time needed to cross the sample at
the vacuum speed of light.

6. Conclusions

The traversal times for exponentially decaying waves
are very short and often correspond to superluminal vel-
ocities. This is so for both electrons and electromag-
netic waves. Here, we have studied the properties of
decaying electromagnetic waves in waveguides. We con-
sidered two cases, resonant tunneling between barriers
below cut-off and photonic bands in periodic structures.
Our results are in fairly good agreement with experi-
ments on microwaves, which are a very good tool for
studying the problem of superluminal velocities and their
relation with information theory and the constraints
imposed by relativity theory. An understanding of this
problem will also be very helpful for the electronic tunnel-
ing case.

In this study we obtained a relationship between the
lifetime of a resonance and the traversal time. It would be
interesting to extend this result to a three-dimensional
case.
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