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We study the density of states, the distribution of energy spacings, and the transmission coef-
ficient of one-dimensional quasiperiodic Fibonacci and Thue-Morse systems. We consider arrays of
d potentials with constant separation and two potential strengths, and tight-binding systems with
constant nearest-neighbor couplings and two different on-site energies. The quasiperiodicity lies in
the arrangement of the two possible values of either the potential strengths or the on-site energies.
We analyze the fractal character of the energy spectra of these systems through their integrated
density of states and fractal dimensionality. We study the average with respect to energy of the
transmission coefficient, which turns out to be a good way to measure the regularity of the system.

I. INTRODUCTION

During the last few years great attention has been de-
voted to the study of physical properties of quasiperiodic
one-dimensional systems.* The Fibonacci lattice, which
is made by juxtaposing two different building blocks A
and B arranged in a Fibonacci sequence, has become a
standard model for the study of these systems.

The Fibonacci sequence S, is obtained by the recur-
sion relation Sp11 = {5:5;_1} for | > 1 with Sy = {B}
and S; = {A}. The Fibonacci number Fj is the total
number of building blocks A and B in S;, and obeys
the recursion relation Fj,; = F;_1 + F; for | > 1 with
Fo = F;, = 1. It is easy to obtain that in the limit
I — oo, the ratio F;/F;_; tends to the golden mean
7= (1++/5)/2.

A Thue-Morse sequence is a different type of aperi-
odic system, with a very different kind of aperiodicity
from that of Fibonacci sequences.2”® The Thue-Morse
sequence is obtained by the recursion relation M;y; =
{MM;} for | > 0 with My = {AB} and where M} is
the complement of Mj, obtained by interchanging A and
B.
The electronic spectra of quasiperiodic Fibonacci lat-
tices have been analyzed by a renormalization group type
theory.®” The spectra are Cantor set with a self-similar
structure.® The transmission coefficient also shows self-
similarity, which has been interpreted as a sign of
quasilocalization.?

In this paper, we want to study numerically the fractal
properties of the density of states and of the transmis-

sion coefficient. We also analyze the self-similarity of the

energy spectra, which is best shown by the integrated
densities of states. We will see that a recent experiment
by Hattori et al.,'° about the phase change of the light
transmitted through a one-dimensional guasicrystal ar-
ranged in a Fibonacci sequence, shows a similar behavior
between electromagnetic waves and our results for elec-
trons in quasiperiodic structures.

Level statistics reflect very clearly the properties of
disordered systems.!! When the states are localized
the nearest neighbor distribution of quantum levels is
Poisson-like, while for systems with extended states it is
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of Wigner type. On the other hand, the (normalized)
nearest-neighbor separation of levels in periodic systems
is constant. Quasiperiodic chains could be considered as
intermediate systems between periodic and random sys-
tems and we would like to study how this fact reflects
itself in the level statistics.

II. METHOD OF CALCULATION

We consider two different models: a set of § func-
tions with two possible strengths arranged in Fibonacci

_ or Thue-Morse sequences, and a tight-binding Hamilto-

nian with two types of atoms also arranged in Fibonnacci
or Thue-Morse sequences. The separation between the §
functions is constant and, in the tight-binding model, we
assume constant nondiagonal elements between nearest
neighbors only. So, the quasiperiodicity only induces di-
agonal “disorder.”

To calculate the energy spectrum we enclose our sys-
tem between two infinite potentials to make it a close sys-
tem and calculate the zeros of the characteristic determi-
nant D, introduced by Aronov et al.'2 This determinant
can be computed recursively for the two cases consid-
ered, and give us most magnitudes of interest, since it
is directly related to the Green function of the system.
For the tight-binding model we check that the energies
obtained coincide with the eigenvalues of the tridiagonal
Hamiltonian matrix. Our procedure is computationally
more efficient than the direct evaluation of the levels.

D is the determinant of a tridiagonal matrix and sat-
isfies the following recurrence relationship:

D, = AnDn—l - BnDn—Z ) (1)

where the index n goes from 1 to the number of § func-
tions (or sites in the tight-binding case). The initial con-
ditions are

Ay=1, Do=1, D=0, (2)

and we have for n > 1,

P
An =1+ An—l,'n. n_ln (1 — Tn—2,n—1 — Tn—l,n—z) (3)
Tn—2,n—1
and
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Tn—
B (1 — 1y gne1)(l = Tao1n-2). (4)
Thn—2,n-1

Bn. = An—l,ﬂ

The values of T, n_1 are model dependent, and for
both, a tight-binding model and a set of ¢ functions, we
obtain

VuGY
1+ V,GY ,
and rp—1,n = Tnn—1, Where V,, is the nth diag{)nal energy
in the tight-binding case, and the strength of the nth §
function in the other case. Gn (z, ) is the unperturbed
GF, for each case. -

The density of states v(E) can be obtained by counting

the number of states in any given small energy interval
or, alternatively, with the help of the characteristic de-

-(5)

Tan-1=

terminant through the expression'?
1 8lnD
VB)=vo— =IOl (6)

where vy = 1/2nk is the density of states of free electrons.
For a closed system, v(F) is a set of § functions. It is
easier to study v(F) for the corresponding open system
(where we suppress the two infinite potentials surround-
ing the system) for which the § functions are smeared
out.

The transmission coefficient and the resistance of the
system can also be calculated from the characteristic de-
terminant of the open system. The transmission ampli-
tude t is the inverse of the characteristic determinant,

t = 1/D, and so the transmission coefficient T' is equal
to 12

=|D|% (7)

Our method is very suitable to study if a very small value
of the transmission coefficient is due to localization or to
a gap, because all the quantities are obtained from the
same basic entity, the characteristic determinant.

IIi. DENSITIES OF STATES

It is well known that the energy spectrum of a Fi-
bonacci chain is a Cantor set. This property is more
clearly seen by representing the integrated density of
states as a function of energy. This is done in Fig. 1
for a tlght-bmdmg Fibonacci chain with 6765 sites; the
atomic energies of the two types of atoms are V4, = 1 and
Vs = 0, and the nea.rest nelghbor transfer energy is equal
tol (we choose this as our unit of energy throughout the
paper). The self-similarity of the figure is evident. The
flat regions are the energy gaps and the number of states
between any two gaps is a Fibonacci number. For exam-
ple, the number of states up to the first big gap is equal
to 2584, which is the Fibonacci number two positions be-
fore than the total number of states (6765). The number
of states between the two big gaps is 1597, which is the
Fibonacci number previous to 2584. Thus the proportion
of states in any of the two lateral pseudobands is equal to
the square of the golden mean, and in the central pseu-
doband is equal to the golden mean to the third power.
Changing the values of the atomic energies only varies
the width of the gaps, keeping constant the number of
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FIG. 1. Integrated density of states as a function of energy
for a tight-binding Fibonacci chain with V4 =1 and Vp = 0.

states between the gaps.

The results for a Fibonacci chain of § functions are
similar to those for the tight-binding model, although
the relative width of the gaps changes noticeably, and an
infinite number of pseudobands appears at higher ener-
gies.

The integrated density of states as a function of en-
ergy resembles the devil’s staircase found by Bak and
Bruinsma!® for the chemical potential as a function of
the relative occupancy of a periodic interacting one-
dimensional system.

Integrating Eq. (6) with respect to energy and taking
into account that D = 1/t, we find that the integrated
density of states is proportional to the phase of the trans-
mission amplitude. Hattori et al.'® have recently mea-
sured this phase for photonic Fibonacci lattices and have
found experimental curves very similar to Fig. 1.

The integrated densities of states as a function of en-
ergy for Thue-Morse chains are similar to those for Fi-
bonacci chains, showing a whole sequence of gaps. The
only major difference between these densities of states is
the position of the gaps, which reflects the structure of
the corresponding lattice.

In order to have a more quantitative idea of the impor-
tance of the gap structure we have obtained the fractal
dimensionality of the energy spectra of Fibonacci and
Thue-Morse sequences. We have done this by a direct
computation of the definition of fractal dimensionality.}”
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FIG. 2. Number of segments needed to cover the spectrum
of a tight-binding Fibonacci chain versus the size of each seg-
ment for three values of Vp — V4, 1 (solid dots), 2 (solid
squares), and 5 (crosses). The corresponding fractal dimen-
sionalities are 0.77, 0.61, and 0.42, respectively.

We coasidered line segments of different sizes and cal-
culated how many of them are needed to cover all the
eigenenergies of a closed system. The number of seg-
ments 7 is of the form

n(e) c e ?, (8)

where ¢ is the size of the line segment considered and d is
the fractal dimensionality.” We checked that our method
produces a dimension equal to unity for both an ordered
and a random tight-binding system.

In Fig. 2 we plot n versus € on a double logarith-
mic scale for a Fibonacci tight-binding system with 6765
states and Vp — V4 equal to 1 (solid dots), 2 (solid
squares), and 5 (crosses). The data for each case fit a
fairly good straight line, whose slope is equal to minus
the fractal dimensionality. This is equal to 0.77, 0.61, and
0.42, respectively, for the three cases considered. There
is a systematic decrease of the effective dimensionality
with increasing values of Vg — V4.

Thue-Morse systems show a more similar dependence
of the fractal dimensionality with Vg —V,4 than Fibonacci
chains. For example, for a Thue-Morse chain with 4096
sites, the fractal dimensionality is 0.68 for Vg — V4 =1,
and 0.58 when Vz — V4 = 2. For the same value of the
difference Vg — V4, the dimensionality of the Fibonacci
chain is bigger than that of the Thue-Morse chain.

IV. LEVEL STATISTICS

It is clear from the results of the integrated density of
states for a Fibonacci chain that from a strict point of
view we cannot talk about a normalized level distribution
of nearest neighbor energies, since the infinite structure of
gaps does not allow us to define an average separation.
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FIG. 3. Energy spacing distributions for the central band of
a tight-binding Fibonacci chain. The upper curve corresponds
to Vp — V4 = 1, the middle curve to Vg — V4 = 5, and the
lower curve to Vg — V4 = 10.

We can only obtain an absolute distribution of energy
spacings, in a small enough energy window.

In Fig. 3 we show the distribution of energy spacings
for the central pseudoband of a tight-binding Fibonacci
chain with 6765 sites. The upper curve corresponds to
Ve — V4 =1, the middle curve to Vg — V4 = 5, and the
lower curve to Vg — V4 = 10. For comparison, we also
plot Poisson and Wigner distributions. We can note that
when Vg — V4 is small, the distribution resembles that
of the ordered case, which corresponds to a § function.
For intermediate values of the difference Vg — V4, the
distribution is close to Wigner, and when this difference
increases the distribution approaches Poisson.

The results are similar for other pseudobands and for
Thue-Morse chains, although the typical values of the
potentials which one can associate with changes in the
distribution of energy spacings vary from one case to an-
other (for the same length of the system).

V. TRANSMISSION COEFFICIENT

In order to study transport properties of one-
dimensional quasiperiodic sequences or of commensurate-
incommensurate systems, it is convenient to solve first
the problem of the scattering of a plane wave from these
systems. In Refs. 14 and 15 the transmission and reflec-
tion amplitudes of electrons in one-dimensional arrays



12 816

of d-function potentials, with the same strength and on
locations whose separations follow a Fibonacci or a Thue-
Morse sequence, were obtained.

In this section we study the scattering of a plane wave
from a one-dimensional sequence of § potentials located
on a regular lattice and with two possible strengths dis-
tributed according to a Fibonacci or a Thue-Morse se-
quence. We calculate the transmission coefficient as a
function of energy from Eq. (7). This coefficient shows
marked oscillations between values close to unity and oth-
ers very small, corresponding to gaps in the density of
states.

The gap structure is reflected in the length dependence

_of the average with respect to energy of the transmission

coefficient. When we increase the size of the system,
more gaps open up and the average transmission coef-
ficient decreases, since it is very small in the gaps. In
Fig. 4 we plot, on a double logarithmic scale, the aver-
age transmission coefficient as a function of the length
of the system for regular (triangles), Fibonacci (squares)
and Thue-Morse (diamonds) sequences of delta functions.
For each quasiperiodic lattice, we consider two set of pa-
rameters V4 = 2-and Vp = 1 (open figures), V4 = 3
and Vg = 0.1 (solid figures). The slopes of the straight
line fits to these data are —7.1 x 10~ for the regular sys-
tem, —0,098 for the open squares, —0.15 for the open dia-
monds, —0.16 for the solid squares and —0.21 for the solid
diamonds. The lines corresponding to Thue-Morse sys-
tems are systematically steeper than those for Fibonacci
chains. This indicates that, as far as the transmission
coefficient is concerned, Thue-Morse systems are more
irregular than Fibonacci systems.

VI. DISCUSSION

We have calculated the density of states, the energy-
level distribution, and the transmission coefficient of Fi-
bonacci and Thue-Morse sequences from the characteris-
tic determinant of the system, which ensures a complete
self-consistency of the data. The method is computation-
ally very effective, and can be extended to many situa-
tions.

The distribution of the nearest neighbor energy level
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FIG. 4. Average transmission coefficient as a function of
the length of the system, on a double logarithmic scale, for
regular (triangles), Fibonacci (squares), and Thue-Morse (di-
amonds) sequences of § functions. V4 = 2 and Vg =1 for the
open figures, and V4 = 3 and Vg = 0.1 for the solid figures.

spacings resembles that of a regular system when the
tight-binding parameters or the § potential strengths
are similar, and becomes successively Wigner-Dyson and
Poisson type when the difference between these parame-
ters increases.

Our results indicate that Fibonacci systems behave
more regularly than Thue-Morse systems as far as the
average value of the transmission coefficient is concerned,
in disagreement with some recent claim.?
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