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The electron resistance p of  a one-dimensional chain of random 
scatterers located at the same distance to each other is considered. The 
localization length for uniformly distributed amplitudes of  the delta- 
function was analytically calculated without the assumption of  weak 
scattering. It is shown that Landauer's resistance of  chain increases 
not exponentially but, generally speaking, by a "power" law with 
increasing chain length for an electron energy corresponding to the 
center of  the zone. In the weak disordered limit the well-known 
relation In(p) = 2(lnp) takes place. In the other limiting case of strong 
scattering this relation does not take place. 

THE LANDAUER'S  average dimensionless 
resistance (p) of a one-dimensional (1D) metal with 
static disorder, where all electron states are localized, 
in the case of  increasing sample length L at zero 
temperature, is usually expressed in the form 
(h = e 2 ---- 1) [1-5] 

(p) = 1 (eL/~ _ 1). (1) 

Here ~ is the localization length of  the located states, 
which depends on the potential form inside the 1D- 
system and does not depend on the length and (. . .)  
means ensemble averaging. 

The calculation of  the dependence ~ on energy E 
is a difficult problem by itself, hence it can be 
implemented for simple models only. In the case of  
weak electron scattering for the "white-noise"-type 
potential, the localization radius is calculated without 
taking into account an external electric field (see, e.g. 
[6]) and in the presence of  an external homogeneous 
electric field as well [7]. In the case of strong 
scattering the localization radius is calculated in [8] 
by means of  a new "determinant" method [9], which 
permits one to see what happens with electron states 
at increasing interaction force between the electron 
and scatterers with or without an external electric 
field. 

The aim of  this paper is to analytically calculate 
the averaging over an ensemble the resistance (p) 
for an exactly solvable disordered 1D model. Up to 
now this problem was solved on a computer only 
[8,10-12]. 

An explicit expression for ~(E) is obtained 

without the assumption of  weak scattering and also 
outside the short-wave-length approximation kl >> 1 
(were k is the electron momentum and l is the mean 
free path). In that case it occurs that in the exactly 
solvable model under consideration, along with the 
growth of  the system length, its resistance increases 
not exponentially but generally speaking, by a low 
power. 

Let us consider a model in which delta-function 
potentials of  arbitrary amplitude V~ are located 
periodically at x = na of  a chain (a is the period of  
the structure): 

N 

V ( x ) = Z V n 6 ( x - n a ) ;  n =  1 , 2 , . . . , N .  (2) 
n=l  

The solutions of  the Schrodinger equation for 
scattering from the left, i.e. x < x~ of a wave of  
energy E = k 2 ( t a = 2 m o  = 1; and m0 is the free 
electron mass), may be written outside the interac- 
tion range in the usual form 

~b(k, x) = e ikx -}- r ( k ) e  -ikx, x <_ Xl ,  

and 

~(k,x)  = t(k)e ikx, x >_ xu. 

Here r(k) and t(k) are respectively the reflection 
and transmission amplitudes. As it has been shown in 
[9, 13] the coefficient transmission T may be written 
a s  

T = It(k) [ 2 = [DN[-2 (3) 
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and the well-known Landauer's resistance p as 

p = T -1 - 1 = [ D N ]  2 - -  1, 

where DN is the determinant of the matrix 

iV. 
(Ou)np  = 6ne "-F - ~  exp{,klx, - x e I}" (5)  

The determinant D u of the matrix (5) satisfies the 
recurrence equations: 

D N = A N D N _  1 -- B N D N _ 2 ,  (6) 

where 

iVu[1 -- exp(Zika)], U > 1 A N = 1 + B N +  2k L 
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the form 

N N iVj, i I× 
(4) DN = 1 + Z Z 2---k "" 2k 

% 

p= l  1 =jl <---< jp 

= Ai = 1 +~-~; B u VN exp(2ika); 
VN-I 

D 0 =  1, D_1 = 0  

and DN_I(DN_2) is the determinant with Nth [and 
( N -  1)th] column and row removed. 

As shown in [9, 13] the analytical expression 
for the determinant DN was calculated in some 
particular cases: in the Kroning-Penny like model, 
in the case of strong scattering and when a resonance 
transmission takes place. 

Note that the recurrence relationship (6) can be 
used conveniently in the numerical solution of 
the problem with an arbitrary degree of vertical 
disorder of a chain without taking into account the 
external electric field as well as in the presence of the 
latter [8]. 

After some tedious but straightforward calcu- 
lations, using the recurrence relationship (6) for DN 
(5) we obtain 

D,, = 1 + Z L ( z j , , . . . ,  
p = l  1 =jl < '"< jp I=1 

Here phase factor fp is a determinant of p x p 
matrix and matrix element has the form 

( f p ) . t  = e x p  ik[ x n - Xll ; f l  ~- 1 

and 

p-1  

fP = H [1 - exp2ik(xj,+, - xj,)]. 
l=1 

After the substituting of expression for fp in 
equation (7) the determinant DN of this chain has 
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p - I  
x H ( 1  - e2ik(xJ,+,-xj,)). (9) 

1=1 

Let us proceed to calculate the resistance of a 
chain with vertical disorder averaging over an 
ensemble. We shall assume that the amplitudes of 
the delta-function potential V" where distributed 
uniformly in an interval [-I4I/2, W/2]. Averaging 
equation (4) upon the realization of a random 
potential distributed uniformly within 
interval of width W we obtain the 
expression for (p) 

N N 

(P)  = Y ~ c ~ P 2 ( P - ' )  Z 
p = l  1 =jr <. . .<jp 

p - I  

a finite 
following 

x H [ 1  - cos 2ka(jl+ l - J r ) ] .  (10) 
I=1 

Here 

a _ W - 1  w/2 "~J~k2 d W2 
I Vj = 48k2. 

- w/2 

It follows from equation (10) that for arbitrary 
energy E of an incident electron and at a << 1, (p) has 
the form 

(p) ~ N c e + a 2 [ N Z - 1  + 
sin(N + 1 )ka s in (N-  1 ) ka] 

sin 2 ka J 
(ll) 

If  ka = 7rn (see [9], i.e. in the resonance case, we 
find from equation (11) that 

(p) ~-- Nc~ 

(7) and the resistance is finite and the mean free path is 
proportional to a -I . This result reaffirmed the result 
of [4], that in the short-sample limit L << aa -l the 
average resistance (p) has a linear length dependence. 

For the energy E of an incident electron, which 
corresponds to the centre of the zone, i.e. at ka = 7r/2 
we shall finally obtain from equation (10) the 
following compact expression for the 

1 (s chNx  1) a t N = 2 m + l ,  (12a) 
(8) (P) = ~ h Nx + ch----~ - 

l ( c  shNx  1 ) a t N = 2 m ,  (12b) (P) = 5  h N x  + ch---~- 

where x = 2a. 
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Equation (12) is the main result of our paper. It 
is necessary to note that equation (12) as received 
without the use of the perturbation theory, and it 
is valid for different magnitudes of the scatter of 
the amplitudes W and for arbitrary number of 
the scatters N. It can be seen from equation (12) 
that the mean electrical resistance of a strictly 1D 
system for an electron energy, corresponding to the 
center of the zone, has a power dependence on 
N = l a  -1. 

Let us consider the limit cases. At c~ >> 1 from 
equation (10) we find 

(p) ,~ oN22(N-1) (13) 

or  

In (p) --~ N In 4c~. 

The condition a >> 1 means that a/In 4d < a [see 
equation (17)] i.e the localization radius is smaller 
than the lattice constant. This case is of certain 
interest in the 1D superlatice, where a becomes the 
superlattice constant. Then each transition act 
through the potential barriers may be considered as 
an independent one, and in this case the obtained 
dependence (13) is obvious [6]. 

In the asymptotic limit c~ << 1 from equation (12) 
we get 

(p) --½(e 2Na- 1), 

which was obtained earlier in [1-5]. 
Using equation (12) we can show that the inverse 

localization length of the chain consisting of N delta- 
like potential (2) is equal to (N--* c~) 

chNx'~ (14) 
a~ -1 = N  - l l n  s h N x +  c h x J "  

As is seen from equation (14) in the weak scattering 
limit a << 1 we get 

2c~ 2 
a~ -~ _~ 2 a  - - ~  (15)  

The first term of the right-hand side of this 
equation is twice the size of the inverse localisation 
length whch was obtained in [14]. This means that in 
the weak disordered limit the well-known relationship 
between the various localization lengths, namely 

In(p) = 2(lnp) (16) 

takes place [15]. This relationship reflects the fact that 
the resistance is not self-averaging in a 1D disordered 
system. 

In the other limiting case of strong scattering 
>> 1 we get an asymptotic expression for ~-l from 
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equation (14). 

1 (  1 )  (17) a ~ - l " ~ l n 4 c ~ - - ~  l n 2 - - ~  . 

Note that the first term of equation (14) was 
found in [9]. 

As shown in [9] the expression for (p), for 
uniformly distributed amplitudes V~, is given by 

12a 
(lnp) --~ Nln l--T-. (18) 

By comparison with equations (17) and (18) one 
obtains that in the strong disordered limit for the 
relationship between the various localization lengths 
we get 

In(p) =/3(ln p), 

where 1 </3 < 2. 
We note that the same behaviour is observed for 

the variance 

a 2 = ((ln p - (ln p))2) 

of the logarithm of the resistance too. The a:  under 
weak-scattering conditions is twice the value of its 
mean [16], but the ratio in the region of strong 
scattering decreases with increasing disorder. 
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