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This paper derives expressions for tunneling time through random one-dimensional barriers consisting
of an arbitrary sequence of 8-function scattering potentials with an arbitrarily varying spacing, and an
arbitrarily varying strength from potential to potential. The tunneling times are derived in the spirit of
Baz’s idea to utilize a Larmor precession clock. A physical connection is made between the y and z com-
ponents of the Biittiker-Landauer tunneling times, the density of states, and the Landauer resistance, re-
spectively. A simple extension of the usual time-independent treatment provides further insight into the

significance of the two components.

I. INTRODUCTION

Recently there has been considerable interest! in the
subject of tunneling through one-dimensional potential
barriers. Different approaches and definitions exist for
the tunneling times. There is a good recent review on the
subject by Hauge and Stgveng.? The most extensively
studied is the so-called Biittiker-Landauer time,’ based
on an idea by Baz* to utilize the Larmor procession fre-
quency of the spin (in the weak magnetic fields) as a clock
for such times. In this method, the spin is thought to be
polarized initially along the direction of travel of the elec-
tron (x direction). The rotation of the spin, as it traverses
the barrier, is then studied by determining the time evolu-
tion of its z component along the magnetic field trans-
verse to x, and along its y direction. Two times, 7, and
T,, are then determined as the inverse expectation values
of the y and z components, respectively, of the Larmor
frequency.

In this paper we find a connection between 7, and 7,
and between some other simple properties of the barrier.
Specifically, it is shown that 7, is proportional to the den-
sity of states, and thus simply related to a group velocity,
and 7, is a simple function of the Landauer resistance of
the barrier.

The paper also calculates 7, and 7, for types of barriers
for which they have not yet been calculated. To our
knowledge, all previous work on the subject dealt with
the relatively simple case of single- or double-square po-
tential barriers. Here we treat a type of barrier V(x)
which is an arbitrarily long sequence of &-function poten-
tial, with the possibility of disorder in their spacing, as
well as in their strengths,

N
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where ¥ is the strength of the /th § potential and x, the
coordinate of the nth 8 potential. The calculations are
based on a method of evaluation by Gasparian,
Al'tshuler, Aronov, and Kasamanian,® and by Gasparian®
for the evaluation of the transmission coefficient 7" from
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the determinant D, defined by
Dy =det[8;+(iV,/2k)explik|x;—x;])],

j,1=12,...,N,

where k is the value of the wave vector of the incident
particle.

II. DERIVATION OF THE PRINCIPAL EXPRESSIONS

In this section we derive a relationship between the
tunneling time of an electron through a one-dimensional
random system with determinant Dy, using the Baz*
method. We consider a one-dimensional random poten-
tial V(x) in a finite segment O <x <L. Let us propose
that a weak magnetic field B=B6(x)0(L —x )2, pointing
in the z direction, and confined to the (arbitrary) barrier.
An electron is incident from the left on the barrier. It
carries spin s =, polarized at x =0 in the x direction,
ie, (s,)=1,(s,)=0,(s,)=0.

The spinor W(L), in the lowest order in B, will be
presented in the form

— |1 B (1 L
ww)= [} e+ 2 [ 1] [rax w6, .
Here W,(x) is the solution of the Schrodinger equation
when B =0:
w0<x)=exp(ikx)~fOLG(x,x')V(x')exp(ikx')dx' .

=ikG(0,x), k=(E+ie)”?

(=1, and my=1 is the electron mass). The Green func-
tion (GF) G(x,x") should satisfy the Dyson equation

G(x,x")+ ‘e (x,x"W(x")G(x",x")dx"=Gy(x,x"),
0 20

where Gy(x,x’)=explik |x —x'| /2ik ) is the free-electron
GF.

As the electron enters the random barrier, it starts the
Larmor precession with frequency w; =guB /% (g is the
gyromagnetic ratio and p the absolute value of the mag-
netic moment). When the electron leaves the disordered
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barrier the precession stops, and we find [using Eq. (1)]
for the orientation of the spins of the transmitted electron

(s,)=4B|¥(L)I’Re [ "G(x,x)dx ,

(sy)=4BI\I/0(L)|2Imf0LG(x,x)dx , ()

(s,)=2|Wy(L)|? [1—32

fOLG(x,x)dx '2] .

The derivation of Eqgs. (2) made use of the relation® con-
necting G(x,x') with the one-particle GF at the coincid-
ing coordinates x =x":

G(x,x")=[G(x,x)G(x",x")]'"?

maxxx

Xexp {— dxl/ZG(xl,x,) s

min(x,x")

Note that the integral of the type

fLG(x,x )dx
0

in Egs. (2) can be evaluated quite generally® by
fOLG(x,x)dx=a[1nDL(E)]/aE . 3)

The function D, (E) in fact describes the energy spectrum
of the random system by D, (E,)=0, and is connected
with the coefficient of transmission of an electron by the
relationship T, |D;(E)| ™2 It is possible to obtain expli-
cit expressions for the function D, (E) in each specific
case (the case of a sequence of §-function potentials with
arbitrary amplitudes V', at arbitrary points x; is con-
sidered in Ref. 5; the case of a randomly layered system is
considered in Ref. 6).

Using Eq. (2) and (s, )*+(s,)*+(s,)*=1 we obtain
from Eq. (1), for {7, ), {7,), and (7, ), in the limit of an
infinitesimal field B,

7,=Re(3InD; /3E) ,
7,=—Im(d1InD, /3E) , 4)
={[Re(dInD; /3E)]*+[Im(d1nD; /E)]*}'/% .

Making use of a relation® which connects the deter-
minant D; and the one-dimensional average electronic

density of states v, (E),
—Im(d1nD; /3E)=wLv;(E) ,

and the relation between D, and Landauer’s resistance’
PL(E ),

L(E)=|D (E)|*~1,
we can obtain from Eq. (4)
7,=1/2{0In[p, (E)+1]/3E} ,
T,=mLv (E)

(5)

Biittiker® introduced the expression of 7, and 7, in terms
of a barrier height derivative of

=(R2+72)2

the complex transmission coefficient of an electron
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through a rectangular barrier. The representation of 7,
and 7, as the real and imaginary parts of the energy
derivative of the complex electron transmission
coefficient, through an arbitrary barrier, were introduced
by Leavens and Aers.” But, to our knowledge, this is the
first time that 7, and 7, are expressed, respectively, in
terms of the density of states, and of the Landauer resis-
tance of a one-dimensional random system. Equations (5)
are the main result of our paper.

As Thouless has shown,® a dispersion relation exists be-
tween the localization length and the density of states.
This relation can be expressed® in the form of a linear
dispersion relation between In|{Dy| and the imaginary
part ImInDy. The self-averaging property of 7, and of
7, is therefore an immediate consequence of self-
averaging of the localization length and of the density of
states.’

Let us calculate 7, and 7, in the general case of N arbi-
trarily spaced 8 potentials V| in a chain which has a finite
length. In this case the elements of the determinant D

have the form®
(Dy) =8, +(iV,/2k )explik|x;—x,]) . (6)

Here |x;, —x,,| is the distance between the /th and the nth
8 potential.

The determinant Dy =
recursion relation:

Dy=ANDy

Det|D,,| satisfies the following

—ByDy 5, ™)

where Dy _, is the determinant of the matrix of Eq. (6),
without the (N —n — 1)th row and column,

D,=1, D_,=0,
By =exp(2ik|xy—xy [N Vy/Vy_1),
A, =140V, /2k),
Ay =1+By+[1—exp2ik|xy —xy ;| iVy /2k)] .

For the Kronig-Penney model (N identical and evenly
spaced 6 potentials) we obtain from Eq. (7),

Dy =cosNBa +i[(V /2k )coska —sinka |sinN Ba /sinBa ,
(8)

where a is the lattice spacing and S plays the role of
quasimomentum, and is defined by cosBa =coska
+(V /2k )sinka. The condition |cosBa|>1 determines
the states in the allowed energy band. In this case (as ex-
pected) it follows from Egs. (5) and (8) that

and

~1(31n|sinBa|/3k ) (10)

T,~—k

as Na— oo. It can be seen from Eq. (9) that ka=nm at
the upper edges of the allowed zones [while at the lower
edges ka=nm+2arctan(V /2k)]; for k <nw/a, 7, in-
creases as (n/a—k) 172,

For states in the gap (where cosifBa =coshfa >1) we
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find for 7, and 7, at Na — 0, using Egs. (5) and (8),

7, =(1/V)coshBa [coska —(2k /V )sinka (3B/dk) ,

7,~[Na(3B/3k)—adIn|sinhBa|/dk —k ~']/k .
Using Eqgs. (5) and (8) we obtain for 7, and 7,, for arbitrary N,

2711/21-1/2 v 2 N 3
TyZleIDN|2 | Ssinge } {Na 1+ | Sksinge [l—cotﬁa—sgl—z—]\—,ﬁf‘— 3%
_ | 4 2sinZNBa ] 11
2k sinfBa 2k ’

TZ=I21()%12(2‘_1(—1 (Nak cotNBa —ak cotﬁa)%~l , (12)

where |Dy|?>=1+(V /2k )Xsin® N Ba /sin’Ba). The corre- | 7,=0,

sponding results for 7, and 7, for states in the forbidden
gap are obtained replacing B by i’ (8'>1).

For  the tunneling  case when B=mwa/
Na [m=1,2,...,(n—1)] the transmission coefficient of
an electron, Ty =[1-+(V /2k)*(sin®?NpBa /sin’Ba)] !, has
an oscillating dependence on the Fermi level, and T =1
N —1 times in each allowed band. The time 7, for such 3

is

N : v 2112 a8

a

2= 1 |1+ | = - )

ro2 ’k 2k sinf3 K | g i /Na ]
7'y1 <7'y2< <T«"N—1 .

that 7, oscillates

y
geometric mean result

It is interesting to note from Eq. (11)
with energy about the
(Na /2k (0B /0k):

(7} Dsinnga=0(Ty Dsinnga—11'">=(Na /2k (3B /3k) .

If & potentials of random strengths are arranged
periodically, x, =na, the recurrence relation Eq. (7) can
be solved, because at V;sinka /ka >>1 the values 4, and
Ay are equal,

A 1= lV] /2k 5
Ay =(V, /k)explika )sinka
and Dy _, <<Dy. As a result, we obtain

sinka

. N N
i
Dy~ sinka k 117

j=1

(13)

7,~[(N—1)/2k][dIn(sinka /ka)/dk ]—1/2k? . (14)

We note that Egs. (13) and (14) are similar for the mod-
el in which both the spacing and the strength of the 6 po-
tentials fluctuate. For that case we find

7,~[(N—1)/2k][3{In(sinka /ka)) /3k ]—1/2k? ,
where @ is the average distance between two & potentials.
III. A PHYSICAL COMMENT

The usual procedure to calculate 7, and 7, (when the
latter is calculated) is to assume a sharply defined k vec-
tor. While there is no particular problem in executing
such a calculation by calculating the spin rotation and
the Larmor frequency, one may nevertheless feel some-
what uncomfortable about the fact that a sharply defined
k vector represents a stationary process—what meaning
has a tunneling time for a stationary process? Any direct
experiment of a transition time will per force not corre-
spond to a stationary process. It is not necessarily obvi-
ous that experimental measurements of a transit time in
such a nonstationary process must agree with the calcula-
tion obtained on a stationary process.

To alleviate to some degree such questions, we general-
ize the procedure to a quasistationary process, where the
energy is complex, E=E,+iI, so that the time depen-
dence exp(iEyt /#)exp(—I't /#i) exhibits an exponential
decay with the decay time I' /#. In addition to the (we
believe) greater physical appeal of such a procedure, it
also results in a physical insight into the Biittiker-
Landauer time 7, =(73 +72)!/2. We have

7,=Lv(E)=L Im[3(InD)/dE]
=L Im[(1/D)(3D /3E)],
7,=L Re[(1/D)3D /OE)] .
If now I' << E ), we can expand

D(E)=D(Ey)+(dD/EXE—Ey)+ --- ,

SO
7,=LIm[(E—E,—il')"'|=LT/[(E—Ey)’+T?],
r,=L Re[(E—E,—il')"1]
=[L(E—E\)]/[(E—Ey)*+T1?],
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T =(r,+m)?=L/[(E—E§)+T?])'".

We notice that when E is at the center of the resonance,
7. isjust 1/T.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge very useful discussions
with A. G. Aronov and F. Garcia-Moliner.

*Permanent address: Department of Physics, University of Cal-
ifornia, Riverside, CA 92521.

ISee, e.g., F. Capasso, K. Mohammed, and A. Y. Cho, IEEE J.
Quantum Electron. QE-22, 1853 (1986).

2E. H. Hauge and J. A. Stgveng, Rev. Mod. Phys. 61, 917
(1989).

3M. Biittiker, Phys. Rev. B 27, 6178 (1983).

4A. J. Baz, Yad. Fiz. 4, 252 (1966) [Sov. J. Nucl. Phys. 4, 182

(1967)]; ibid. 5,229 (1966) [5, 161 (1967)].

5V. M. Gasparian, B. L. Al'tshuler, A. G. Aronov, and Z. A.
Kasamanian, Phys. Lett. A 132, 201 (1988).

6V. M. Gasparian, Fiz. Tverd. Tela (Leningrad) 31, 162 (1989)
[Sov. Phys. Solid State 31, 266 (1989)].

7C. R. Leavens and G. C. Aers, Solid State Commun. 63, 1101
(1987).

8D. Thouless, J. Phys. C 5, 77 (1992).



