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Abstract. A convenient formalism is developed that allows one 10 express the transmission
coefficient of a3 wave propagating in a one-dimensional disordered structure through the
determinarnt Ty, = | Dyj™?, which depends on the amplitudes of reflection of a single scatterer
only. It is shown that the density of states averaged over the sample as well as the spectrum
of surface and volume waves in such a layered system may also be represented by the
determinant Dy,

1. Introduction

Transmission of a particle through a random one-dimensional medium is a problem
studied repeatedly since Mott’s pioneer work on electron behaviour in a random poten-
tial [1]. However, the methods available at present permit us to study analytically only
the case of a ‘white noise’ type potential [2-5] in the weak scattering limit, Another
method, that of the ‘transfer matrix’, allows us to carry out numerical calculations
effectively [6-8]. A new method [9, 10] of investigating the one-dimensional random
chain is the ‘determinant’ method, which allows us to solve the problem of electron
transmission through a random system exactly, without actually determining the eig-
enfunctions of the electron. It was shown that, with the help of this method, asufficiently
complete description of electron behaviour in a random potential, which consists of a
sum of é-potentials, distributed randomly or with arbitrary strength, may be obtained,
This ‘determinant’ is built up of the transmission and refiection coefficients of the
scatterer, and not by the potential strength. The aim of this paper is to carry out a
generalization of the method for the transmission of a free particle through a layered
medium, which is characterized by random parameters of the layers. The particle may
also be subject to an external electric field (see sections 2 and 3).

Insection 4 we consider the transmission of light through a random layered structure.
Our method makes it possible to explain the dependence of the localization length on
the angle of incidence for different polarizations of light. It is necessary to note that the
transmission of light through the system, which consists of periodically arranged thin
meta} films (the dielectric constant is complex), is the experimental realization of the
Lloyd model. In section 5 we illustrate the connection between ‘the determinant’ and
the energy spectrum of elementary excitations and obtain the polariton and plasmon
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spectra in layered structures. In section 6, this method is further applied to calculate the
resistance of layered structures, consisting of alternating layers of a2 normal metal {or
semiconductor) and a ferromagnet. Here the degree of polarization of the electron
wave passing through such a structure is calculated. We consider cases where the
magnetization vectors in the layers are parallel to each other, but arbitrary in quantity,
or remain collinear, having different signs. In section 7 it is shown how, locally, also the
average densities of states may be calculated with the help of the ‘determinant’ method.

2. Derivation of the main relations

Let us consider (N — 1) layers labelled n = {1, . . ., N — 1} between two semi-infinite
media. The positions of the boundaries of the nth layer are given by x, and x,.,
respectively, and we associate a discontinuity in the potential V,(x) with each boundary.

We assume that a plane wave is incident from the left onto the boundary at x = x;
and evaluate the amplitude of the reflected wave and the wave propagating in the semi-
infinite media for x = x.

A convenient mathematical method, allowing us to take into account multiple
interfaces consistently and exactly without the use of the perturbation theory, is the
surface Green function (Gr) method, proposed in {11, 12] for the investigation of the
electron energy spectrum in inhomogeneous systems. This method has been applied to
various problems in solid state physics before [13-18]. In this method the GF is evaluated
first when one boundary between two media is available. The case of two boundaries is
solved using the GF for one boundary. Therefore we solve the problem iteratively with
n + 1 boundaries, considering the solution with 2 boundaries to be known.

Let us first discuss the contact of two semi-infinite media: on the left of the boundary
atx, (x < x,) the potential energy of the electronis Vy(x), and on the right V', (x) (x > x,).
Let us suppose that the one-dimensional electron GF G%(x, x’; E) (n = 0, 1) for each
medjum are known, when the media are infinite. The following equation holds:

[—8%/ax? + V, (x) — E]G®(x,x"; E) = 8{x — x) 1)

where i = 2y = 1 and my is the free-electron mass.

We shall consider below constant potentials V,, with arbitrary strength for the two
cases when we have free electrons or an additional homogeneous electrical field present
(Viee = V,, + eEx). In the following the energy parameter £ will be omitted in the
argument of the GF, The upper index (/) of GF (in equation (1) the index / = 0) indicates
that the GFis calculated in the presence of f boundaries. The lower index of the GF labels
the interval for which the GF is valid. G} and G{ are expressed in the form

ano)(x, xl)G{JO)(xI ax’) .

Gix, x') = GPx, x') — ry GO (x,, x1) X, xS x (la)
0) (] '
Gi”(x,x’) = GS‘”(x,x') — e G& (x,Jh)GS (%5, % ) Sy = (16)

Gso)(xluxl)
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To define the quantities r\y and 7y, let us write the condition of continuity for
G (x,,x,) and G{¥(x,, x,) and the equality of currents at the boundary x = x;:

G (xi, %) = GV (x1, x1) (2a)

IGCP(xy, x)) — GP(xy, xy)}/0x, = 0. (2b)
The condition (2b) may also be written in the form:

GP((x, —0,x,) ~GP(x, +0,x,) = 1. (2c)

Here the dot signifies the derivative with respect to the first argument, and it is necessary
to distinguish right-side and left-side derivatives of GF due to discontinuity:

GO(x F0,x) = £} + 3 0G0 (x, x)/ox. (3)
Solving equations (2), we obtain the following expressions for the coefficients ry; and
no(GP =GP(xy, x,),n=0,1):
_ GPGP(x, +0,x1) ~ GPGP (&, +0,xy)
" T GPEP(x, + 0,x1) - GPGPx, - 0,x)
_ GS))GSO)(-’CJ -0,x;) ~ GSO)GSD)(M -0,x;)
T GPGO(x, +0,x,) - GRGP(x, — 0,x,)

(4)

r

The quantity ry (rig) is the amplitude of the reflection of the electron propagating from
the region 0 into 1 (1 into 0), and the squares of the moduli ry, and ry; are reflection
coefficients [12]. If the medium is homogeneous along the axis x, i.e.

3GP (x, x)/ox =0
equation (4) for rg; and r); may be presented in the form:
ro = —rp = (G - GM/(GP + GP). (4a)

Let us add another boundary from the right, at the point x,, i.e. we consider a film
placed between two semi-infinite media. Asin deriving equation (4), let us suppose that
GF in different parts of such a system in the absence of boundaries, i.e. G®(x,x") (n =
0,1, 2), are known. To evaluate the amplitude of reflection and the explicit form of GF
on the left and right of the new boundary, let us note that for x, x’ < x,, equations (la)
and (15} will perform the role of an initial GF. As a result the GF in the regions x, x’ = x,
and x, < x, x’ < x, will have the form:

Gg‘”(x,xz)GgO)(xz,x')
Ggm(xz, X3)

G (x, x)G{ (x5, x")
GEU(ng X3)

where G{V(x, x') is expressed by equation (1b). The generalized quantity R, is the
reflection coefficient from the boundary between nth and mth layer with / boundaries in
the sample, when the wave propagates from the ath layer into the mth layer.

Having written the condition of continuity for the new GF equations (5a) and (5b) at
the point x = x,, analogous to equation (2), we evaluate coefficients R%Y and R% [15].

GP(x,x) = GP(x,x") - RY

X, 5 =X (5a)

X, =x,x =x, - (55)

GP(x,x") = GP(x,x') - RY
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It isapparent that the structure R® (R{Y) will be the same as that of rip(ry;) (see equation
@)):
GG (xp — 0, %) = GG (xz = 0, x2)

D= .
R&l GSL)GBO)(x2 + 0! xZ) - GSO)G&”(Xz - 0! x2)
=’”21+lnrw(1"’1z—Tza)E_detéz _ : @
1- }»12}'!0}'12 det Dg a)
GPEO(x, +0,%,) - GRGP(x, +0, ~Ap=
R = (NGOG, +0,x) = GGV, +0,%) 10l — Ay = r10) (65)

Gﬁl)éso)(xz +0,x;) - GQU)GW(xz =0,x2)  1~=Aprpre

with GIP = GP{x1, x,) and G = G (x,, x,). The quantity A1, in equations (6) is
defined by

.G, )0k, xy) &
Ay = Ay = GSO)(xi,xl)Gﬁm(xz: x1) exp (_ L GSO)(x,x))' ™

Here we have used the relation connecting G(x, x') with the one-particle GF at coinciding
one-dimensional coordinates x = x' {19}

6x.x) =[Gl )Gl P esp (= [T e =)

min(x,x7) ZG(xl + Xt )
= - 6(x")8(x)]~ "2 expli|6(x) — 8(x")]] (8)
where
G(x, x: E) = i/[26(x; E)] (8a)
and

are phase functions. The coefficients r;; and ry; are obtained from equation (4) by
replacing in the lower indices0— 1, 1— 2and x,— x,.

The reflection amplitude R from the boundary x = x| may be calculated as follows.
Let us build the GF in the region x, X' < x; with the second boundary at x = x,, It is not
difficult to see that it will have the same form as the GF in equation (1a) with the
substitution of ry, for RED:

G x, x )G (xy, %7 |
G{)m(xhxl)

Evaluating this GF and the GF of equation (5b) at x = x’ = x; and solving the linear
equation we obtain

GP . x) = GP(x, x') - R SR P T 9

R _rmtApl—ra —reln ‘iﬁh‘iﬂz;
! 1 —1.12-"]0]‘[2 deth

(10)

Thus, after having added a new boundary at the point x = x,, we have not only calculated
the amplitude R , but also that of the reflected wave RYY, when the incident wave falls
onto the sample from the left,
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It is likewise useful to note that denominator and numerator of (10) and (6a) may be
written in the form:

- 1 "12“42
det D§ = 10,
: ?'103}52 1 (102)
0 | o ’12“52
detA, =|1 53 (106)
A
i 112
. 59 s
detC, =] - 1 {10c)
"10“42 Fa | 0

Adding once more a new boundary at the point x,, the corresponding coefficients
R and RY) may be calculated. Further, knowing the explicit form of RE) and R}
(compare the derivation for R}, R} may be calculated when three boundaries are
available. For clearness, we write the formula in this case:

RR) = —det A, /det DY

where
1 reilf radlf
DY =det DY =|rpdl 1 Fa )P (11)
roAlf rad¥ 1
0 Tor rphif rpAlf
detA, = i}éz 51 (11a)
A
Here
2 dx 3 dx
A=Ay = dudp = oxp (‘ f Gi(x,x) f G%(x,x))
2 iwl
= exp (— E. L O, .x)) . (11b)

Thus, each nth element of column £ of the determinant of DJ is the product of phase
coefficient A} = 412 with the amplitude of reflection coefficient r, .| when the wave
propagates from the reglon kinto k— 1 (at k <n) and r,_ 1.« at k> n. The diagonal
elements of determinant D§ are equal to 1.
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Let us now generalize the procedure indicated above in order to derive the ampli-
tudes R{"), and R{}?. With the addition of new boundaries at the points x4, . . ., Xy -1,
Xy, we shall obtain the GF in the interval [x,_,, x5], when N boundaries are present, as

G (x, 27y = G (x, x)

G (e, x ) )G (xy, X1)

- RN
R G (xw, xa)

XNt Sx,x'f.ExN. (12{1)

Here RY",  is the amplitude of reflection from the Nth boundary with ail remaining
(N —1) boundaries available (compare with equation (6b)):

ryoin(l = RS N aAn-1n)
Mo TN i N-1LN-2AN-1N
RN 1~ Anonrn-1wRES Va2 (126)

The GF G5V (x, x') in equation (124) has the form:
Gk, x") = GRL 1 (x, x7)
GRL (x, xn- )G &(xN-lsx')_;_._

— R, - CXyor SX,x Exy,.
Woth-2 GRLi(xn-r, xn-1) N N
(12¢)
On the right-hand side of the Nth boundary the GF has the form:
GO, x NG (xy, x’
GG, #) = G e, x7) = Ry DXV CT) (1)

Ggln(x!‘l'vx.’\")

Here R{", is the amplitude of electron reflection from the Nth boundary in multi-
layered structure, when the electron falls in from the right:

R, = rav-1+ RESG N Ao vl = rwwoy = fy-1n)
wN-1= = N
1- '}"N—l.NrN-l.NR(I'VV— 1!.]N-2

If the numerator and the denominator in equation (14) are represented in the form
of determinants, asis done for R} (see equation 6(4)}), and substituted againin equation
(14) for R{7!)_,, and if the procedure is repeated N times, we shall obtain R&kf-] as
a function of r,, and A%Z, in the following form:

(14)

detéN _det5N+l=_.D‘N+l 7

RO -1 = 3B, ™ " @Dy - DY (15)
where matrix DY is determined by

(D) = 8pie + (1 = B )ri o1 A2 n=k (16a)

(D) = e + (1 = S i1 kAL n<k (16b)

with
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-1+ max{a.k} %,

Ay = A ( D I T— ) k=0 (16¢)
= = ex — e n k= "
" “ P i=min{r.k} Yy GSD) (x, x)

and matrix Dy, , is connected with D% and given by
1sn k<N (Dys)wx=(DWns
I=n<N (DnsInein=Fnn-1A8 (Dyadaner =2 (Duardnsrne1=0-
(17)
The amplitude of reflection of the electron R§} from the first boundary of the layered
structure, when the wave falls in from the left, may be evaluated if the above-described
procedure that leads to equations (13) and (14) is repeated in reverse order, i.e. new

boundaries are added from the left. Hence we find that R§;? may also be represented
in the form of a ratio of determinants depending on r,,, and A% only:

det A det DY DY
N — v _ Net  _Pnet
Ri} det DY, det DY DY, (18)
Here matrix 5?\,“ is connected with D% and one gets
1smk<sN  (D¥ineisst = (DWus
2€a<N+1 (Dhi)es =420 (Dhii)in =reoza-iAie (DR = 0.
(19)
For x, x' =< x, the electron GF has the form:
GO, xYGP (x|, x
G (x,x') = GO (x, x') - R P x)G0 G, ) X, x < xy. (20)

G&“’(xl,xl)

A recurrence relation for the determinants Dy, D% and D%, which determine
the reflection amplitudes R§Y and R{Y},_, can be derived. Let us state here the recur-
rence relation for Dy .., as an example. It may be obtained using equations (16) and (17).
For this purpose it is convenient to decompose the determinant in terms of elements of
the last line. As a result, we have

D?v = AND?\'-I - BNDDN—Z

ﬁN-u _ 1=ryn-1="n-1n D?J _ 1- ran-1)(1 -~ rN—l,N) DR,_] (20a)
TN-14 NN
where
Al - 0
¥N-1,N
Ay=1+4ay-1n : (3= rnv_an-1 ™ FNe1N-2) N>1
Fy-2,N

n-1,N

By =An-1n (1= ry-an-t M1 — ry-1n-2)

Fy-2,n-1

and D%, ;v- is the determinant (equation (16)) in which the Nth or (N — 1)th line and
column are absent.
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Let us finally remark that the quantity R (also R{)_ ) is the amplitude of electron
reflection from a multilayered structure, and its is connected with the resistance p of the
Landauer formula [20].

The procedure described above also permits us to calculate the GF in an arbitrary
interval [x,, x, . ,] of a multilayered structure.

Let us break up the layered structure with N boundaries into two blocks, a left block
containing (» — 1) boundaries and a right block consisting of (N — #} boundaries. The
GF in the interval on the left-hand side of the boundary at x = x,, is given by

G (x,x") = G (x,x') — RIM

Gl (x, x, )G 1)(x . x")
G (x,, Xa)

Xpey Sx,x' =x, (21)

where GV (x, x") is yielded by equation (13) with the substitution of N— (n — 1) for
lower indices and 0 — (n — 1) for upper indices. Here and below, the tilde mark signifies
that the given quantity is calculated in the presence of all boundaries from the left and
the right.

The quantity R~ in 6F G~V (x, x’) is the amplitude of electron reflection from
the left block (when the electron falls in this block from the right) and is obtained from
equation {15) by deleting from DY the last N — (7 — 1) linesand N — (n ~ 1) columns:

det D D
R()‘I 1) _— — L A . - - 22
n-lin-2 det DY _, DY, (22)

Thus, R}, ., is the reflection coefficient from the (n — 1) boundaries of the left block,
when the wave falls from the vacuum on the right.
The electron Gr of the right block, containing (—n + N) boundaries, has the form

G, x,) G (xy, X')

» = (G "y — BN
GV (x,x") = G {x, x") Rnnl GPxr, %)

X, X, X Xy

(23)

where G{"(x, x') has a structure analogous to equation (20} with the substitution of
(N)—=(n),0— n,1— s+ 1in the lower indices.

With this, G (x, x") depends on R{ 7", which are reflection amplitudes from the
nth right block boundary, when the wave falls in from the vacuum on the left-hand side.
RN is obtained from equation (18) by deleting from DY, the first # lines and
columns. We have

(D~n+N) - 6km +(1 6km)rn+m‘m-1-¢-n}"¥-§2-k.n+m k=m (240)
(D—n+N)k,m = 6km + (1 - 6km)rn+m—l.m+n)"}i’2k.u+m k=m
50 that . .
R(_n*'N) = det D?-n+N+1 = DD—H+N+1 . ) (24b)
n’n+l det Dag.n.pN DQ.”.LN ’

Using the condition of continuity for e (21) and (23) at x = x, (see equation (2)),
we evaluate unknown coefficients R{)_, and R{™, , and thus the GF (equations (22)
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and (24)) in the regions [x, -1, x,] and [x,, X, ]:
5N _Rgzn (1_ rzn+1R -H )
1- R(n) an ntl ln n+l
_RE:-—"anm(l_ - 1n R, 2)
a=1n — 1~ Rﬁ,'_"{f,,“mRL"

(254)

256
Zj'n l.n ( )

Concluding this section let us show the expression for the GF at coinciding coor-
dinates:

GP(x,x) = (DR) ™' GP(x, x)(1 + Ry REFH Aynay = Ry 00070400
-_ 'RSI_?T:{V) ezl[an(xn+l)_en(t]])' (26)

Here 0,(x) is expressed by equation (8b) and we have D% = 1 — R, _, R;"WVA, 1.

3, The coefficient of electron transmission through a layered structure

Let us proceed to calculate the coefficient of transparency through a multilayered
structure. By means of the definition, it is expressed as the square amplitude of the
wavefunction from the right (if the electron falls in from the left) of the given structure
and it may be written as

T= (G (x1, x)IGP xw x)1 72 |GM (21, 20 (27)
where G™(x,, x,) is the GF of the electron in the layered structure with N boundaries.
Employing equation (8) let us expresss G™(x,, xy) in the form:

Y dx
GM(xy,xy) = [G[N)(xlaxl)G[M(xN’xN)]Uz exp (" j 2GM(x x))
x) ’

Mol dy
(G (e, £GP (en, 2] (_ -—————) 28

(68 e, 20O e, il P exp (= 2 | s 28)

Here G (x, x"), G (x, x") and G{ (x, x') are defined by equations (13), (20) and (26}

respectively.
To calculate the integral appearing in equation (28), we shall avail of equation (8b),
connecting the phase function 8(x; E) and the GF, as well as equation (26) for
G (x,x'):
s dx Anns (1= REL1) (1~ REZHD)
(= f oG - o () (=n+ )
ZG,, (x,x) (I—R,”, l‘lnn+l)(1_'Rnr;z+1 }"nn+1)

(29)

In view of equations (22), (24) and (29}, let us present equation (28) in final form:
GOy, xy) = (GP(e1, 7)GR e, 20) (1 = RED( = RO

(= RE_)Q = R )'ﬂ
n= 1(1—R51ﬂ21 !)"nn-i-l)(l_"Rf;r?:l]\na’n n+l)

X

1/2
= (DY) (Gam(xl,xl)cw(xw,xN)AmH(l o)A~ et
(30)
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Substituting equation (30) in equation (27) for the GF G™(x,, xy) and using the
analogous expression for [G™(x,, xy)]* we shall finally obtain the following compact
expression for the coefficient of transparency:

T=|Dy|™ (31)
where

N _!/2
Dy =D (v [ (= reae) 0= 10 (1)

Let us recall that the matrix DY is expressed by equation (16) and ., , and 7, ,_; by
the analogue of equation (4). In the case of 6-potentials

- __iVaf2k
Then = ¥gn-1 = 1+ lV"/Zk

when V, is the amplitude of the nth §-potential and E = k2. Using these expressions for
r,-1. in equation (31a), we regain the expression for Dy, presented earlier in [9, 10].

From the conclusion above, it is clear that expression (31) is easily evaluated for the
case when there is a one-dimensional chain of scatterers, characterized by random
complex amplitudes of reflection coefficients. Thenin the expression for the transmission
coefficient (equation (31)) the A, are phase multipliers set up by the wave between two
scatterers and k.

4. Propagation of plane sound and electromagnetic waves in layered structures

All general properties of the GF, as well as the formula for the coefficient of transparency
T through determinant Dy in the layered structure, obtained in section 3, are valid not
only for electrons but also for any waves (sound and electromagnetic), when their
propagation through a medium is described by a differential equation of second order.

To evaluate the coefficient of transparency of an electromagnetic wave through the
layered structure, it is necessary to express coefficients r,; in equation (314) by media
impedances Z, [21]:

Fow = (zk - Zﬂ)/(zk + zn) = "Fin- (32)

If the vector E of the plane of the electromagnetic wave is perpendicular to the plane
of incidence (the plane yz coincides with the boundary of two media, and the plane zx
with the plane of the incident wave), the impedance Z; has the form

Z; = (p,/€;)? [cos 8, (33)
where 6, is the incidence angle (or angle of refraction) of the wave at the boundary of

two semi-infinite media,

In view of equation (33), we obtain ry,,, for s-polarized light, when vector E is
perpendicular to the plane of incidence, as

(sn/ﬂn)lﬂ Cos 61’! — (fk/yk)[fz COS gk“m-- ik oA
% . Lt R
0 (e, /un)'" c0s 8, + (ex/p4)'7 c0s 6,

o (33a)
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If the vector E is in the plane of incidence of the wave (p-polarization), the impe-
dances Z; and r, 1, may be presented in the form

Z; = (u;{;)"? cos 6 (34)

¥ = (Ek/‘u'k)l‘fz cos 9,, - (gn/!"n)uz COs Bk
prk) (ee/M:) cos 8, + (g0, cos 8,

(34a)

The quantity A, ., in equation (7), entering equation (31) for Dy, acquires the
following form:

Tgyy dx .
Ap ksl =EXp (‘ J W) = exp(2iky|xy — Xpuy)- (35)

Xk

Inderiving this expression, we have made use of the fact that the GF of the wave equation
in a homogeneous medium with dielectric permeability £,(w) satisfies the equation

(—92/ax2 + @ — £2(0)0?/)GP(x, '3 k) = 8(x — x) 6)
and has the form:

G (x, x5 ki) = [i/ 2k, )] e Tiede=x1,
Here

k2 = g (w)w?/c* — ¢*

and ¢ is the two-dimensional wavevector in the plane zy.
Thus, the determinant Dy (equation (31a)), determining the coefficient of trans-
parency T for the electromagnetic (or acoustic) wave, may be written in the form:

N -1/
Dy = D% (lw ITa- ri.n—l)) (37)
n=1
since r,_1, = —r,.,-1 (see equation (32)). If r, .. are real, then we have

N -1/2
Dy = D% (2w TG = 101, (37a)

where t,_, , is the amplitude of the coefficient of transmission through n boundaries.
To close this section let us consider the layered structure representing a random
alternation of thin metal layers with a dielectric. Let the metal layers be characterized
by acomplex dielectric permeability ¢,. The coefficient of light reflection from one metal
Jayer with thickness a, at normal incidence from the vacuum is (see equation (10))

Ry =ryoyn(l — eBen) /(1 — r2_ , e¥5nin)
where

KU = CU/C K, = EllﬂaﬂK(} rn-—l,n = ("-"‘rlt’jl2 - 1)/(8.!1/2 + 1)
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If a,— 0, £,—> = and the imaginary part is much smaller than the real part, then we get
within the limit k4,2, = const = V + iy (y <€ V) (i.e. for identical homogeneous layers)

i(V + iy)/2xq

{2) = -
Rt =13 i(V +iy)/2x,

(38)

and the expression for Dy has the same form as in [9, 10], i.e. it coincides with the
expression for Dy in the Lloyd model [9, 10] after averaging over the random potentials.
Thus, a periodic layered structure of thin metal films is the experimental realization of
the Lloyd model in experiments on light transmission.

Sipe et af [22] have shown that the radius of light polarization in a random layered
structure depends upon the polarization of light and the incidence angle of the wave
using Monte Carlo simulation. The authors have framed asimple theory within the long-
wave limit; though it displays the main properties qualitatively, it has however no
quantitative agreement with the Monte Carlo simulation.

Let us calculate the radius of localization in the model of Sipe et af [22], when there
are two alternating types of layers with dielectric permeabilities £, and €, (#; , = 1) with
random thicknesses distributed by the law P(a) = a;’ exp(a/ay). The Fresnel coef-
ficients for s- and p-polarized waves according to (332) and (34a) have the form (n* =

£/e)):
_cos 8 — (n* —sin? B)V7
’s= Cos @ + (n2 — sin? B) 17
n® cos @ — (n? — sin? )\2
¥y, = =3 - S— " .
P™ n?cos 8 + (n? —sin? )12

e (39)

If r,, r, < 1, the determinant Dy may be calculated for an arbitrary distribution in
the thicknesses of the layers r;_, , = ri ; [23]:

N
Dyt =e®rn [ (1 =) = el il (40)

n=1

and the coefficient of transparency is given by

Ts.p = EXp(—Nr‘s?‘p). (41)
Thus, in this limiting case, the localization length is
dy /ls.p = rg.p/z' (42)

It follows from expressions (39), (39a) and (42) that the localization length becomes
infinite at the Brewster angle tan 83 = #. The comparison of equation (42) with the
results of Monte Carlo simulation (figure 1) shows that equation (42) describes the
experimental results well, when & < 65°. In the region of large angles, where (1 — 7, ) <
1, the determinant Dy may also be calculated [23]. We shall not repeat here the cal-

culations presented in [23], but state the final expression for localization length:

52:%{1n@2—_£1—~—w~12e [lp (1 +2Kiao) +1y(i +2K:iaao)]} (43)

{ 4y* n? cos
where W(x) is the di-gamma function, k; , = kel andlny = C=0.577. ...

5.p
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Figure 1. The dependence of the localization length on the angle of light incidence at & =
5a9, n® = £,/g, = 2,42, Open circles are the results of Monte Carlo simulations for p-
polarized fight, and the full circles are for s-polarized light according to [22]. Full curves are
calculated from equation (42). The chain curves display the resulis of equation (43).

The comparison of equation (43) in the region of large angles of incidence with the
Monte Carlo simulation {22] is shown in figure 1. It is seen that equation (43) describes
the Monte Carlo results well for 8 > 70°.

5. Surface waves in a layered structure

Besides the considered questions connected with the calculation of the coefficient of
wave transparency through a one-dimensional randomssystem, knowledge of the explicit
form of determinant Dy, allows us to study the energy spectrum of excitations in the
layered structure and also their propagation (surface polaritons and plasmons, etc). For
this, it is necessary to study the zeroes of determinant Dy in equation (31a), or, what is
the same, of the pole GV (x, x) in equation (26).

Let us consider, for instance, a sandwich: a one-layered film, placed between two
semi-infinite media. From equation (312}, we get (N = 2, the number of boundaries)

1 i e"‘x“l

D2 = . =1- Fio¥12 Czu{lal =Q. (44)
rip € 1% 1

Here (sec equations (4a) and (34a)) one has
_GP =GP Zy - Z, _iegk; — &1k
Mo = G+ G Z,+Z, igek, + £,k
GO -GP Z,-Z, gk - ex
TGO TGO T Z,+ Z, ik, + 8Ky
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Let us note that GF G{? and G are chosen to be real, which signifies attenuation on
both sides of the film (there is no incident wave on the left, and no propagating wave on
the right).

Equation (44) has a solution at real g, (# =0, 1, 2) only for imaginary values x,
and presents the known dispersion relation for surface polaritons (see, for example,
Maradudin [24]).

For example, if we choose £, for the film in the form &, = 1 — @2 /w? (w, is the
plasma frequency)and ; = £, = 1 (vacuum) and solve equation (44), we obtain the well
known symmetric and antisymmetric modes of surface plasmons in metal films [24].

6. Electron transmission through a magnetic structure

Let us consider the transmission of an electron through the structure, containing ferro-
magneticlayers, in which the magnetization vectors are always collinear. The coefficient
of transparency, and also that of reflection, through such a layer depend on the relative
orientation of magnetization vectors in the layer and the spin direction. If the ¢lectron
spin does not flip on passing through the ferromagnetic layer, this problem is equivalent

to the propagation of two independent modes of the electron wave with oppaosite spins
through the sample, and the full coefficient of transparency is given by

T=T; +T,) (45)

The coefficient of @-spin electron reflection from each barrier comprises two parts:
a part depending on the magnetization vector in the ferromagnetic layer ér{M,) and a
part not depending on the spin r:

ro{M)=r+ ér (M)).

In the case of strong scattering, when 1 — r {{M ]} = A + 6r,< 1 the determinant
Dy({M}) is easily calculated as

N
DR(M) = [DPO)) 24w exp (=  In[A + r,(M)) = Nln2) (46)
n=1
If &r,{M;} < A, then with the inclusion
i N
(8ra) = ;;;,E bra(M,)

we obtain
D ({M}) = D32 (0) exp(—N(Sr,)/A). (47)

Using equation (47) and the connection of the conductance with the permeability of
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a barrier, G{{M}) = Z, T, when measured by the two-contact method [25], we find that
the conductance part, depending on magnetization, is

AG(M,)/G(0) = EZe-Nww ~1.

Spin polarization appears when the electrons pass through the barrier since the
permeability is different for various spin directions. One has

pY) = (Ty = T)/(Ty + T,) =tanh N((6r ;) —(6r )/2A.  (48)

It is seen from equation (48) that the full polarization of the electrons appears at large
distances, independently of whether the sample has full magnetization or not.

7. Density of states in layered struciures

Knowing the explicit form of the electron GF (26) in the layered structure, it is not
difficult to calculate the local density of states at the point x. This expression is the
generalization of the formula obtained earlier by one of the authors for random 8-
potentials [10].

Using recurrence relations (section 2) and carrying out similar calculations [10], we
get

GV(x, x)
DHGNxuxa)]?

x {(D8 = DR)(D%re o = Due)

(B;5) = 2 G (s, 5 E) = = Im

* o opdt
- G x,, x,) [(1 - COSJ m) G0 (x,,x,)D3D%,  n
X

=Dy = Do )DLy — (DYuoyyen — DY n)DY]
-isin Gté,fj SIDE = DY-)D2,
= (D% = DY} (49)
The density of states averaged by the thickness of the given layer is
v (E) = ﬂin f‘ I G (x, x; E) dx (50)

In

and may also be expressed by determinant Dy. In order to derive this, let us insert the
explicit expression for the 6F G{V(x, x; E) (expression (26)) into (50) and write the
resulting expression as a sum of three terms, each of which may be exactly calculated,
not exploiting the explicit form [19]:

n) (-n+M Xn
1+Rnn erzrz+] Anrz-t-lf 1 Gf,o)(x,x)dx

I, =
: 1—-R(n) erzn+1 Ann-ﬁ-l x

Lt R REFE e [ B -G L (G
1= RO R g sy LAE T 2 dENGD/ ]|,
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R, e ¥0uliniE)

e+t .
fh=- - f G (x, x) e * 380 gy
2 1~ R("] ]Rs:-::l }Ln ntt ( )

() _“'an(xn"!l) (0 o _
Riin-y € {_ Gn e+2:9,.{x“.l'3_(c i 1)]
1 —Rﬂ IRI(‘!.::l natd GS:O)

2 dE
R( n + N] e.lﬂﬂ[x,” ,,E)

Xy .
5= - j 1 Gﬁ,o)(x,x)e‘z'gﬂ("‘ﬂ dx

1- Rﬂ!}t—- 1 RL-:-!- IN’}W Ll

R(—n+1\l’) 218"(.\' . ,,E)

G . d (GO
=— e - =28, (xp
1 R(") nn-(-l j’n n+l[ 2 kx’x)e " adE( G(ﬂ) )]

where @,(x; E) is the phase function; it is determined by formula (8b). After simple
transformations, the following expression for v,(E) is obtained:
1 d
dE
I—R;(:nl)'z— Rnf:t-:lh lﬁn’i-l ¥
[Arnrr (b= R — RE, (L~ R (1 - RY "‘W’)] 172
(51)

Substituting equations (22) and (24} into (51), the final expression for v,( E) is gained
in the form:

*n41

Vn(E =

+12+13)—

¥ ln

VH(E = (aEln DN) N (52)
Here the subscript n means that the derivative with respect to the energy has to be
calculated upon the quantities characterizing the nth subsystem—i.e. phase function
8,(x; E)yand amplitude of reflectionr,, , | (ry-) mandr, ,+ (r5+1..) Which are contained
in GP(x, x; E). 7

Equation (52) is important since for the calculation of the density of states in various
parts of the layered system there is no necessity to calculate the GF; it is sufficient to
know the energy spectrum.

The density of states averaged by the thickness of the layered system is

v, (E) = E a,v,(E) = — Z Im (a‘l,ln DN) (53)

n n=1

where @ = xy — x, is the length of the systems. At N — = the density of states (53) may
be represented as [9, 10, 26]
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