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Abstract. A convenient formalism is developed that allows one to express the transmission 
coefficient of a wave propagating in a one-dimensional disordered structure through the 
determinant T,  = [DJ‘, which dependson the amplitudesof reflection of a single scatterer 
only. It is shown that the density of states averaged over the sample as well as the spectrum 
of surface and volume waves in such a layered system ma). also be represented by the 
determinant D,. 

1. Introduction 

Transmission of a particle through a random one-dimensional medium is a problem 
studied repeatedly since Mott’s pioneer work on electron behaviour in a random poten- 
tial [I]. However, the methods available at present permit us to study analytically only 
the case of a ‘white noise’ type potential (2-51 in the weak scattering limit. Another 
method, that of the ’transfer matrix’, allows us to carry out numerical calculations 
effectively [&SI. A new method 19, IO] of investigating the one-dimensional random 
chain is the ‘determinant’ method, which allows us to solve the problem of electron 
transmission through a random system exactly, without actually determining the eig- 
enfunctionsoftheelectron. It wasshownthat, with the helpof thismethod, asufficiently 
complete description of electron behaviour in a random potential, which consists of a 
sum of &potentials, distributed randomly or with arbitrary strength, may be obtained. 
This ‘determinant’ is built up of the transmission and reflection coefficients of the 
scatterer, and not by the potential strength. The aim of this paper is to carry out a 
generalization of the method for the transmission of a free particle through a layered 
medium, which is characterized by random parameters of the layers. The particle may 
also be subject to an external electric field (see sections 2 and 3). 

In section 4 we consider the transmission of light through a random layered structure. 
Our method makes it possible to explain the dependence of the localization length on 
the angle of incidence for different polarizations of light. It is necessary to note that the 
transmission of light through the system, which consists of periodically arranged thin 
metal films (the dielectric constant is complex), is the experimental realization of the 
Lloyd model. In section 5 we illustrate the connection between ‘the determinant’ and 
the energy spectrum of elementary excitations and obtain the polariton and plasmon 
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spectra in layered structures. In section 6, this method is further applied to calculate the 
resistance of layered structures, consisting of alternating layers of a normal metal (or 
semiconductor) and a ferromagnet. Here the degree of polarization of the electron 
wave passing through such a structure is calculated. We consider cases where the 
magnetization vectors in the layers are parallel to each other, but arbitrary in quantity, 
or remain collinear, having different signs. In section 7 it is shown how, locally, also the 
average densities of states may be calculated with the help of the ‘determinant’ method. 

2. Derivation of the main relations 

Let us consider (N - 1) layers labelled n = 11, . . . , N - l} between two semi-infinite 
media. The positions of the boundaries of the nth layer are given by x, and x,,, 
respectively, and we associate a discontinuity in the potential V,(x) with each boundary. 

We assume that a plane wave is incident from the left onto the boundary at x = x 1  
and evaluate the amplitude of the reflected wave and the wave propagating in the semi- 
infinite media for x > x N .  

A convenient mathematical method, allowing us to take into account multiple 
interfaces consistently and exactly without the use of the perturbation theory, is the 
surface Green function (GF) method, proposed in [ll, 121 for the investigation of the 
electron energy spectrum in inhomogeneous systems. This method has been applied to 
various problemsinsolidstate physics before[12-18]. In this method theG~isevaluated 
first when one boundary between two media is available. The case of two boundaries is 
solved using the CIF for one boundary. Therefore we solve the problem iteratively with 
n + 1 boundaries, considering the solution with n boundaries to he known. 

Let us first discuss the contact of two semi-infinite media: on the left of the boundary 
atx, ( x  <x,)thepotentiaIenergyoftheelectronis Vo(x),andon theright V , ( x ) ( x  >xl). 
Let us suppose that the one-dimensional electron GF C!?(x,x’ ;  E) (n = 0 , l )  for each 
medium are known, when the media are infinite. The following equation holds: 

[-dZ/axZ + V , ( x ) - E ] G ~ o ’ ( x , x ’ ; E ) = G ( x - x ‘ )  (1) 

where h = 2m0 = 1 and mo is the free-electron mass. 
We shall consider below constant potentials V, with arbitrary strength for the two 

cases when we have free electrons or an additional homogeneous electrical field present 
(V,,, = V, + e&). In the following the energy parameter E will be omitted in the 
argument of the GF. The upper index ( r )  Of G F ( h  equation (1) the index I = 0) indicates 
that the CF is calculated in the presence of I boundaries. The lower index of the GF labels 
the interval for which the GF is valid. Gh” and G(I) are expressed in the form 
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To define the quantities rl0 and rol, let us write the condition of continuity for 
C&')(xI, x l )  and G( ' ) (x , ,  xl) and the equality of currents at the boundary x = x I :  

G Y ) ( x i , x i ) = G I 1 ) ( ~ i , ~ i )  ( 2 4  

d [ G S ' ( x l , x l )  - G \ ' ) ( X ~ , X I ) ] / ~ X ~  = O .  (26) 

G;S'(x1 - O , X , )  - G f ' ( X l  + O , x , )  = 1. (2C) 

The condition (26) may also be written in the form: 

Here the dot signifies the derivative with respect to the first argument, and it is necessary 
to distinguish right-side and left-side derivatives of GF due to discontinuity: 

CIp)(r F 0, x )  = &$ + 1 aG$o)(x,x)/%x. (3) 

Solving equations (2) .  we obtain the following expressions for the coefficients rol and 
rLo(Gho) = G ~ o ) ( x l , x l ) , n = O , l ) :  

ro1 = 
G&o'G\o)(xl + 0 , x l )  - G(o)G&o)(~l + O , X , )  
G p G p ) ( x ,  + O , X , )  - G\O'Gb"(X, - 0 , X l )  . .. 

The quantity rol ( r 3  is the amplitude of the reflection of the electron propagating from 
the region 0 into 1 (1 into 0), and the squares of the moduli rol and rl0 are reflection 
coefficients [12]. If the medium is homogeneous along the axisx, i.e. 

a c p \ ( X , x ) / d x  = o  

rol = -r l0 = (G&O) - G("))/(GL') + GIo)). 

equation (4) for rol and rl0 may be presented in the form: 

(44 
Let us add another boundary from the right, at the point x2, i.e. we consider a film 

placed between two semi-infinite media. As in deriving equation (4). let us suppose that 
GF in different parts of such a system in the absence of boundaries, i.e. G ~ ) ( x ,  x ' )  (n = 
0, 1,2), are known. To evaluate the amplitude of reflection and the explicit form of GF 
on the left and right of the new boundary, let us note that for x ,  x' =z x2, equations ( la )  
and (lb) will perform the role of an initial GF. As a result the GF in the regions x ,  x' 2 x2 
and x ,  =z x ,  x' s x2  will have the form: 

where G \ I ) ( x , x ' )  is expressed by equation (16). The generalized quantity RLt is the 
reflection coefficient from the boundary between nth and mth layer with I boundaries in 
the sample, when the wave propagates from the nth layer into the mth layer. 

Having written the condition of continuity for the new GF equations (5a) and (56) at 
the point x = x2,  analogous to equation (2) ,  we evaluate coefficients RI?) and R\Y (151. 
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It isapparentthatthestructure R g )  (R@)wiIl bethesameasthatofr,o(r,,)(seeequation 
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(4)): 

with CL') = G $ 0 ) ( x ~ , x 2 )  and G(') E G( ' ) (x2 ,x2) .  The quantity hI2 in equations (6) is 
defined by 

Here we have used the relation connecting G(x,x') with theone-particle cFat coinciding 
one-dimensional coordinatesx = x' 1191: 

max(x.1') 

G(x.x') = [ G ( x , x ) G ( x ' , x ' ) ] ' D  exp 

where 

G(x, x; E )  = i/[28(w; E)]  
and 

are phase functions. The coefficients rt2 and r21 are obtained from equation (4) by 
replacinginthe lower indices0-t 1,1+ 2andx,- x?. 

The reflectionamplitudeR8) fromthe boundaryx = xI may becalculatedasfollows. 
Let us build the GF in the region x ,  x' < x1 with the second boundary at x = x2. It is not 
difficult to see that it will have the same form as the GF in equation ( l a )  with the 
substitution of rol for R@: 

Evaluating this GF and the GF of equation (56) at x = x' = x i  and solving the linear 
equation we obtain 

Thus,after havingaddedanewboundaryat thepointx = x,,wehavenotonlycalculated 
the amplitude Rg) ,but also that of the refiected wave Ri?), when the incident wave falls 
onto the sample from the left. 
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It is likewise useful to note that denominator and numerator of (10) and (6a) may be 
written in the form: 

Adding once more a new boundary at the point x 3 ,  the corresponding coefficients 
R g  and R$Y may be calculated. Further, knowing the explicit form of RG) and R@ 
(compare the derivation for R#), Rh:’ may be calculated when three boundaries are 
available. For clearness, we write the formula in this case: 

Rb:’ = -detA,/det @’ 

where 

Here 

Thus, each nth element of column k of the determinant of 09 is the product of phase 
coefficient Ag2 = 2.hp with the amplitude of reflection coefficient rk,k- when the wave 
propagates from the region k into k - 1 (ai k < n )  and rk - l , k  at k > n. The diagonal 
elements of determinant 02 are equal to 1. 
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Let us now generalize the procedure indicated above in order to derive the ampli- 
tudesRL%_, andRh?. Withtheadditionof newboundariesatthepointsx4,. . . . x ~ - ~ .  
xN, we shall obtain the GF in the interval [xN- I ,  xN], when N boundaries are present, as 

Gb?l(~,x') = GIuN_i"(x,x') 

Here R$$'!i,N is the amplitude of reflection from the Nth boundary with all remaining 
(N - 1) boundaries available (compare with equation (66)): 

The GF Gv:li)(x, x ' )  in equation (12a) has the form: 

cv.tyx, x') = GEL ,(x. x') 

On the right-hand side of the Nth boundary the GF has the form: 

Here RL%-] is the amplitude of electron reflection from the Nth boundary in multi- 
layered structure, when the electron falls in from the right: 

If the numerator and the denominator in equation (14) are represented in the form 
ofdeterminants,asisdoneforR#) (seeequation6(a)),andsubstitutedagainine uation 
(14) for Rv:i!+z, and if the procedure is repeated N times, we shall obtain R&-i as 
a function of r,, and A,$, in the following form: 
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n , k a O  
- 1 t m a x h . k )  

Ank = A h  = exp 
i=minln,k)  

and matrix dN+ is connected with and given by 

l s n , k s N  ( ~ N + l ) n . k = ( & ) n . k  

1GnSN ( d N +  l ) N + l . n = r n . n -  I A %  ( h N + l ) & N + l  =a!!6 ( d N + l ) N t l . N t  I =O' 
(17) 

The amplitude of reflection oftheelectron R@ from the first boundary of the layered 
structure, when the wave falls in from the left, may be evaluated if the above-described 
procedure that leads to equations (13) and (14) is repeated in reverse order, i.e. new 
boundaries are added from the left. Hence we find that R#' may also be represented 
in the form of a ratio of determinants depending on r,, and Ai(z only: 

For x ,  x' S x I  the electron GF has the form: 

A recurrence relation for the determinants bN+,, and DON, which determine 
the reflection amplitudes RLy and R$& can be derived. Let us state here the recur- 
rence relation for dN+ as an example. It may be obtained using equations (16) and (17). 
For this purpose it is convenient to decompose the determinant in terms of elements of 
the last line. As a result, we have 

0% - B N D 0 , _ 2  

where 

A l = O  

I N - 1 . N  

r N - 2 , N - 1  
BN = A N - I , N  (1 - r N - 2 , N - l ) ( l  - r N - l . N - ? )  

andDg-1(N-2) isthedeterminant(equation(16)) inwhichtheNthor(N - 1)thlineand 
column are absent. 
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Letusfinallyremarkthatthequantity Rby (also RLTN-l)istheamplitudeofelectron 
reflection from a multilayered structure, and its is connected with the resistance p of the 
Landauer formula [ZO]. 

The procedure described above also permits us to calculate the GF in an arbitrary 
interval [x., xn+ I] of a multilayered structure. 

Let us break up the layered structure with N boundaries into two blocks, a left block 
containing (n - 1) boundaries and a right block consisting of ( N  - n)  boundaries. The 
OF in the interval on the left-hand side of the boundary at x = x,, is given by 

G ~ ? ~ ( x , x ' )  = G ~ : / ) ( x , x ' )  - Rf?,,n 

where Gt-- ; ) (x ,x ' )  is yielded by equation (13) with the substitution of N - t  (n - 1) for 
lower indices and 0 -P (n - 1) for upper indices. Here and below, the tilde mark signifies 
that the given quantity is calculated in the presence of all boundaries from the left and 
the right. 

The quantity RP::) in GF GF--;)(x, x ' )  is the amplitude of electron reflection from 
the left block (when the electron falls in this block from the right) and is obtained from 
equation (15) by deleting from 0% the last N - (n - 1) lines and N - (n - 1) columns: 

Thus, RPY??,!L-2 is the reflection coefficient from the (n - 1) boundaries of the left block, 
when the wave falls from the vacuum on the right. 

The electron ~ f o f  the right block, containing ( -n + N )  boundaries, has the form 

where G P ) ( x , x ' )  has a structure analogous to equation (20) with the substitution of 
( N )  -+ (n), 0- n,  1 -P n + 1 in the lower indices. 

With this, GF)(x,  x ' )  depends on R!,r:Tl', which are reflection amplitudes from the 
nth right block boundary, when the wave falls in from the vacuum on the left-hand side. 
R!,;:$lW is obtained from equation (18) by deleting from D$ the first n lines and n 
columns. We have 

112 k > m  

k s m  
(24a) 

( D % + , v ) k , m  = 6 k m  + (1 - G L . n ) T . + m , m - l i n ~ n t K . n i m  

= dkm + (1 - Bkm)r,+m-,.m+n~n+K,ntm in 

Using the condition of continuity for GF (21) and (U) at x = x, (see equation (Z)), 
we evaluate unknown coefficients l?k?.??, and@???,,, and thus the GF (equations (22) 
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and (24)) in the regions [X , -~ ,X . ]  and [ X ~ , X ~ + ~ ] :  

Concluding this section let us show the expression for the GF at coinciding coor- 
dinates: 
GLW(x,x) = (D%)- 'Gio)(x,x)(1 + R $ ! , - l R ~ ~ ; ~ l ~ A , , , t ,  - R$&-l e'@*(z)-em(xJl 

- R;;;++~W e2i[e,(~.+,)-e,(i)l), (26) 

Here & ( x )  is expressed by equation (86) and we have DL = 1 - R(") n . n - 1  R-"+NA n.nt1 "."+I. 

3. The coefficient of electron transmission through a layered structure 
Let us proceed to calculate the coefficient of transparency through a multilayered 
structure. By means of the definition, it is expressed as the square amplitude of the 
wavefunction from the right (if the electron falls in from the left) of the given structure 
and it may be written as 

T =  [lGh0'(Xi,  XI)^ \G!$%N, X N ) ( ] - ~ / ~  IG('(X~7 X N ) ~ ~  (27) 

where G(M(x,, xN)  is the GFOf the electron in the layered structure with N boundaries. 
Employing equation (8) let us express G("(x, ,  X N )  in the form: 

2G("(x, x )  G ( ' ( ~ l , ~ N )  = [ G ( ~ ( x l , ~ I ) G ( N I ( ~ N , ~ N ) ] 1 ~ 2  exp 

Here G p ( x , x ' ) ,  GhW(x, x') and GiN(x, x') aredefinedbyequations(13),(20)and(26) 
respectively. 

To calculate the integral appearing in equation (28), we shall avail of equation (8b) ,  
connecting the phase function e(x ;E)  and the GF, as well as equation (26) for 
GL'(x,x'): 

In view of equations (22), (24) and (29), let us present equation (28) in final form: 

G ( w ( X ~ , X ~ )  = ( G ~ o ) ( ~ ~ , X ~ ) G I * O ) ( ~ N , X N ) ( ~  - R~NW - RJYN)"~) 
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Substituting equation (30) in equation (27) for the GF G(“?(x1,xN) and using the 
analogous expression for [G(n(x,, xN) ] *  we shall finally obtain the following compact 
expression for the coefficient of transparency: 

T =  p,1-2 (31) 

Let us recall that the matrix DR is expressed by equation (16) and rnwl,@ and rn.n-l by 
the analogue of equation (4). In the case of &potentials 

when V, is the amplitude of the nth &potential and E = k2. Using these expressions for 
r,- in equation (31a), we regain the expression for DN presented earlier in [9, lo]. 

From the conclusion above, it is clear that expression (31) is easily evaluated for the 
case when there is a one-dimensional chain of scatterers, characterized by random 
complexamplitudesof reflection coefficients. Then in theexpression for the transmission 
coefficient (equation (31)) the ,Iih are phase multipliersset up by the wave between two 
scatterers i and k. 

4. Propagation of plane sound and electromagnetic waves in layered structures 

All general properties of the GF, as well as the formula for the coefficient of transparency 
Tthrough determinant DN in the layered structure, obtained in section 3, are valid not 
only for electrons but also for any waves (sound and electromagnetic), when their 
propagation through a medium is described by a differential equation of second order. 

To evaluate the coefficient of transparency of an electromagnetic wave through the 
layered structure, it is necessary to express coefficients rnk in equation (31a) by media 
impedances Zk [21]: 

rnk = (zk - zn)/(zk + zn) - rhn .  (32) 

If the vectorE of the plane of the electromagnetic wave is perpendicular to the plane 
of incidence (the plane yz coincides with the boundary of two media, and the plane zx 
with the plane of the incident wave), the impedance 2, has the form 

z, = (fi,/&,)1/2/cos e, (33) 

where 0, is the incidence angle (or angle of refraction) of the wave at the boundary of 
two semi-infinite media. 

In view of equation (33), we obtain rrCnh) for s-polarized light, when vector E is 
perpendicular to the plane of incidence, as 
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If the vector E is in the plane of incidence of the wave (p-polarization), the impe- 
dances Zj and rp(.k, may be presented in the form 

2; = (pj/&;)l" cos 6; (34) 

The quantity A,,,, in equation (7), entering equation (31) for DN,  acquires the 
following form: 

In derivingthis expression, we have made use of the fact that the GFOf the wave equation 
in a homogeneous medium with dielectric permeability & I ; ( @ )  satisfies the equation 

( - d 2 / a X Z  + q2 - E ~ ( O ) W ~ / C ~ ) G ~ ~ ) ( X , X ' ;  K ~ )  = S(x  - x ' )  (36) 

and has the form: 

GLo'(x, x ' ;  K ~ )  = [ i / ( 2 ~ ~ ) ]  e-i'k"-x'' 

Here 

K: = E k ( 0 ) W Z / C 2  - q2 

and q is the two-dimensional wavevector in the plane ry, 

parency Tfor the electromagnetic (or acoustic) wave, may be written in the form: 
Thus, the determinant D,y (equation (31a)), determining the coefficient of trans- 

since rnF1," = -rn,"-, (see equation (32)). If are real, then we have 

where ts -  
To close this section let us consider the layered structure representing a random 

alternation of thin metal layers with a dielectric. Let the metal layers be characterized 
by acomplex dielectricpermeability E,. The coefficient of light reflectionfromone metal 
layer with thicknessa, at normal incidence from the vacuum is (see equation (10)) 

is the amplitude of the coefficient of transmission through n boundaries. 

RPL,., = rn-l ,n(l  - eZ i "~ "~ ) / ( l  - r i - l ,n  e*'"."") 

where 

Kg = O / C  .lcn = &l/Z n KO rn-l,n = (€AI2 - I)/(# + I).  



3034 

If a, -+ 0, E,  + - and the imaginary part is much smaller than the real part, then we get 
within the limit K ~ E , , ~ ,  = const = V + iy (y V )  (i.e. for identical homogeneous layers) 
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and the expression for DN has the same form as in [9, lo], i.e. it coincides with the 
expression for DNin the Lloyd model [9, IOIafter averagingover the random potentials. 
Thus. a periodic layered structure of thin metal films is the experimental realization of 
the Lloyd model in experiments on light transmission. 

Sipe et al[22] have shown that the radius of light polarization in a random layered 
structure depends upon the polarization of light and the incidence angle of the wave 
using Monte Carlosimulation. The authors have framed asimple theory within the long- 
wave limit; though it displays the main properties qualitatively, it has however no 
quantitative agreement with the Monte Carlo simulation. 

Let us calculate the radiusof localization in the model of Sipe eta1 [22]. when there 
are two alternating types of layers with dielectric permeabilities cl and cZ (p1,2 = 1) with 
random thicknesses distributed by the law P(n)  = a,' exp(a/uo). The Fresnel coef- 
ficients for s- and p-polarized waves according to (33a) and (34a) have the form (nZ = 
E*/El): 

,.... ,..... " . ,. .. , , .. 
~ ~~ ~~~ ~ 

cos e - (nZ - sin2 
cos e + (n2  - sin2 ep2 

~ ~~~ r, = (39) 

(394  . . , , . ,  ,...I, .I", ,.,,, , n? cos e - (n2 - sin2 
n2 cos e + (nZ - sin2 e)IlZ ' rp  = 

If r,, r,,+Q 1, the determinant DN may be calculated for an arbitrary distribution in 
the thicknesses of the layers r i -  I , n  = [23]: 

N 
D-1 N -  - ~ V F I . N  n (1 - r:,p)l/2 = ei"i.~-N'?,~/2 (40) 

Ts.p = exp(-N<,,). (41) 

" = I  

and the coefficient of transparency is given by 

Thus, in this limiting case, the localization length is 

It followsfromexpressions (39), (39a) and (42) that the localization length becomes 
infinite at the Brewster angle tan OB = n. The comparison of equation (42) with the 
results of Monte Carlo simulation (figure 1) shows that equation (42) describes the 
experimental results well, when 0 4 65". In the region of large angles, where (1 - rS,P) 4 
1, the determinant DN may also be calculated [23]. We shall not repeat here the cal- 
culations presented in [U], but state the final expression for localization length: 

where Y ( x )  is the di-gamma function, K, ,Z  = K& and In y = C = 0.577. . . 
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Figure 1. The dependence of the localization length on the angle of light incidence at d = 
5a,, n2 = E J E ,  = 2.42. Open circles are the results of Monte Carlo simulations for p- 
polarized light, and the full circles are for s.poiarized light according to (221, Full curves are 
calculated from equation (42). The chain curves display the results of equation (43). 

The comparison of equation (43) in the region of large angles of incidence with the 
Monte Carlo simulation [22] is shown in figure 1. It is seen that equation (43) describes 
the Monte Carlo results well for 0 > 70". 

5. Surface waves in a layered structure 

Besides the considered questions connected with the calculation of the coefficient of 
wave transparency through a one-dimensional random system, knowledge of the explicit 
form of determinant DN allows us to study the energy spectrum of excitations in the 
layered structure and also their propagation (surface polaritons and plasmons, etc). For 
this, it is necessary to study the zeroes of determinant D, in equation (31a), or, what is 
the same, of the pole GLM(x, x )  in equation (26). 

Let us consider, for instance, a sandwich: a one-layered film, placed between two 
semi-infinite media. From equation (31a), we get ( N  = 2, the number of boundaries) 

Here (see equations (4a) and (34a)) one has 
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Let us note that GF CLo) and Cia' are chosen to be real, which signifies attenuation on 
both sides of the film (there is no incident wave on the left, and no propagating wave on 
the right). 

Equation (44) has a solution at real E, (n  = 0,1,2) only for imaginary values K, 
and presents the known dispersion relation for surface polaritons (see, for example, 
Maradudin [24]). 

For example, if we choose E ]  for the film in the form E ,  = 1 - w',/w' (w, is the 
plasma frequency) and E" = E' = 1 (vacuum) and solve equation (44), we obtain the well 
known symmetric and antisymmetric modes of surface plasmons in metal films [24]. 

A C Aronou et a1 

6. Electron transmission through a magnetic structure 

Let us consider the transmission of an electron through the structure, containingferro- 
magnetic layers, in which the magnetization vectorsare alwayscollinear. The coefficient 
of transparency, and also that of reflection, through such a layer depend on the relative 
orientation of magnetization vectors in the layer and the spin direction. If the electron 
spin does not flip on passing through the ferromagnetic layer, this problem is equivalent 
to the propagation of two independent modes of the electron wave with opposite spins 
through the sample. and the full coefficient of transparency is given by 

?-=$(7-, + T i ) .  (45) 

The coefficient of cy-spin electron reflection from each barrier comprises two parts: 
a part depending on the magnetization vector in the ferromagnetic layer &AMi) and a 
part not depending on the spin r: 

r " ( M , )  = r + 6re (M, ) .  

In the case of strong scattering, when 1 - r,({M,}) = A + 6r,< 1 the determinant 
D N ( { M , ] )  is easily calculated as 

(46) 
N 

Di,?({M,})  = [D#)(0)]-2A,Nexp 

If 6r,(Mj) A, then with the inclusion 

we obtain 

D i 2 ( { M , } )  = Di2(0 )  exp(-N(6r,)/A). (47) 

Using equation (47) and the connection of the conductance with the permeability of 



Transmission of waves through I D  random layered systems 3037 

a barrier, G({M,}) = ZeTewhen measured by the two-contact method [25], we find that 
the conductance part, depending on magnetization, is 

AG(M,) /G(o)  = i e-N(ar*)/* - 1. 
* 

Spin polarization appears when the electrons pass through the barrier since the 

pkv = ( T ,  - T , ) / ( T t  + T ~ ) = t a n h N ( ( 6 r , ) - @ r ~ ) ) / 2 A .  (48) 
It is seen from equation (48) that the full polarization of the electrons appears at large 
distances, independently of whether the sample has full magnetization or not. 

permeability is different for various spin directions. One has 

7. Density of states in layered structures 

Knowing the explicit form of the electron GF (26) in the layered structure. it is not 
difficult to calculate the local density of states at the point x .  This expression is the 
generalization of the formula obtained earlier by one of the authors for random 6- 
potentials [ I O ] .  

Using recurrence relations (section 2) and carrying out similar calculations [ l o ] ,  we 
get 

Im 1 GLa)(x, x )  
v,(E;x)=-G~'(x,x;E)=-Im n n D"NGlp'(x.,x,)]~ 

(49) 

The density of states averaged by the thickness of the given layer is 

and may also be expressed by determinant DN. In order to derive this, let us insert the 
explicit expression for the GF GhM(x,x; E )  (expression (26)) into (50) and write the 
resulting expression as a sum of three terms, each of which may be exactly calculated, 
not exploiting the explicit form [19]: 
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where B,(x; E )  is the phase function; it is determined by formula (8b). After simple 
transformations, the following expression for v,(E) isobtained: 

1 1 d 
v n ( E ) = - I m ( l i  +12+13)=-Im-  

XU" Ira. d E  

Substitutingequations (22) and (24) into(51), the finalexpression for v,(E) isgained 
in the form: 

Here the subscript ti means that the derivative with respect to the energy has to be 
calculated upon the quantities characterizing the rtth subsystem-i.e. phase function 
e&; E )  and amplitudeofreflection ra,"- (rm- and rn,"+ I (r,+ which arecontained 
in Gi" ) (x ,x ;  E). 

Equation (52) is important since for the calculation of the density of states in various 
parts of the layered system there is no necessity to calculate the CF; it is sufficient to 
know the energy spectrum. 

The density of states averaged by the thickness of the layered system is 

where a = X N  - x i  is the length of the systems. At A'+ 
be represented as [9,10,26] 

the density of states (53) may 

i a  
r,,(E) = -1m --In DN 

Ira aE 
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