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The transmission of light through a one-dimensional random layered 
system is considered. The localization length depends on light polar- 
ization and goes to infinity approaching the Brewster angle for 
p-polarized light. The theory is in agreement with the results of Monte- 
Carlo simulation by Sipe et al. The angle of rotation of the polarization 
and the ellipticity of the light in a magnetic field are calculated in terms 
of the density of states and transmission. 

AS IS KNOWN, electron states are localized in a 
one-dimensional disordered system. The average 
coefficient of transmission ( T )  at L -~ oo (L is the 
length of system) is in the main exponentially decreas- 
ing in such a system. The electromagnetic wave when 
propagating through a random medium undergoes 
similar behaviour as well. At this, the exponential 
decrease of the coefficient ( T )  signifies that light is 
practically completely reflected from such a structure. 
However, as shown [1], the reverse, i.e., light practi- 
cally completely passing through the one-dimensional 
structure, may be observed in specific case. The 
authors [1] have carried out Monte-Carlo simulation 
and have shown that for p-polarized light (electric 
vector E lies in the plane of  incidence) at certain angles 
of incidence the depth of light penetration increases 
several orders as compared with the depth of penetra- 
tion of the s-polarized wave (vector E is perpendicular 
to the plane of incidence). There, within the long-wave 
limit, the theoretical curve of the layered structure 
with dielectric constants e~ and e2, but with random 
thicknesses of layers, has been obtained for the depth 
of light penetration. Results of this approximation 
were only in qualitative agreement with Monte-Carlo 
simulation, though anomaly at the angle of incidence, 
equal to Brewster angle, was received. 

In this paper, we shall analytically calculate the 
depth of light penetration into the disordered one- 
dimensional system, making use of the formula similar 
to the expression for the coefficient of transmission T, 
calculated in the paper [2]. 
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Let us consider one-dimensional layered struc- 
ture, each layer of which is characterized by dielectric 
constant em and thickness am. An electromagnetic 
wave falls on such a system at the angle ~, on the left. 
This problem is equivalent to the one-dimensional one 
due to homogeneity in the boundary plane (y, z). As 
a result, tangential components of wave vectors for all 
the waves are the same [3]. The coefficient of transmis- 
sion T, precisely taking into account all multiplied 
reflections from all the boundaries, may be presented 
in the form 

TN = IDNI 2 (1) 

where 

D N = DON e 2i~''N ( 1 -  F 2 m _ l , m ) ~  . (la) 
m =  1 

Here N is the number of boundaries, r.,_ ~.m are Frenel 
coefficients at light-reflecting from the separation 
boundaries of the two semi-infinite media: the wave 
from the semi-infinite medium with index rn - 1, falls 
on medium m. ¢P~.x is the phase set up by the wave 
when propagating along the whole sample. 

N 1 O92 

(~I.N = Z kmam; k~, = e m -  - q2, (lb) 
m = 1 C2 

q is the two-dimensional wave vector in the plane (axis 
x is directed perpendicularly to the surface of the 
random system), am is the thickness of m layer. Matrix 
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elements ~o (DN).,t are determined as 

~ o  (DN)ml (~ml + (1 -- b,u)ru ~e'¢"; 

(D°),u = a,./ + (1 -- Om,)r t l.tei~'; 

B R E W S T E R  A N O M A L Y  A N D  T R A N S M I S S I O N  O F  L I G H T  

m > ~ l  

m < ~ l  

(2) 

- I + max(m,/) 

~Oml = (Dim = Z kiai" 
i=  rain(m j )  

The de te rminant  D~, satisfies the following recurrence 
relat ion 

DO N 

where 

A~ = 

A N = 

A N D ~  i - -  BND,°~ 2 

1; D ° = 1; D °~ = 0 

1 + ru I.,~ exp (2i(,0 N ] ,U),  N > 1 
rN 2,N I 

B u ( A  N l)(1 2 = - -  - -  rN I,N 2), 

and D ° ~¢N-2) is determined by equat ion  (2), in which 
the Nth [ ( N -  1)th] line and co lumn are absent.  
Expressions (1) and (2) are the general izat ion o f  the 
results obta ined  in Ref. [2] for layered structure. 

Let us calculate the length of  light localization in 
the model  considered in [1]. The  system is comprised  
of  a l ternat ing layer thicknesses are distr ibuted accord-  
ing to the law 

P(a)  = ao  I exp ( - a / a o ) .  

I f  Frenel coefficients for  s and p polar izat ion o f  light 

r~. = (cos ~ - -  N / n  2 - -  sin2a) (cos a + N/112 - sin2~) ' 

(3) 

rp = (112 COS ~ - x/112 - sin2~) 

x (n 2 cos ~ + x / n  2 - sin2~) -l  (4) 

are small, then de te rminant  DN may  be calcuated at 
a rb i t ra ry  distr ibution o f  the thickness o f  layers 

2 ~ .  r 2 rm l,rn s,p 

N 

D N I  = ei~l"v H ( 1  - -  r2m- l,rn. t~l/2 
m = l  

1 2 -~ exp (icP~,N -- ~r~,p) (5) 

cor respondingly  

T,.p = e Nr~,p (6) 

Let us note that  equat ions  (5) and (6) are likewise 
true for  the model ,  in which both  layer thicknesses and 
dielectric cons tants  e, fluctuate. In this case instead o f  
r 2 the following expression must  be involved s .p  

N 

( ~ . )  = N ' E r2,. ,,m. 
m = [  

P.s,__pp 
Clo 

t0 s 

10 4 
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Fig. 1. The  dependence o f  localization length vs the 
angle o f  light incidence at 2 = 5a0; n 2 = 2.42. Open 
circles are results o f  Monte -Car lo  simulat ion for p- 
polar ized light, and solid circles are for  s-polarized 
light according to Ref. [1]. Solid and dashed lines are 
calculated f rom equat ion (7). D a s h - d o t t e d  and dot ted 
curves are calculated f rom equat ion (9). 

Thus,  localization length in this limiting case is 

ao/lsp = 2 t r  2 . . . .  p. (7) 

F r o m  expressions (3), (4) and (7) it follows that  
localization length lp becomes infinite at Brewster angle 
tg ~B = n. The  compar i son  of  equat ion (7) with the 
results o f  numerical  exper iment  shows (see Fig. 1) that  
expression (7) describes well the experimental  results 
up to angles ~ < 65 ° at n 2 = 2.42. It is necessary to 
note that  one delocalized state appears  with zeroes in 
all reflection coefficients on each bounda ry  simul- 
taneously and it is not  connected with multipled reflec- 
tion. At  c~ > 65 °, reflection coefficients are not small 
and that  is why multipl ied t ransmiss ion of  light inside 
the layer is essential. In this case, all r,, ~.m may be 
subst i tuted for  a unit, when calculating the deter- 
minan t  D~. This results in 

DN = ½ n 5 cos  ~ H sin kr am sin k2a,,,+, 
m = l  

(8) 

where 

k, = -~ ~ cos ~, k2 - ~o ,Fee cos  ~o. 
C C 
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q~ is the angle of refraction 

COS q) = n- 1 4 n  2 _ sin 2 ~0. 

Localization length is determined by the expression 

ao/Is,p = - N - '  <In TN> = N-' <In[DNI2>, 

N o ~ .  

if the thickness of layers is distributed according 
to Poisson law, the averaging should be carried out 
under the additional condition that the total thickness 
of all layers is equal L = Nao, 

2a0 ~/n2-sin2c~ { ( 2 ~ 1 a 0 )  
ls,p -- In 4yet t2 cos ~ Re ff 1 + 

( ')} 
+ 0 I + 2k2ao 

~ , (9) 

where 0(x) is the di-gamma function, In 7 = C is the 
Euler number. At k;ao ~ 1 

a 0 27ta0 
ls,p - In 2 - ~  x/n2 - sin2~ (9a) 

and at kia o ~ 1 

2a0 "4/-n-Y- sin2~ (9b) 
l,--~p = In 4n----~c---os- ~ . 

The equation (9b) is not applied near the Brewster 
angle. 

The comparison of equation (9) at large angles of 
incidence with the results of Monte-Carlo simulation 
is shown in Fig. 1. It is seen that the expression for the 
length of light localization (9) describes well experi- 
mental results at c~ > 70 °. 

If one-dimensional random layered structure is 
placed in the external magnetic field Ho(H0 II x), then 
each layer of such structure by dielectric tensor [3] 

e~)(Ho) = ~7)( - H0) 

e(") ig: H o / 

- -  ig  (") Ho ~(") ] . (I O) 

Condition "~") ~) signifies the absence of absorp- Gik -~- 

tion in the medium, g~") is the Faraday constant. 
Let the linearly polarized planar wave normally 

fall on such a disordered structure. The direction of 
light propagation coincides with the magnetic field, 
i,e., with the axis x, and the direction of vector E ~°) in 
the incidence wave coincides with the axis z. Com- 
ponents E~ and Ey,/4. and H~. are not equal to zero, 
these values depending only upon the coordinate x. 

For circular polarization 

E+ = E:, +_ iE,.. 
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Maxwell equations have the form 

632E~) 092 ~)  E ~"~ -- 0 (11) 
O f f  + ~ -  - -+ 

where d~ ) = d ") +_ g(") Ho. 
Using equation (1) we obtain for the transmitted 

waves E+ and E" 

E'+ = E(°)D;'(+_). 

Here D~ -+~ is the determinant of equation (la), where 
a corresponding substitution d "~ -o d "~ + g¢")Ho 
is made in all Frenel coefficients 0,.,., and phase 
multipliers. 

After transmission 

E: _ 1 E~_ - E'_ 1 DN(--) - Du(+)  
tg 0 = E, ~ i E'+ + EL - 7 ON(-- ) + O:v(+)" 

Solving this equation, we shall obtain 

L - '  DN(--) L - '  IDN(--)I 
L- tO  = - -  In - -  - In 

2i DN( + ) 2i IDN(+)I 

L '  
+ ~ (q/N(-) - ~N(+)) 

or, us ing  e q u a t i o n  (1) 

I 

L _ l O  L In T ( + )  L -~ 
- 4 i  T---~-) + --2 - -  

( ~ N ( - )  - qJN(+))-  

(12) 

Here T( +)[T( - ) ]  are transmission coefficients of the 
left (right) circle polarized waves, correspondingly. 

As is seen from equation (12), if T(+)  = T ( - ) ,  
then 0 would be real; this signifies that the wave 
remains linearly polarized with vector E rotated 
through the angle 0 to the initial direction. If T(+)  :~ 
T ( -  ), the light has an elliptical polarization. The ratio 
of ellipse semi-axes is determined by relation (b < a) 

- = T ' / 2 ( + )  - -  T l / 2 ( - - ) -  (13) 
ab Lth Im 0[ = Tl---i~(+ ~ ~ T1/2(_ ) , 

and angle Z between the large axis of the ellipse and 
the axis 0y, is 

= x ) (14) Z Re 0 = ~[~O(- - qJ(+)]. 

As Thouless has shown [4], a dispersion relation 
exists between the length of localization and the den- 
sity of states. Earlier, it was shown in [5] that this 
relation may be presented in the form of linear disper- 
sion relation between In IDNI and the imaginary part 
Im In DN = ~. That is why self-averaging of angle 0 
(12), i.e., the degree of wave ellipticity and angle of 
rotation, follows immediately from the self-averaging 
of localization length and density of states. Employing 
the connection of density states with Im In DN [5], 
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angle 0 may be presented in the form 

~ (0)  - 1 ~ / l n T ( + )  / 
&o 4i &o ~ + ½[v+(¢o) - v (co)], 

where v+ (co) are densities of states for the left and 
right polarized waves. Thus, measurement of the angle 
of rotation from the frequency gives information on 
the density of states in random media. 

If r 4 1, we have 

L 10 - H ~  2 ( g iL l  g2L2~ Hn 
4C 2 \ klL + k2L J + ao(n + 1) 2 

n -  1 

where LL and L2 are total thicknesses of layers with 
dielectric constants e~ and E2 correspondingly. It is 
seen from equation (15) that effects of multiplied 
reflections inside the layers are not essential in this 
approximation. 

It was shown in Ref. [5] that lnDN is the analytical 
function of frequency in the upper semi-plane, that is 
why a dispersion relation may be written for it. Hence, 
dispersion relation maybe likewise written for 0(co). 
Employing the dispersion relation and equation (9) 
for l 1(~ = 0), we shall receive for 0(~o) 

a°o(o3) = i (g~2 g ' ) H  + g, cH 

( ic ) g2cH 
x ~' 1 + 2co~e7 + 8aoOOe~ '2 

( ;c ) 
X ~" 1 + 2¢oaoe~/2 . 

If k~ao >> 1, then 

L - ' O =  4a---~oiH (g~2 gl)+el ~Tr2cH (g~/z 
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(,16) 

+ 

(17) 

Thus, from the comparison of equations (! 5) and 
(17), it follows that the effective light path in which 
polarization plane rotates through a given angle 
decreases for (koao) 2 times as compared to single 
transmission. 
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