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Transparency of a one-dimensional system with an arbitrary degree
of disorder subjected to an electric field |

V. M. Gasparyan and |. Kh. Zharekeshev

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted August 8, 1989)
Fiz. Tverd. Tela (Leningrad) 32, 456-464 (February 1990)

The effect of an applied electric field on the propagation of an electron in a chain of random scatterers with
delta-function potentials is studied. Numerical modeling is used to obtain the dependences of the logarithm of v
the transmission coefficient (averaged over an ensemble) on the length of a chain, degree of disorder, electron
energy, and electric field intensity. The deviations of such dependences from the analytic expressions obtained
in the short-wavelength limit are discussed. The results of calculations for “vertical” and “horizontal” types
of disorder in the distribution of scatterers are compared. The distribution of the transmission coefficient of a
one-dimensional system subjected to an electric field is investigated.

1. The propagation of an electron in a one-
dimensional electron system has been studied both
analytically *~5 and numerically. $~° An interest
in this problem was stimulated, in particular, by the
fact that the behavior of the transmission coefficient
may be used to investigate changes in one-electron
states due to changing parameters of the system
and due to external fields. It is assumed in the
. calculations of the transmission coefficient of a
finite chain that a segment with a random static
Potential is connected to two semiinfinite "perfectly"
conducting contacts in which electrons move freely.
The proportion of electrons which transmitted
from one contact to the other across the "imperfect"
region determines the transparency of the system.

In view of the localization of electron states-
in a one-diménsional system, >2 in the absence
of an electric field the transmission coefficient
decreases exponentially with increasing chain length
L. For an ensemble of disordered chains, the
transmission coefficient T fluctuates from sample
to sample. The distribution function of the values
of T is logarithmically normal®;* about its geometric
mean

Fmelln Dy oI, ¢H)
where £ is half the localization length of the wave
function of a one-electron state. In what follows,
the averaging over an ensemble of chains (denoted
by the angular brackets) will always refer to In T.

In an applied electric field, the variation
of the transparency with the length of the system
depends on the form of the random potential. For
a low concentration n of scatterers, we can assume
that the electron is scattered at each center inde-
pendently of the other centers. In this case, the
effect of the electric field on the transparency
is completely determined by the dependence of
the elastic scattering cross section of a center R;=
— T, on the electron energy E, which is a func-
tion of the position of the center x. In the short-
wavelength approximation k¢ > 1 [where k is
the electron momentum and & = (nR,;)" ! is the mean.
free path], it was shown in Ref. 4 that
. A
nT)=n\dzln [T z)]s
] )
Prigodin® considered a chain of centers with
delta-function potentials in a homogeneous electric
field of intensity F and obtained the following
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éxpression in the approximation of a white-noise
potential:

£ In(14+ FL/E) _ (FL 3
—f<lnT>="”“pL/T‘=‘I’(E ) @
’

where the electronic charge is unity. It is well
known that the transmission coefficient for a poten-
tial V(x) = V,8(x) has the form T, = (1 + V2 /4E)™,
We can obtain Eq. (3) from Eq. (2) assuming that
the scattering is weak, which is equivalent (for
delta-function centers) to the condition of validity
of the Born approximation R, » V2/4E « 1. It

is an important property of a chain of delta-function %
scatterers that the transmission probability depends
on L for arbitrarily long chains, in contrast to:
potentials for which R, tends to zero faster than
E™! (see Refs. 4 and 7).

It is of interest to calculate the transmission
coefficient without the assumption of weak scatter-
ing and also outside the limits of the short-wave-
length approximation, which can be accomplished
on a computer. The value of T is usually computed
using the transfer matrix method. ¢~° In this
case, there are two ways of modeling a chain: -
in the form of delta-function potentials with differ-
ent amplitudes distributed periodically (vertical
disorder)®~® or by identical delta-function centers
distributed randomly over the chain (horizontal
disorder).® The dependence of <In T > on the *
electric field was studied in Refs. 6 and 7. It ‘
was found that in the case of weak scattering
Ehe n(u;;ieling results are in good agreement with

q. .

We shall report the results of numerical calcu-
lations of the transmission of an electron by a 5
one-dimensional disordered system of delta-function
potentials. In Sec. 2, we shall explain the computa-
tional method developed in Refs. 10 and 11. The
computed results for an arbitrary degree of disorder:
obtained for both zero and nonzero electric fields,
are discussed in Sec. 3. In this section, we shall
also consider the distribution function of T over
various realizations of the random potential in ®
an applied electric field.

2. We shall consider a model in which delta
function potentials of arbitrary amplitudes Vj’ are
located at arbitrary points xj of a chain:

N
Viz) = 21 Vid(@z—g;), &;> 2.
=

4 |
2
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FIG. 1. Dependence of the re-
ciprocal localization radius
a/E = <ln T>/N on W2/48E for
a problem with a vertical dis-
order and for electron energies
E=5 (1), 7.13 (2), and 8.21
(3). The solid line represents
the weak-scattering asymptote
[Eq. (13)] and the broken curve
corresponds to the strong-local-
ization limit [Eq. (15)].
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We shall assume that there is also a regular poten-
tial U(x) such as an applied electric field, a periodic
potential, etc. The retarded Green function G(x,
x') of an electron traveling in the total potential

. satisfies the Schrodinger equation

[—d¥da? + U (2) 4 V (2) — B} 6 (2, 2')=—B (z — o'},

where k = VE +ic (¢ > 0); h=2m, = 1; and m,

is the free-electron mass. It was shown in Ref.

11 that the electron Green function satisfying

Eq. (5) is related to the bare Green function Gy(x,
x') in an external field U(x) by

C))

G(z, z') =Gy (z, x')—rlfﬂ-&f%%%ﬂ, x; x' < ay, (6)
where G, (ﬁc, x") satisfies the eguation
[—d?/da? + U (z) — k2] Gy (x, x') =—8(z — ). ¢

and r, is the reflection coefficient for the ampli-

tude. The transmission coefficient of a chain
of potentials (4) is then given by 1°,11
T—1—|rt=|Dy|?, ®)
where Dy is the determinant of the matrix
Dyy=38;0+ V;Go (20 z;) z;"r (9)
" Here, zi4 is the phase an electron acquires during

its motion in the field U(x) between the scatterers
jand q:
] = Zgj

max (f, g)
dz
z_,-q=exp[—g _——Gn(m, )
min (4, )

For U(x) = 0, the function G, = i/2k is the
Green function of a free electron and we have
Zjq = exp(2ik|x3;—-xq .

The determinant Dy of the matrix (9) satisfies
the recurrence equations

(10)

Dy=AyDy , —ByDy_,, (11)
where
By V 5Go (zy, zy) (12a)
ALV Go(zyog, Zae)
Ay=1+4 By +VyGo(zy, o) (1 — 2y, 54), N> 1, (12b)
Ay =14 ViGo(zy, ) Dy=1, D_y=0, (12¢)
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and DN-i(N-2) is the determinant with the N-th

[and (N — 1)-th] column and row removed. Making .
use of the recurrence relationships (11) and (12),
we can obtain from Eq. (9) the dependence of

<In T > on the chain length and on the energy

of an incident electron for an arbitrary degree

of vertical and horizontal disorder of a chain of
delta-function potentials. In an applied field,

G, (x, x) in Egs. (9) and (10) represents the
Green function of an electron moving in an electric
field.

In our view, it is better to calculate the .
transmission coefficient from Eqs. (8)-(12) rather .
than by the method used in Refs. 6-9. We shall
first consider the effect of a horizontal disorder
on the behavior of <In T > for both F = 0 and

10K
\

4
FLIE
FIG. 2. Dependence of —(£ /L) <1n T > on the electric field
parameter FL/E for an energy E = 5 and a range of values of the
vertical disorder W: 1) &4; 2) 7; 3) 1l4; 4) 50; 5) 80; 6) 100.
The broken curve is the field dependence in the weak-scattering
limit [Eq. (3)].
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FIG. 3. Dependence of the scattering parameter k on its value
in the short-wavelength approximation k& * [Eq. (16)] for a prob-
lem with'a horizontal disorder and for a range of values of the
concentration of delta-function centers n/k: 1) '0.01; 2) 0.45;
3) 1; 4) 2; 5) 4. The inset shows: the dependence of the recipro-
cal localization radius (En)~! on the disorder parameter V2/4k2.
The solid curve is the short-wavelength limit described by Eq.
(16). .

in an applied field [in a homogeneous field, k
in Egs. (9) and (10) should be replaced by VE + Fxjl.
Calculations can then be carried out for an arbitrary
magnitude and position dependence of the applied
field, provided the electron Green function in
such a field is known. Moreover, this method

~ of calculating T can be generalized, for example,
to scattering potentials in the form of rectangular

_ barriers. fe -

3. We first computed the transmission coefficient
for a chain with a vertical disorder where the
amplitudes of the delta-function potentials Vi were
distributed uniformly in an interval [-W/2, JJI 2].
The transparency of such chain in the ensemble
was calculated using the recurrence equations
(11) and (12) for a range of energies E of an
incident electrons and different degrees of disorder
W. The length of a chain with a period a was as
much as N = L/a = 20,000 sites. Averaging was car-
ried out over ~3000 realizations of the random
potential. It can be seen from Eq. (1) that we
‘can use the result that <In T > is proportional to
the chain length L to determine the localization
length £. In the weak scattering limit R, » 1, the
localization length is given by ¢’

SHEINIAE == W81, (13)

provided the ener““g"?'f does not correspond to the
resonance points ka = mm (the scattering amplitude
Is in this case imaginary iV,/2k and, therefore,
there are no singularities at the center of the zone
ka = m7/2; see Ref. 12). In the other limiting
case of strong scattering £ « a, it was found in
in Ref. 10 that

V2 sin? k¢>
— .

a
= In

(14)

For uniformly distributed amplitudes Vj, we can

easily evaluate the average logarithm and, therefore,
the localization radius using Eq. (14):

a W2 sin? ka
-E— ==In [T — 2.

(15)
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" placed at the origin x,

Figure 1 shows the dependence of the recipro-
cal localization radius a/g = <In T >/N on W2/48E
for momenta in the first Brillouin zone ka < .

It can be seen that in the two scattering limits the
calculated values of a/t agree well with the asymptot-
ic equations (13) and (14). We note that the
short-wavelength approximation k¢ =kaR™! ~R™! »
energies in the first zone is violated when the
scattering ceases to be weak. Moreover, as the
energy approaches the edge of the zone, the dis-
order required for the validity of the strong-scat-

tering approximation becomes greater. »

In an applied electric field F > 0, the ensemble
average <In T > increases with increasing L more
slowly than for F = 0, which corresponds to the
transition from an exponential localization to a
localization "power law" described by Eq. (3).

Since the static field enters the expression for

the transmission coefficient T only in the combina-
tion Fx:-b/ E, we selected a fixed value of the field

F =2-1

For convenience, we used the atomic units, i.e.,
the lengths were measured in units of the Bohr
radius ag = 5.29:10"*' m, the energy in rydbergs
Ry = 13.6 eV, and the electric field strength in

units of Ry/eag = 2.57- 10° V-cm™?!.

Figure 2 shows the dependences of the ratio
(¢/L) <In T > on the parameter FL/E for a given
energy E = 5 and for different magnitudes of the
scatter of the amplitudes W. It can be seen -that,
in the short-wavelength region W < 4 (£/a > 15,

k £ > 33.5), the transmission coefficient <in T > ..
is practically identical with that described by Eq. .
(3). A similar result was obtained in Ref. 6 where
the potential applied to a chain was not linear ‘
Fx, but a "step-like" function in the form of a
suin. of 8 funections .

»

N
U@)=F 8 (z—ja).
v j=1

‘When the degree of disorder is increased
W =17, k& ~ 10, the dependence gradually deviates
from that described by Eq. (3) as the short-wave-
length limit ceases to be applicable. The deviation
reaches its maximum in the vicinity of FL/E ~ 1
which is, clearly, due to the periodicity in the
impurity distribution. However, for large FL/E3 5,
‘the asymptotic behavior described by Eq. (3) is
again satisfied. because an electron acquires high -
enough energies over large distances so that
ke > 1. In the case of strong scattering W - 50
(k¢ < 0.2) when ¢ < a, the behavior of <In T > ber
comes nonmonotonic and very different from that
in the short-wavelength limit [Eq. 3)1.

To reveal the causes of the nonmonotonic
dependence of the transmission coefficient on the S
field for a vertical disorder, we also carried out "~
calculations for a chain with a horizontal disorder
of the delta-function potentials. In this case, the"
amplitudes of all the delta-function potentials are
constant equal to V, = 0. Moreover, the number of |
scatterers N and their concentration n are fixed. [

The distribution of the centers in a chain
is determined as follows. The first impurity is
: = 0. The position of the
next impurity x, > x, is chosen in accordance
with the Poisson distribution P « exp[-n(x,~x:)],
ete. This procedure is carried out N — 1 times.
The length of a system in the ensemble of such

V. M. Gasparyan and I. Kh, Zharekeshev

L) AnT>

=
o
T

h .

=3 and varied only the length of the system. . ‘

wk
\

=

-(g/K

-(%

L

FIG. 4.
with a ho
energy E
busy 4) 8
dependenc
of (=£ /&
a single

chains i
to <L> .

- It
and (12

~order i

are the
wavelen
section
It was :
limit th
is giver

1fin=

It is ob
short-w




«cipro- scattering: kg ~ kl(nR_l) »> 1 (see Ref. 9.).
18E 20 For n 3»1{, the expression (16) holds provided the
. scattering is weak. For mcreasmg disorder, the
s the { calculated value of (kg)™! is greater than the
mptot- ¥ value (kg )‘ obtained from Eq. (16) (see Fig.
3 3). Equations (11) and £12) can be used to obtain
S | an asymptotic expression for the reciprocal locahza-
N tion radius when V > k which is mdependent
‘he of the energy (En)~! « 1In(V2/n2).
dis- In an applied static electric field and at low
scat- 2 concentrations the transmission coefficient can
» B be evaluated by integrating Eq. (2) after the
asemble A substitution T, = [1 + V%/4 (E + Fx)]~*. Figure
nore . {”‘5 4 shows the dependences of (§ /<L>) <In T > on
he w F <L >/E for a horizontal disorder with a concen-
: i tration of the delta-function centers n = 1.0 and
. an incident electron energy E = 5-f6rza.ra
r 2 . of values of the disorder parameter V,/4kZissit,
bina- & : can be seen that the deviation from the weak- scatter-
ield : B ing limit described by Eq. (3) increases with in-
system. creasing disorder. Since the spectrum contains
e., v no singular points, the tramnsmission coefficient
ar P v—v";—vv‘ is monotonic, in contrast to a chain with a vertical
t{ergs ’ v 5 Ln,(v Yurt disorder (Fig. 2).
m - - - 8‘ It is of interest to consider the distribution
» 0 FeL /E o function of the transmission coefficient of a one-dimen-
atio o sional system .of delta-function potentials. 3 It
ren FIG. 4. Dependence of (£ /<L.>) < In T> on F<L>/E for a chain is well known that the variance o? of the logarithm
the with a horizontal disorder, a concentration n/k = 0,45, and an of the transmission coefficient under weak-scatter-
that, energy E = 5 for a range of amplitudes Vo: 1) 0.2; 2) 1.25 3) ing conditions is twice the value of its mean?3,®
15, 4.4y 4) 8; 5) 133 6) 20; 7) 80. The broken curves represent the o?=((In T — {In 7% = —2(In Ty = 2Lf§, an
r»> dependence described by Eq. (3). The inset shows the dependence : ’
Eq. L of {—E /2(8)) (<1ln T>/<L>) on.the disorder parameter V3/4k2 for but the ratio in the region of strong scattering
where a single point FL/E = 8. decreases with increasing disorder. In fact, it
» can be seen from Egs. (11) and (12) that in the
a : £ <« a case the variance for a problem with vertical
disorder of the amplitudes of delta-function poten-
chalns 1s If,‘}’rt,.f‘xed and its average value is equal O B S e within & finite Mntorrel
of width W is equal to o2 = 4N for F = 0 and,
It follows from the recurrence equations (11) therefore, .
and (12) that the parameters of a horizontal dis- 2T W | sin k| ‘
.l order in the absence of an external field U(x) =0 _ —<—;“,—=1n (7 l—,;———)— 1. (18)
viates [ ore the average number of impurities per electron
N— wavelength n/k and the Born scattering cross
iation section of a single delta-func.tion center V2 /4k2, Figure 5 shows the dependences of 2<In T>/qo?
vl It was shown in ?.ef . 4 .that in the short-wavelength  on the variance in the absence of an external
e !llmt. the localization radius £ for such a chain field (1) and for F = 2:10-3 (2). The transition
JE > 5, is given by from tl(l;eag.sympgotici belhavior (f]:7) Fto tl(;e d;ﬁen— ,
i _ N AR = /s dence can be clearly seen for F = 0. e ap-
igh by Yim=— /N = In (1 + V/iI2) == /i%n. (16) plication of an electric field for strong scattering
It is obvious that at low concentrations n « k the £ < a leads to a deviation of ¢ from the dependence
5. 50 short-wavelength approximation is valid for arbitrary  (18).
[' > ber ‘
hat W (2ian/c?)
: r +
the > 0:;' - + ///
ut ' sk - 77 4
rder 0 WM ’ o2 o .
the -0.3L ’ o :
are I 1 : i . 7 FIG. 5. Dependence of the ratio
ber of Y FL;E g + // ° of the mean to the variance
ed. 0.3 0.4k + o ° 2 <ln T/02 on the parameter
s A AW A . ° W2/48E. The solid curve corre-
1 _ f R I {;_ sponds to Eq. (17) and the broken
S a3t : S curve to Eq. (18).
the + ; o
e —_— o—o. -} 510
1)]: 1 L i L 1 L Il 1 1
3s. -4 0 4
‘h , wn (wé/48e)
3
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We verified that the distribution of the logarithms mission coefficient and the lifetime of a wave packet

of the transmission probability T is Gaussiar_l by
checking that the odd central moments, beginning
from the third, vanish and that the equality

MP=<(mT__<lnT>)P>=1-3\-...-(p—i‘}ﬁp (19)
is satisfied for the even p-th moments, where p =
2-10. The field dependences of the quantities
characterizing the distribution function, i.e.,

- of the asymmetry f and excess g

=M, g=Myfet—3 (20)
are shown in the inset in Fig. 5 for a chain with

a vertical disorder, W2 = 12 and F = 2-10-3. For
arbitrary scattering strengths, the computed values
of the asymmetry f and excess g are mainly concen-
trated around zero, which indicates that the logarith-
mically normal distribution law of T about its typical
value T [Eq. (1)] is conserved even in an electric
field. For comparison, we should mention that

the excess of a uniform distribution is equal to

-1, 2.

4. It follows that there are essentially two
regimes for one-dimensional disordered systems
of delta-function potentials, i.e., the weak-scatter-
ing limit £ > a when the Born approximation is
applicable and the strong-scattering limit £ « a;
the intermediate case can be investigated only
numerically. In an applied electric field, the trans-
parency of a system with strong scattering and
high concentration of centers has a different field
dependence than that obtained in the short-wave-
length approximation. The quantity In T has
a Gaussian distribution near its average value
both in the absence of a field and in an applied field.
We note that the same distribution law applies
also to the relaxation times of the electron density
in a one-dimensional insulator, * which is also
related to a normal distribution of the reciprocal
localizations radii (a/g )(E/FL) In (1 + FL/E). There
is clearly a direct relationship between the trans-

in a one-dimensional disordered sample of finite
length. ‘

The authors are grateful to B. L. Al'tshuler,
A. G. Aronov, V. N. Prigodin, and D. G. Polyakoy
for numerous valuable comments.
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Characteristics of point-contact spectra of heterojunctions

between simpie metals
* Yu. G. Naidyuk

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR, Kharkov

(Submitted August 10, 1989)
s " hw::\ (Leningrad) 32, 465-469 (February 1990)

o, =
e T

An experimental investigation was made of point-contact spectra of K-Na, K-Li, and Au-Al

heterojunctions. The spectra of alkali metals were in reasonable qualitative agreement with the available
theoretical calculations allowing for the refraction and reflection of electrons at the interface between two
metals. In the case of Au-Al heterojunctions there were two spectra attributed to the characteristics of the

passage of electrons across clean and dirty contacts.

Point-contact spectroscopy has become an
effective method for the investigation of the elec-
tron—phonon interaction (EPI) in metals.® This
method is based on a- study of small deviations
from Ohm's law describing the conductance of
point contacts formed, for example, when a sharp
point is in contact with a flat surface of the same
material. A theoretical analysis2? of the conductance

268 Sov. Phys. Solid State 36(2), Feb. 1990
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of contacts of size less than the mean free path

of electrons has shown that the second derivative
d2V/dI2 of the current-voltage characteristic is
proportional to the EPI function G(e). This func-
tion can be represented by a product of the density
of the phonon states F(e) and another function
a2(e) which depends less strongly on energy and
allows for the "force" of the interaction of electrons
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