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* )For more accurate estimates, it is necessary to take into
account the change in r, due to the anharmonic interaction of the
lattice with the niobium dipoles. When T <« T, r. can be
found approximately from the permittivity € in potassium tanta-
loniobate. 9
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Transmission coefficient of an electron traveling across a one-

dimensional random potential
V. M. Gasparyan

State University, Erevan
(Submitted September 19, 1988)
Fiz. Tverd. Tela (Leningrad) 31, 162171 (February 1989)

A method of calculating the density of states and resistance of finite one-dimensional chains without
determining the eigenfunctions is developed for arbitrary potentials.

INTRODUCTION

We shall derive a formula for the resistance
and density of states of one-dimensional chains of
random delta-function potentials (Secs. 1 and 2)
which can be used in numerical calculations as well
as in the investigation of electron localization in the
one-dimensional case in an applied field. This
expression for the resistance is valid for chains of
arbitrary lengths and with an arbitrary type of dis-
order. The knowledge of the exact electron wave
functions in this potential is not required.

The results summarized in the Introduction are
contained in Ref. 1. .

We consider a potential in the form
Y
V(=‘=)==Z1 Vid(z—m), <, (1)

where V; and x4 are arbitrary. The electron
Green function in such g system G(x, x') is related
to the Green function of free electrons G, (%, x") by

G (=, 2') =G, (2, x’)—RI(MQ—M ‘

Golen z) — + ma'<m, (2)
1
Cole. o) =z exp(th|a~ar|), ke VETT

(h =1 and m, = 1/2 is the electron mass). We
shall show that the coefficient of reflection from
such a chain can be written in the form

R=|Rf=1— D, (3)
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where

4

iV
Dy =det |8,; + ;b exp (1k | z; — 2, ) | ,

and the transmission coefficient for such a chain
thus has the form

T=!—-H=|DA\."3.

According to Landauer,? the resistance of such
a chain is given by

Py =RIT=|Dy[*—1. (5)

The density of states for N + « can also be
expressed in terms of Dy:
Ty

= . aJ I
A= (’N I Ty — z I) 1 S dzim G (=, =x) s v — (nlz_\, — II)-IEE—]“ )A'v

i (®)
Where vy = 1/91k is the density of states of free

electrons,

) A similar expression for the density of states
In a one~dimensional chain consisting of delta-func-
tion potentials with equal amplitudes (i.e., Vy = V)
was obtained in Ref. 3. The Green function G(x,
x') (and, therefore, also Dy) is an analytic func-

tion of the energy E = k2. Using Eqs. (5) and (6),
We can derive a dispersion relationship similar to

that obtained by Thouless * ‘

a9 —
["‘v~m1,"1§E~,ln(pN(E)+i)m2§dE’Z;,_Eo , (1)
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which links the resistance of a given one-dimensional
chain to the density of states.

The dispersion relationship (7) is valid not
only for exponentially increasing pN(E) (as N » «)*,
but also for finite values of pyN(E) [see Eq. (14)].

The determinant Dy of a random chain consist-
ing of delta-function potentials satifies the following
recurrence relation:

Dy=AyDy,~ByDy_,,
(8)
where

Vy 1V
Ay=1hy—exp (Qhay) + g [L—exp Rlhag )], V> (Sa)

Adi=12 _i.I./l B V”
r=1 4=, NP, oxP (2ikayy), (8b)

and Dy-, (N-,) is a determinant in the form (4),
where the N-th' (and also (N — 1)-th) row and column
have been omitted

Gy =} By — By s

In the Kronig-—Penney model when Vp = V
and the potentials are distributed periodically with
a period a, the electron spectrum is given by

cos fla = Re [e~%4% (1 - iV/2k)], (10)
where B plays the role of quasimomentum. The
condition |cos pa| < 1 determines states in an allowed
band.

In the generalized Kronig—Penney model when
a unit cell contains not a single delta~-function
potential but m such potentials with arbitrary ampli-
tudes Vy, localized at arbitrary points xy, the trans-
mission coefficient for a single unit cell has the
following form in our notation:

tm=e"*Dgl, T =|t,|%

(11)
where d is the period of the structure. A relation-
ship between the transmission coefficient t, and

the electron spectrum was obtained in Ref. §.

Fsing Eq. (11), we can write the spectrum in the
orm

Re (6=#¥D, ) = cos id.
(12)
For n = 1, Eq. (12) reduces to Eq. (10).
After substitution of Eq. (4) in Eq. (12) for n = 2
we obtain the result given in Ref. 6.
Considering a finite Kronig—Penney chain con-

sisting of N identical potentials V, we obtain from
Eq. (4)

sn e

14
Dy = g tiWha I:cos NBa 41 (7,; cos ka — sin ka) <in pa

(13)

As expected, it follows from Eqs. (6) and (13)
that

3

oE ‘rmp-»-;-u

1
=
i

as N - o,

Substituting Eq. (13) in Eq. (5), we find that
the resistance of such a chain has the form
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. (__IL)'2 sin® palV sin? BaV
br=\3%) “Sintpa ~ P Tsintfc (14)

This expression describes the resistance of
the interface between a periodic structure and a
perfect conductor (p, is the "resistance” of a single
unit cell).

It can be seen from Eg. (14) that the resistance
of the chain does not increase with increasing N and,
therefore, the resistivity (per unit cell) for states
in the allowed band when |cos Ba| < 1 tends to
zero as N » «, For states in the band gap when
cos (iBa) = cosh pa > 1, the resistance increases
exponentially with increasing N.

We shall now consider the case when the delta-
function potentials are distributed periodically with
a period a, but have different amplitudes V . If
ka = mn (n is an integer), i.e., in the resonance
case, we find from Eqg. (4) that

A : N 2 _
v, v, e
Dy=14i 25 P\=(2ﬁ) =Nz (15)

==l 1=}

N
where V=N ,2. V. is the average value of the

potential in the sample. It can be seen from Eq.
(15) that for <V > = 0 the quantity py increases
proportionally to the square of the sample length.
The meaning of Eq. (15) for py is quite obvious.
It shows that the exact resonance condition ka = mn
is equivalent to the situation when all the potentials
Vy, are located at the same point.

Equation (15) yields the following expression
for the resistance averaged over an ensemble of
samples:

N\2 Ve L epe
FA‘=<2_/L-> <V2>+N<' >4k2< 2

(<...> denotes averaging over the ensemble). For
<V> =0, we have py « N, so that the mean free
path is proportional to K2/<V 2>,

The recurrence relationship (8) can be used
conveniently in numerieal solution of the problem of
a one-dimensional chain with arbitrary potential.

We obtain an asymptotic expression for ppy for large
values of the random potential. Let us assume that
A, = iV, /2k and Ay, = Vak lsinkee'*s, - The recur-
rence relation can then be easily solved since

DN-2 « DN o

Dy = BRLLEL el (B k)Y T (710, (1n

2 sin ka lea

Using Eq. (17), we obtain an expression for
the resistance of a chain similar to the result of
Ref. 7

1 (sin i ka)-\‘ il 1

v =t TR

where the localization length is given by

5

¥

., Sinka , Q V3

E71 (B) = In (V)% - - N7 Z In ZT/JSE .
=t

. This formula is valid even in the limit ka - 0,
where
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RY
-
£ (0) = V1 2 n 778 »
1=

and <V > is the average value of the potential.

We shall consider the properties of a one-
dimensional chain in Lloyd's model, ®* when the dis-
tribution function of potentials is the Cauchy dis-
tribution

P
PV == 7 —vye -

According to Ref. 8, we have in this model
(G (2, 2)) =G (3, )| yoovgiysignImEs

and, therefore, [see Eq. (8)}

bl B
Loy +1)>=-—2 [\a< S dz S dE' G (2, ='; El)> =1In| Dy,
N ]

where Dy is the determinant for the Kronig—Penney
model where all the potentials are replaced by V —
iy. It follows from Eq. (13) that Dy for periodi-
cally distributed potentials is given by

req
D, = exp ({Nka) {cos Nfa--1 [ ! o 1 cos ka — sin Im] S::]NB?:Z} ) (18)

where B is described by

YV — I
cos fa = cos ka — 5% ‘ sin ka.

It follows from Egs. (18) and (5) that the re-
sistance of a chain consisting of N delta-function
potentials has the form (L = aN)

sh? yL + sin2@L 1)

‘sh? ya - sin?fa ] (19)

Infpy +1)p==In (‘

where y = Im 8,p is given by Eg. (10), and

v
s

Fos
Considering the limit L -+ », we can conclude

from Eq. (19) that the average geometric resistance

increases exponentially with increasing sample length

L and the localization radius for an arbitrary ka

is given by®

o ) _ 2 2 2 — —
£l == LI_I)n:QL l<|n(pN+1)>= Tlmﬁz—a—yz-;m (\/t-i—l—-l—\/t ),

2 o 24
2t=(—§%> sin? ke — sin® fa -+ {I_(ZIA) sin® ka — \mSEa:| -]—( “IA"> }/’ .

It can be seen that the localization radius
remains finite when ka +» 0. On the other hand, if
ka-+ m (n=1, 2, 3...), then £ tends to infinity.
This is a direct consequence of the model considered,
i.e., periodically distributed scatterers forming a
simple lattice. In a slightly more general model
when a unit cell contains two delta-function poten-
tials®? or if the original potential is supplemented
by a periodic field,'? the singularities in the density
of states and the unbounded increase in £ disappear.

1. DERIVATION OF THE PRINCIPAL EXPRESSIONS

We shall now derive a relationship between the
reflection coefficient of a linear chain consisting of

268 Sov. Phys. Solid State 31(2), February 1989

random delta~-function potentials and the determinant
Dy.

We shall consider a sequence of delta-function
potentials with arbitrary amplitudes Vy located at
arbitrary points xy [Eq. (1)]. If the system is
subjected, in addition to V(x), also to a regular
potential U(x) (an applied electric field, periodic
potential, etc.), then the electron Green function
should satisfy the Schrodinger equation

N
7%
[—G-,T: + U (2)+ EV,B (m—z,)-kzl(:‘(z. o By=d(z—a'), (20)

=l

Equation (20) can be written in the Dyson form

G (s, o)+ | dGylz, ) ¥ (o) G (7, ) =Gy (m &), (21)
where G,(x, x') is the Green function of an electron
in the potential U(x).

We shall derive an explicit expression for
G(x, x') as follows. We isolate in the potential V(x)
the term corresponding to the point on the right-
hand edge xy:

2%
V(a:):VNB(::—-:rN)+IZ=] Vi (z — ). (22)
Substituting Eq. (22) in Eq. (21), we obtain

N—1

6 (z, &)+ S dz"G (=, ") 121 Vid (2" — ) G (3", o) =Gy (s, =) (23a)

where

G, (z. a:‘)G (z\, m)

=G L AECY A e
Gp(z, al) =Gy (m, a') —Vy T+ VG, (B 7y) —

c 6 (23b)
Gy (2, z')-r;"")(x—‘T:IZ)‘—-(—z::l)—’z—), —m ez, g o,
r=TGo (@50 a) (L VG (), )], (23¢)

and ry is the complex amplitude of the reflection
of an electron from the potential Vi in the absence
of the remaining (N = 1) potentials on the left. Sep-
arating now the next (N — 1)-th potential from the
second term in the expression (22) and repeating
this procedure, we obtain

2

N=2

6 (2, =)+ S dz'Gy_, (2, ") 3V (@ — o) G (o, o) =Gy (o #').
i==)

Here,
G @, x Gy(zy 4 &
Gxi (o ) =Gy (3, o) — iy, 2 N”(i‘) fa(ch”l)‘ LR
TSI, 2 g Ty,
where
Ry = ViLiGu (Bxa o) _ Twa (b= rwaya ) (25)
B o T ) R e e

is the amplitude of reflection from the (N-1)-th
center; the arrow indicates the orientation of the
incident wave. The quantity Ri; differs from
ry- ;. since it includes a delta-function potentlal
at the point xN. The quant1ty ZN-1,N in Eq. (25)
is given by ‘

s _ oy =) Go (20 =amy)
N-1,¥ 77 G, (25 zy) G, [Ee Zya)'

(15)
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(20)

form
(21)

ctron

V(x)
t..

(22)
n

(23a)

(23b)

(23¢c)

ce
-

[CREUN

(24)

(25)

(26)
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Using a relationship between G(x, x') and the
diagonal Green functions (for the same one-dimen-
sional coordinates)??

max(z, x’)
’ IR/ \ 4z
Gz, z')={G(z, «)G(af, z')}"exp| — ml.

min (x, )

we obtain
zy
dz
Zy.q, Ny == 8XP {— S _——Gu(m. ) Iy N1
zNoy

We shall now express Gy-,(x, x') for x, x' <
XN-1 in terms of the bare Green function G,(x, x')
and RA—,_—>1 .

Gy (= Zy1) Go(2y-10 ) (27

Go(zy-1, Ty_1)

Gyq (2, 2') == Gy (z, &') — R

and, equating Eq. (24) to Eq. (27) for x = x' =
XN-, » we obtain for RZ

R =lrwatrw(t —2ry0) 2y w1~ SRS YRE IR RN

Repeating this proéedure N times, we obtain
the Green function for an interval [x,, x,] which
ineludes all the delta-function potentials:

Gy (21 21) Gy (2, ')

Gz, &')=0Cy (=, 2')— Ry G, (z1, =) B (28)

where R+ is the amplitude of reflection from the
first center in the presence of all the other centfers:

r (1 — Rﬂ"l, 2)
=T, )
Gole, @) Gy (23, ')

Gy (z, o) =Gy (z, ') — Ry T, (72, 7 .

On the other hand, we obtain for x, x' < X,

! ’ Go (2, G (21, &'
G(z,m)aGo(m,x)—RI—L(ié%rg)i—ﬂ. (29)
Equating Egs. (28) and (29) for x = x' = X;,
we obtain
1+ o Ry (1~ 2r)) 4
A S Y T (30)

The quantity R» is the amplitude of reflection
of an electron from a chain of potentials which is
directly related to the. resistance by the Landauer
formula.?

The numerator and denominator in Eq. (30)
can be written as the determinants

0 n Ri}
|1 By 2
B=detB= - N A=detA= 11 RQ - (31)
oA
1.n b C

. It can be seen from Eq. (31) that the matrix
A is obtained from the matrix B by augmenting it
on the left and on top. Substituting again in Eq.
(31) an expression for R7 similar to Eq. (30) and
repeating this procedure N times, we obtain expres-

sions for A and B in terms of 4 and Zj,j+ 1
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B=="3D, ~ D» (32)

where the matrix Dy is given by

(D)o ==n + ViGa (210 ) 52 4, (33)

and the matrix Din. is again obtained from Dy by
bordening on the left and at the top

(5N+l)u+1, 1+1=(DN>.., 1) (ﬁN'H)l. ‘1=0_ (34a)
(Bras 1= 4110 Bad, o= Vano (s mni) Sy (341)

We shall now prove the validity of Eq. (3) by
mathematical induction. It is easy to verify that,
for N = 1,

R=|Rip=|nit=1—| D"
We shall assume now that the relationship

R=t—|Dy[? T=|Dy|" (35)
holds for some N and we shall show that this implies
its validity when N is replaced by N + 1. When we
isolate the potential of the first center V, §(x — x,),
then the determinants Dy4; and Dy 4+, can be expres-
sed in terms of D, corresponding to the first center
and the determinants Dy and Dy 4, corresponding

to the remaining chain consisting of N potentials
Vps(x — %xg), 25 L s N +1

0 no Rl

1 t Ryl

vt 2
s T3 1

.
1 REZLI,'B

s
N e 1

(36)

The system of equations (32) and (36) is
equivalent to Eq. (31). Evaluating the determinants
(38) for Dy 4+ 1 and Dy 4+,, we obtain

[Dyg [=| (1 = nRaz, ) 175,
[Dyoa|=|(r + Bo (1 —2r) 2, 214775 (37)
It follows from the expression (23) for r, and

from the fact that the Green function G,(x, x) is
imaginary in the continuous spectrum that

r,+r’;=2| Ty Ig'

_ We can then write the expression (37) for
[DN+2[? in the form

| Pyse [P= =14 Dy [ (38)

It follows directly from Egs. (38) and (32) that
Eq. (35) is satisfied for a chain consisting of N + 1
scattering centers. Equations (33) and (34) yleld
the following recurrence relationship: - -

] Dy=AyDy_ |~ B.\'U.\'»z; : - (39)
D, L= Vabo(m, =) Dy
T Va6 (@, &) Y T VaGi(en @) (40)

where

VG (2w, 2a), .
ANfi + Vialo (Bxa1r Bv) e .V-‘ Gy (2 ) (1 A ) V>4
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VNGQ (I.\'. 3’.\')
VG (Zaoie Tyoy) KRR

Ay=1+4ViGo(zy, 3), By=

and Dy-;(N- 2} is the determinant (33) where the
N-th (and N —"1-th) row and column have been omitted;
D.;4N is the determinant (33) where the first row
and column have been omitted; D, = 1 and D., = 0.
In particular, in the case G, (x, x) = i/2k, i.e.,
when V(x) = 0, Eq. (39) yields the recurrence
relationship (8).

2. LOCAL DENSITY OF STATES

It is of interest to obtain an explicit expression
for the local density of states v(E, x) of electrons
with an energy E at a point x in a one-dimensional
chain of random delta-function potentials with an
arbitrary type of disorder. The density of states
is important because the fluctuations of the local
electron density of states lead to fluctuations of the
Knight shift, i.e., to inhomogeneous broadening of
a nuclear magnetic resonance line.

. To evaluate the local density of states in a chain
of finite length, we require an explicit expression
for the Green function G(x, x') satisfying Eq. (2)
within each cell x, < x, x' £ xN¢; for a given
number of scatterers N. To obtain this expression,
we shall repeat the procedure described earlier
isolating, in the potential V(x) defined by Eq. (1),
the delta-function potentials no longer in decreasing
order as in the derivation of Egs. (28) and (20),
but in such a way that we approach in the last
N-th step the given n-th potential from the right.
We then obtain the following expression for the
Green function [see Eq. (28)]:

’
Gz, 2')=G, (z, @) — ﬁn G, (:B.1 zy) Gy (20, 2')

Gy (Zn, Ty) ’ (41)
where
Go (%, Tpq1) Go{Zpp1,
Gz, 2') =Gy (z, &) — Ry, — (xG:(;lL,na(:;)l 2) (42)

Setting x = x' and using Eq. (42), we obtain
from Eq. (41) an expression for the Green function
of equal coordinates '

(43)

Gy (=,
Gz o)== :g+f3" . {4+ ByBypzn, ws — Bane, na — Rty 2}
Here, zx n+: (2zn,x) is given by Eq. (26) with a
variable lower (upper) limit; Ry, is the amplitude of
reflection from the left-hand block containing n
centers in the presence of the right-hand block
containing (N — n) centers, i.e.,

’, (1— Rypzy, 1)
1= R By 13, Wi
Ry is the reflection amplitude from the left block
containing n centers in the absence of the right-
hand block; R;;7 is the amplitude of reflection

from the right-hand block containing (N — n) centers
in the absence of the left-hand block. The ampli~-
tude R;> can be obtained from Eq. (32) by omitting
the first n rows and n columns in Dy

(44)

R,,::

‘ D- wEN+l
2] '

R _ det, ﬁ~11+\‘+l _
i = det D -

A -n+\ (45)
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The structure of RY; is similar to Eq. (32), i.e.,

(46)

However, the matrix Di i obtained by border-
ing Dy on the right and at the bottom

(5241)"‘ ! ‘—‘:([)A'),,‘ I (ﬁ?v-u))vu, =0

[ 1
(ﬁ;\'ﬂ)N-&-l, a= VaGy (a:”, Tp) z:\l’f(-l, 2419 ('5)?/+1)n, Nel = "'Ir{fn. Nipe

The following recurrence relationship is obtained
for Do,

1 — V.Go(z z,)
anG(l (Im xn)

Dyy
VGo (24, @)

(47)

D2+1= Dn'_
Although Eqs. (41)-(46) hold in a given interval
[Xn, Xp+:], we can apply them formally to obtain .
the Green functions also for x, x' ¢ x; and for x,
x' 2 xN¢ a) for n = 0, we obtain from Eq. (41)
using Eqgs. (42) and (44) the relationship (29) since
Ry==0, Hy=0; b) for n = N, Eq. (41) together with
Eqs. (42), (44) and (45) yield

Gy (a:, :n‘y-) Gy (m‘\-. z)
G (2, @) =Gu (s, &)= By —— gz "

since Ryz =0 and Rp=Rys.

The local density of states is by definition
given by
Gy (2, x)

. . Im 1
v(E, 7) =——G (= z):-;lnl'wm

(00

’ “

. Yo
(D_‘.u—l)q-,v — D-n+N) — VGylz,, z,) [(1 — 0§ \ m ) [ZV“G0
' o

o ‘(m“' z") DﬂI)-”F-\' - (Dn - Uu-l) D-né-‘\' - (D—(n—l;+.\' - D-M-N) DHI

Cr e 48
—-islu! 'ﬁoi'(t—t)-‘[(un_Dn-l)D—n+.~""(D~(u—1)+.\'"‘D—11+N)Dr;]}l' ( )

Ly

We derived Eq. (48) from Eq. (43) making use
of the recurrence relationships (39), (40), and (47).
In particular, for G, (x, x) = i/2k, we find that
in the resonance case, i.e., for Dy defined by Eq.
(15), Eq. (48) yields for x = xy,

{ 1
Y (E, z")=m— Y Sy —
NV
“f(}.[ Té)
] =L
It can be seen that the local density of states

at an exact resonance point, i.e., for ka = mn is
independent of the number of the site.

The local density of states for large values of
the random potential Vy; and for x = xy, when Dy
is given by Eq. (17) has the form

v(E, zy) == 2/V3.

3. RESISTANCE OF BLOCKS CONNECTED IN SERIES

Consider now two chains (I and II) which
contain, respectively, n and m arbitrary delta-func-
tion potentials and are connected in series. Assume
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that the phase the wave acquires between these
chains is ¢. We obtain [Eq. (36)]

1 Rﬁc"‘?
Dn+m=: I)nnm Rye”’ 1 '
where Bi(m is the amplitude of reflection from the

region containing n (m) scatterers

1 D ‘l+|Rr|’-’»|Rﬁ|‘3_2|HTHRl—Ilcosﬂ
B ITETT7a]

8 = 2¢ + B7+017; O1(II) is the phase acquired by the
wave after passing across the region I (II).
We shall evaluate the quantity <In{pr+yr+1)>,

where <...> denotes averaging over the phase 8
within the interval [0, 2 7]

T

ntm

<In (pray + 100 == I Doy =<0 7> K0 Ty —
—In (44| By P Ry |* — 2| B || Bry| cos O,

the last term vanishes and, therefore, (see Ref. 13)

<In (prayr -+ 1)) = n (o + 10> +-<In {pyg 440 (49)

Considering the resistance on of a block con-
taining n centers which is included in a total chain
of N scatterers, we can use Eq. (44) since R¢ is
amplitude of reflection from the left-hand block in
the presence of the right-hand block

[ Ponen
2l Mpn(p_”+ﬂ~+1)(1+1—+'p+_:;~zl/m °°5°)
LA 1+Pn 1+pN (50)

Here, pp and p-p+N are the resistances of the in-
dividual blocks; py is the resistance of the whole
chain; 8 =2 ¢+ 0,3 6, is the phase the wave acquires
having travelled across the left-hand block; ¢ is the

phase of the wave between the left-hand and right-
hand blocks. Applying the method used in the
derivation of Eq. (49) to Eq. (50), we obtain

n (py + > =<In p> +In (p_ppy + >~ <1n %p—:> )

The author is grateful to the coauthors of the
related paper (Ref. 1), B. L. Al'tshuler, A. G.
Aronov, and Z. A. Kasamanyan for their cooperation.
The main results of Ref. 1 are explained in the
Introduction to the present paper.
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Kinetic models of clusterizaton of point defects in solids
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A system of nonlinear equations with a new type of kernel is used to study the process of coagulation. This
system of equations describes clusterization of point defects in solids. Systems with and without a source are
studied. Long-term asymptotic solutions are obtained for a class of model transport coefficients. The resultant
dependences for a system with a source have the “scaling” form.

1. INTRODUCTION. FORMULATION OF THE MODEL

Various problems of coagulation dynamics are
encountered in solid-state physics. They may in-
clude problems of radiation physics concerning clus-
terization of intrinsic defects, i.e., interstices and
vacancies, problems of segregation dynamics, etc.
Clusters of various sizes, shapes, and internal
structure are formed in the process of growth of
defect aggregates, which may be regarded as diffu-
sion-limited. It is rather difficult to study the
general case and, therefore, the investigation is
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often restricted to a spatially homogeneous case
when the average concentration of k-particle clusters
ck(t) over the volume is calculated. The classical
equations of coagulation dynamics have the following
form in this case *s?:

]
N
2 K:jC;l.'j — Cp 2 Kkjcj-

$ =k J=t

dey 1

dt 2

1)

The transport coefficients Kj; for diffusion-
limited effects [i] + [j] » [i + j] can be expressed
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