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We give the formula for the resistance of one-dimensional chains of arbitrary &potentials without finding electron eigenfunc- 
tions. We have analyzed the main consequences of this formula, and the distribution functions of resistances are also determined. 

In the present paper we give the formula for the 
resistance of  one-dimensional chains with arbitrary 
&potentials, which is convenient for numerical cal- 
culations and for the investigation of the electron lo- 
calization in the one-dimensional case and in an 
external field. This expression for the resistance is 
valid for chains with an arbitrary length at any 
disorder. 

Thouless [ 1 ] has shown that a relation like that of  
the dispersion exists between the density of  states 
v(E) and lnl ~u(x) I (x--,oo) where ¥ ( x )  is the elec- 
tron wave function. In other words, this relation is 
one between the density of  states and the electron 
localization radius. It can be written as a relation be- 
tween the resistance of the sample pL(E) and the 
density of  states 

ln[pL (E)+ l ] 

=2L f dE' [ V o - u ( E ' ) ] l n l E - E ' [ .  (1) 

Here L is the sample length, Vo is the density of  states 
of  a free electron. On the other hand the density of  
states in the one-dimensional chain with the same 
arbitrarily situated &potentials V( x ) = V Zn 

( x -  x , )  is determined by the expression [ 2 ] 
L 

1 f d x I m G ( x , x )  v ( E )  = -  

0 

_-,o ltm ,nO:, , . ,  

where 

DL ( E) =det Dit , (3) 

D j t = ~ + ( i V / 2 k ) e x p ( i k l x j - x t l ) ,  E = k  2 (4) 

and G(x, x' ) is the retarded electron Green function 
in the potential V(x). 

Using eqs. ( 1 ) and (2) and integrating eq. ( 1 ) by 
parts, we obtain 

PL (E) = IDL(E) 12- I. (5) 

We have also made use of the fact that the density 
of states is proportional to the imaginary part of the 
retarded Green function which satisfies the usual 
dispersion relation. Eq. (5) is the main result of our 
paper. It can be proved in the general case of arbi- 
trary values and arbitrarily arranged &potentials in 
a chain which has the finite length L and is situated 
in the external potential u(x): 

N 

U ( x ) = u ( x ) +  Y. Vn6(X--Xn) .  (6) 
n = l  

In this case 

D:,=t~j,+ ViGo(x j, xj) exp [O(xj, x,) ] ,  (7) 

where Go(x, x ' )  is the retarded electron Green func- 
tion in the external potential u(x). ~9(x, x' ) is de- 
termined by [ 3 ] 

m~,(;,x') dxl 
O(x ,  x '  ) = - ½ G0 (xl, xl )" (8) 

rain ( x , x ' )  
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The determinant DN=det Djt satisfies the following 
recurrence relation, which can be derived from def- 
inition (7). This is the generalization of eq. (3) by 
Bychkov and Dyhne [2] in the general case: 

DN =ANDN- 1 --BNDN-2, (9) 

where 

VNGo(XN, XN) 
BN = exp[20(XN, XN_I) ], 

VN-IGo(XN-I,XN-I) 

N> 1, (10) 

AN=I +BN 

- VNGo(XN, XN){ 1 --exp [20(xN, XN-1 ) ] } ,  

N > I ,  (11) 

A l = l + V t G o ( X l , X l ) ,  D o = l ,  D_~=O.  (12) 

DN_ ~ (DN_ 2 ) is the determinant of matrix (7) with 
the Nth ( ( N -  1 )th) column and line removed. The 
transmittance amplitude tN of N 8-potentials is re- 
lated to DN by 

tN=Dg I . (13) 

Therefore, the equation for the resistance eq. (5) can 
be rewritten in the Landauer form [4 ] 

p N ( E ) =  IDNIZ-- I = 1-- TN TN ' (14) 

where TN= I tNI z. The expression for the density of 
states is related to DN by an equation which is the 
generalization of eq. (2) for 6-potentials with arbi- 
trary amplitudes Vj and an arbitrary external poten- 
tial u(x): 

v = Vo - ~-~ Im In DN, 

L 

vo--Im - ~ G o ( x , x ) .  (15) 
0 

If the external potential u ( x )  is absent, then Go(x, 
x) = i / 2 k  and matrix Dj~ has the form 

Djt =~s~ + ( iV/2k)  exp( ik lx j -x t l  ) • (7a) 

In this case AN and BN are determined by 

BN= (VN/VN_I)  exp(2iklx~r--xN_~ I ) ,  

AN = 1 + B~ + ( iV~/2k)  [ 1 --exp(2ik[xN--XN_, [ ) ] ,  

N> 1 , (10a) 

A1 = l + iV~/2k .  ( l l a )  

Eqs. (5) and (7a) allow one to obtain both well 
known and new results. 

( 1 ) For the Kronig-Penny chain consisting of N 
identical and periodically arranged potentials V, the 
electron spectrum is determined thus: 

cos pa=Re  [ ( 1 + i V / 2 k )  exp (ika) ] .  (16) 

Here a is the period of the structure and fl plays the 
role of quasimomentum. The condition [cos flal < 1 
determines the states in the allowed energy band. In 
this case one can obtain the expression for DN (e.g., 
by making use of the recurrence relation eq. (9) ): 

DN = eiNkal cos Nfla 

+ i ( ~ k  cos k a - s i n  ka ) s in  Nflaqsin fla J " (17) 

After the substitution of eq. ( 17 ) in eq. (14) the re- 
sistance of this chain has the form 

s i n 2 N f l a ( V )  2 sin2Nfla (18) 
P N  = sinZfla ~-~ =Pl sin2fla • 

This formula describes the resistance of the interface 
between an ideal conductor and the periodic struc- 
ture. Pl is the resistance of the elementary cell. 

Resistance PN does not increase monotonically with 
N and at I cos fla [ < 1 the resistivity goes to zero at 
N o  oo. At the same time the resistance increases ex- 
ponentially with N for the states in the energy gap 
(where cos fla=ch(ifla) > 1 ). 

Let us consider the generalized Kronig-Penny 
model in which the elementary cell consists of n 
rather than one ~-like potential (fig. 1 ). The ampli- 
tudes V~ of these potentials and their positions are 
arbitrary. The transmittance amplitude through the 
elementary cell in our notation has the form: 

t ,=eikaD~ 1 , Tn=l t , [  2 (19) 

The relation between the transmittance amplitude t~ 
and the electron spectrum was obtained earlier [ 5 ]. 
According to ref. [ 5 ] the electron spectrum in this 
case is 

Re 1/tn =Re(e-ikaD,) =cos fla. (20) 

202 



Volume 132, number 4 PHYSICS LETTERS A 3 October 1988 

t% 

I 
:D 

c~ 

Fig. 1. Generalized Kronig-Penny model with n centers in the 
elementary cell; the period of the structure is denoted a. 

At n=  1 eq. (20) coincides obviously with eq. (10), 
while at n = 2 it leads to the result obtained in ref. 
[6]. 

For the generalized Kronig-Penny model the re- 
sistance is determined by eq. (18). 

(2) If  arbitrary J-like potentials are arranged pe- 
riodicaUy (xn=na), the recurrence relation can be 
solved, because at Vt(sin ka)/k:~ 1 (i.e. if the res- 
onance is absent, ka#  nn) the values A~ and As> 
are equal, 

AI ~-iVl/2k, AN>I ~-- (VN/k)ei~sinka 

and 

DN-2 <<DN. 

AS a result we obtain 

DN=i exp[i(N-1)ka] (~_~_)  N N 
sin ka I-I V/ i~  1 

and the resistance of the chain is [7] 

1 (sin2ka~ lvN 
p N + I =  ~ \ - - - ~ ]  ,__~ V 2. (21) 

From eq. (21 ) it follows that 

PN+ 1 - e x p [  ( ln  (pN + 1 ) ) ] 

1 
- -  4 sin2ka ~ p ( L / ~ ) ,  (22) 

where the inverse localization length is equal to 

sin2ka 
~ - ~ ( k ) = ~ - ~ ( 0 ) + a  -~ In (ka)-----5-, (23) 

~ - I ( 0 ) = a - ~ ( l n  V2a 2) . (24) 

One can easily extend eqs. ( 21 ) - (24 )  in case of a 
chain of  arbitrary arranged strong potentials. 

Let us consider the distribution of  the resistances 
in the case of  periodically arranged J-like potentials 
with random magnitudes. 

In a nonresonance case In pNOC Y ~  and according 
to the central limit theorem ln(pN+ 1 ) is distributed 
normally 

1 

W(pN) = (VN + 1 )x/2~No 

( [ln(pN+l)-Nln(p°+l)]2.) (25) 
X exp - 2Ne ' 

where 

go + 1 = sin2ka exp[ (In(V~/k) 2) ] , 

e =  (ln2(V,./k) 2- (In(V~/k)2) 2) . (26) 

This distribution function coincides with the resis- 
tance distribution in an ensemble of  1D chains with 
identical scattering centers randomly located, which 
was obtained earlier in refs. [ 8-10 ]. 

(3) If  ka=nn,  a resonance transmission takes 
place. From eq. (4) we obtain 

DN= 1 + i  ~ F~ (27) 
/ = I X '  

(28) 

Eq. (28) is natural: it manifests the fact that our 
chain is equivalent to the single potential Y ~r  Vi 
provided the resonance condition ka=  ~n is valid. 
The ensemble averaged resistance at/ca = nn accord- 
ing to eq. (28) is equal to 

(,ON)= ~'~ (V)2+N (V2)-(V)24k 2 (29) 

( ( )  means ensemble averaging) at ( V ) = 0 ,  
(PN) ocN, the resistivity is finite and the mean free 
path is proportional to k2/(V2). 

The distribution function in the resonance case 
differs from eq. (25). According to the central limit 
theorem Y~=t V, is distributed normally at N:*, 1. 
Therefore in the resonance case when the resistance 
is determined by eq. (28) the distribution function 
of  the resistance at ( V )  = 0 has the form 
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W(p) =2(p(p)x )  -'/~ e x p ( - p / ( p )  ) .  (30) 

At (V)  # 0 the expression for W(p) differs from eq. 
(30) only by the change ofp  for (p~/2_ ( V)/2k)2, 
and (p)  is determined by eq. (29). 

(4) We can calculate the Thouless energy shift BE: 
the shift of energy levels at the variation of the phase 
of the boundary conditions. By definition [ 11 ] 
8E = O 2E/O (ilL) 2. The second derivation from eq. 
(28) with respect to fl is equal to 

O 2E ,0=0 5E= O(flL ~ 
--I 

= - (Re--~-~ D~v e -ikL ) . (31, 
1,0=0 

According to ref. [ 11 ] the product of LSE and the 
density of states (15) is equal to the conductance of 
the sample. The comparison of this product with eq. 
(14) shows that this relation is not exactly correct. 

(5) The dispersion relation (1) takes place not 
only for the localized states but in arbitrary cases, for 
example, in the periodic Kronig-Penny model or in 
the electric field, when the delocalized states can 
appear. 

(6) Let us consider the periodic potential arrange- 
ment when the potential distribution function is the 
Cauchy distribution (Lloyd model): 

1 
P(V,.) = (32) x (V~- V)2+e 2' 

where Vand ? are the parameters of the distribution. 
According to ref. [ 12 ] under this assumption 

( G(x, x) ) = G(x, x) I vi - V+ i7 sign E .  

Hence, using eq. ( 15 ) we obtain 

( ln(pN+l))=--2Re\d/  f dx dE' 
X l  - - o o  

=In I/)u(E)12 , (33) 

where/)u is the determinant (17) after the substi- 
tution of all the potentials Vi by V-  i~,. Provided the 
centers are arranged periodically,/)u is determined 
by eq. (17), 

£3N = exp (iNka) [cos Nfla 

+ i ( ~  cos ka - s in  ka)s in  N_flaq 
sinpa _]" (34) 

Here fl is determined by the relation 

cos/Ta = cos ka+ - ~  sin ka. (35) 

Using eqs. (33) and (34) one can show that the re- 
sistance of the chain consisting of N 6-like potentials 
is equal to (L=Na) 

~ ( 6 )  
s h 2 y L +  sin2flL 

(ln(pN+ 1)) =In 1 +/~l sh2ya+sin2fla], 3 

7+iV 2 
fi,= 1 + ~  - 1 .  

Here y=Im/~  
From eq. (36) one can see that at L ~  the geo- 

metric mean resistance increases exponentially with 
the sample length L. At arbitrary ka the inverse lo- 
calization radius 

~ - l _  lim 1 2Imf l  (37) L~f - .  ( ln(p~+ 1)) = a 

is determined from eqs. (34), (35) 

¢ - ' = 2 a  -~ ln( y , ~ - l + v / y ) ,  (38) 

2y= (~k)  2 sin2ka- sin2fla 

2 72 1/2 
+{[(~k)ZsinZka-sin2fla] + ~-~ sin2ka} 

Here fl is determined by eq. (16). This result was 
obtained earlier by Hirota and Ishii [ 13 ]. 
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Dr. S.A. Gredeskul and Dr. L.A. Pastur, who sub- 
jected our paper to a benevolent critical analysis. 
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