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Since the relaxation parameter associated with the

unequal reorientational motion under discussion is T,II,

it follows from Eqgs. (1) and (3) that the relevant tempera-
ture dependence gives information on the potential barrier
E, which applies to the shallower potential well, i.e., to
the position of the orientational defect. Therefore, in Eq.
(5) the spin —lattice relaxation rate governed by the un-
equal -well reorientations is

(T;i;mm::fjri‘}“:» bexp (—E/RT). )

The physical meaning of the relationship between the rate
of relaxation and the smaller of the two orientational po-
tential barriers reflects the dominant role of the higher
of the probabilities of molecular jumps in the spin—lat-
tice relaxation process.

Our determination of the temperature dependence
T, (T) thus gave information on the potential barrier which
the molecules have to overcome in the course of the
transition from the orientational defect state to the main
equilibrium position in the crystal lattice. The results
of our investigation carried out in the temperature range
from 77 K to the melting points of the samples are pre-
sented in Fig. 1 and in Table I: they demonstrate the
thermally activated molecular mobility in the investi-
~ gated compounds. Reorientations of the molecules be-
~ tween the "defect" and main positions result in an ex-
ponential reduction in the spin—lattice relaxation time
and "fading" of the resonance signals of the *Cl nuclei.
The heights of the barriers E representing the orienta-
tional motion of molecular defects are 8.9 and 7.6 kcal/

mole for CI{CN)C = CCl, and CH{CN)C =C(C¢Hs)[N(CH, *
CH,),0], respectively. We can compare the values of E
obtained in this way with the barrier hindering the re-
orientation of the molecules as a whole in crystalline

CL,C =CCl, (according to Ref. 6, this barrier is 12.4 kecal/
mole), in which the motion occurs most likely in an equal -
well potential (the molecule has the twofold symmetry
axis), i,e., without a change in the main equilibrium orien-
tation in the molecular crystal lattice,

The investigated samples were supplied by V, Z,
Estrina and Ya. B, Yasman (compound I) and B. S. Drach
(compound II), to whom the authors are grateful.
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Field dependence of the anomalous magnetoresistance

V. M. Gasparyan and A. Yu. Zyuzin

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted November 14, 1984)
Fiz. Tverd. Tela (Leningrad) 27, 16621666 (June 1985)

It is shown that quantum corrections to the conductivity in fields for which the magnetic length is shorter
than the mean free path but the inequality w_ 7 < 1 holds (@, is the cyclotron frequency and 7 is the mean free

time) decrease with increasing field as H ~'"*

dimensional case.

The physical origin of the anomalous negative mag-
netoresistance is related to the fact that magnetic field
suppresses quantum corrections to the conductivity.! The
quantum corrections are due to interference of electron
wave packets scattered from impurities and moving on
the same classical trajectory but in opposite directions.
The electrons moving along such trajectories acquire the
same phase difference, which increases the probability
that an electron returns to the initial point and, therefore,
the mobility of electrons decreases. When closed trajec-
tories are traversed in a magnetic field in one or the
other direction, a finite phase difference depending on the
shape of the trajectory is acquired. Since the coherence
is broken, the probability that an electron returns to the
initial point is reduced and, therefore, the conductivity
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in the two-dimensional case and logarithmically in the three-

increases, The negative magnetoresistance in weak fields
satisfying the condition Iy > ! (g =vhd/2eH is the mag-
netic length of a particle with a charge 2e and [ is the
mean free path of electrons) was studied in Refs, 1-3.

The weak fields in question satisfy the conditions wgr «
H/ppl «1, where w, is the cyclotron frequency, pp is

the Fermi momentum, and 7 is the mean free time.

We shall study the negative magnetoresistance in
two-dimensional and three-dimensional systems subjected
to magnetic fields satisfying the conditions that the mag-
netic length is shorter than the mean free path and the
inequality wsr < 1 holds.

This range of fields was studied theoretically in

«©* 1985 American Institute of PhySiCs 999



Refs, 4 and 5, but we believe that the results obtained in
Refs. 4 and 5 are incorrect.

We shall first quote the principal results and discuss
their physical interpretation and then present their de-
rivation in the second half of the paper.

n the two-dimensional case, the magnitude of the
quantum correction to the resistivity decreases loga-
rithmically with increasing field in weak magnetic fields
satisfying Iy > (see Refs, 1 and 2). We shall show that
such corrections decrease as H-/? in strong fields satis-
fying ig < i. The corresponding quantum correction to
the conductivity is given by

daif) o bl M

In the three-dimensional case, the quantum correction to
the resistivity decreases as HY? with increasing field in
the limit Iy > I (see Ref. 3). We shall show that, in
fields satistying Iy <, the square-root dependence
changes to a logarithmic decay. The quantum correction
to the conductivity is given by

Acg (H) e 4\ In (prla/h)

Yo

The quantity ¢, in Egs. (2) and (3) is, respectively, the
conductivity of three-dimensional and two-dimensional
systems neglecting quantum corrections.

The dependence of the quantum corrections on the
magnetic field is shown in Fig. 1 in the three-dimen-
sional case.

Such field dependences can be interpretedphysically
as follows, For ly < I, interfering wave packets make
significant contribution only for the simplest closed tra-
jectories with a nonzero magnetic flux across the tra-
jectory (Fig. 2). The probability of finding a particle at
a distance R from the initial point is proportional to R-2
in the three-dimensional case and to R~! in the two-dimen-
sional case or, in the momentum representation, we obtain
~q-!, The probability that a particle traverses the closed
trajectory shown in Fig. 2 (and, therefore, the quantum
correction to the conductivity) is proportional to the fol-
lowing integral:

diq .
S 7~ g

qly>h |InH,

d==2;
d = 3.

The lower limit in this integral is § ZH-1 since the maxi-
mum size of the trajectory which preserves coherence
when traversed in opposite directions is of the order of
Ly
We note that, in addition to the contributions defined
by Egs. (1) and (2), there is always the standard magneto-
resistance related to the curvature of electron trajectories
in a magnetic field Ag/ oy~ —(w T y¢. While this contribu-
tion in weak magnetic fields w7 < i /py/ is smaller than
the negative magnetoresistance, the positive magnetore-
sistance for w,rs fi/ppl becomes of the order of or
greater than the negative magnetoresistance defined by

1000 . Sov. Phys. Solid State 27(6}, June 1985

Egs. (1) and (2) but the latter contribution can be still de~
tected experimentally since, in contrast to the classical
magnetoresistance, the negative magnetoresistant is in-
dependent of the orientation of the magnetic field relative
to the electric field.®

Interference corrections to the conductivity which
are sensitive to the magnetic field are acquired along
these trajectories which have the property that the mag-
netic field flux across the trajectory is nonzero, It fol-
lows that only fan diagrams with a number of impurity
lines greater than two need be considered in the calcula~
tion of the negative magnetoresistance, We note that dia-
grams with two impurity lines were incorrectly included
in Ref, 4; since such diagrams are independent of H, they
do not contribute to the negative magnetoresistance,

Localization corrections to the conductivity which
determine the negative magnetoresistance are described
by diagrams shown in Fig. 3. For fields satisfying Iy >
7, the main contribution to the conductivity is due to the
diagrams shown in Fig, 3a. When the magnetic length is
shorter than or of the order of the mean free path, the
diagrams in Figs, 3a and 3b become comparable. We
note that it is then necessary to consider both the mag-
netic field dependences of the cooperon and of the elec-
tron Green functions.

Since we are mainly concerned with the range of
fields satisfying Iy < !, we shall further neglect the pro
cess of relaxation of the phase"' due to inelastic scatterin
which is important in weak fields satisfying Igs Lﬁf’ (L
is th$ length in which dephasing of the wave function oc-
curs'),

The correspondin% correction to the conductivity can
be written in the form?

k3

po () = — 22Z5 (K5 4 TTE) (1 — K). @

tions of the diagrams shown in Figs, 3a and 3b. The quan k
tity D = vpl/d is the diffusion coefficient and d is the di-
mensionality of space.

The operators K and T’ which appear in Eq, (3) orig-
inate from integration of the electron Green functions.
They are given by!)

K =<t (qh? ™ 4y
/’/l . \»1\\ (5 "
r""'\?“”’iql‘ /"’ )

2e
q == iV - A,

Here, A(r) is the vector potential of the magnetic field
which is assumed to be parallel to the z axis in a three-
dimensional system or normal to the plane of a two-di-
mensional system. The angular brackets in Eqs. (4) and
(5) indicate averaging over the directions of the vector I,

-~
I
o &{PFL @:¥ FIG, 1. Field dependence of the neg
g TinH tive magnetoresistance in the three-
dimensional case,
“H 172
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a
FIG. 2, Simplest wajectories which @ N FIG, 3. Diagrams contributing to the

have the property that the field flux quantum correction to the conductiv-
across the trajectory is nonzero, ity.

b .
Pt -~ ~
2 i N

We shall not quote explicit expressions for the func- :
tions K and T in the coordinate representation but merely . A diL, (¢} [ ¢ N ’ ST T )
I FEEY T TR eXp e e A : C s
note that their dependence on the magnetic field is concen- s VT T 2 3
e 1

IR el

Do ]
trated in the phase factor exp fi’ % g Adr; ,  where the in-
tegral is over a straight line cormécting rand r', T .o DD
‘ ' (15)
It is convenient to use the representation of eigen- . A o [ S
functions of a particle with a charge 2e in a magnetic == j’. T — TP exp | — g - A ] ¢ {T) }
field.® The quantities M = {K, TZ} can be then written pe ( Al > |

]

in the form
We shall now discuss the two-dimensional case. For
. r,)zz S dps Mg (8) Lo (8- 0 A <1, it follows from Eq. (11) that the terms even inn

2%

et are given by

The components of I' perpendicular to the magnetic field Koo A V’E (2n — ‘3‘!! o),
2 T 9 {2 ¥ \ 2
can be written in the form 2 emlit (16)
™y Y S ‘i’;f D50 (8) Yo (6): (®) The leading term decreases with increasing n as An-/?
om0 and, therefore, the terms ~A* can be neglected for n <
A-%, We can also neglect in the same limit the terms
where only the following off-diagonal components are non- K,n+; which are of the order of AZ,
Zero:
) For A< 1landn < A-%, Eq. (12) yields
r;e], u l‘r’;, nels F':{H, n = "I‘;f, n+l” (9)
i A
The quantity p in Egs. (7) and (8) is the coordinate in the Pluar, o= 10001, 0= Iy 17
plane perpendicular to the magnetic field,
The eigenfunctions of a particle with a charge 2e in Substituting Egs. (7) and (8) in which Ky and I'n,m are
a magnetic field xnpy(P) are given by® given by Egs. (16) and (17) in Eq. (3) and retaining only
the leading terms in A, we obtain
‘ (v — pzl;:,)?} ( y—ply ) Aoy (H) Iy S (2n—1) 1]
O s e 10) T 2 as)
Tup, () = w2 1y )
v ‘ f2n =01t ) 1 } - 2,800,
where H, (x) are the Hermite polynomials. X {( T ) T2 NE

Integrating the product of the functions xnpx(p) in

Eqgs. (7) and (8) with respect to py, we can isolate a factor The series in Eq. (18) converges rapidly and, therefore,

the upper limit which is of the order of A~ for A < 1 can

exp :,-“)‘{« S Adr}; ., which cancels the same phase factor in- be set equal to infinity.
cluded in K and T'. Equations (7) and (8) then reduce to a We shall now consider the three-dimensional case.
series in terms of the Laguerre polynomials, For qzly > 1 (q, is the momentum in the direction of the
In the two-dimensional case, K, and rﬁgn are given field), we find that the Fourier components with respect
by s to (z —z'") calculated from Egs. (13), (14), and (15) in the
leading order in A are given by
; __‘if del, (8 , s -
K, 35 T exy {-2”};\,}, (11) K, (g} = m M_:iww,
¢ T 2v2 eyt 2 (19)
A7 t -1
" T e e | dtLL (Y expi— 5 —AVEF, Uy 4
oo Mo = 4 ) ‘*"“‘{. 7o (12) O TV (20)
where A =+21y/1 and LE(t) are the Laguerre polynomials. _ VAT s
rféx’whl, H (g,) =1 ntly (g.)= Wﬁ z (2 1)
In the three-dimensional case, we obtain ' '
K (oo o) — F Lo ew{_. Lo V‘ " "‘f—‘))} , Substituting Eqs. (7) and (8) in which the expansion coef-
" a t*(buv ) : A (13)  ficients are given by Egs. (19)-(21) in Eq. (3), we obtain
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the following results which hold in the leading order in A:

4l
s (=003 | G o

o Ayled
{\i ;‘&“ (951}2

Equations (3), (4), and (5) hold provided q < pF and, there-

fore, the upper limit in Eq, (22) is Ny ~ {pFZH)2

The authors are grateful to B, L. Al'tshuler and A,
G. Aronov for proposing the problem and helpful discus-

sions,

yere, we set i = 1.

Electrical conductivity and thermoelectric power in a two-
dimensional percolation region at a metal-semiconductor phase

transition

I. A. Abroyan, V. Ya. Velichko, and F. A. Chudnovskil
A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted November 14, 1984)
Fiz. Tverd. Tela (Leningrad) 27, 1667-1670 (June 1985)

Experimental results are reported of a study of the electrical conductivity and thermoelectric power near the
metal-semiconductor phase transition in vanadium dioxide films. They are well accounted for by the exact
expressions for the effective properties of the medium in terms of the properties of its components. It is shown
that at this phase transition in the films used there is two-dimensional percolation in the metal and

semiconductor regions.

There is considerable scientific and practical value
in studying the transport properties (electrical conduc-
tivity, thermoelectric properties, galvanomagnetic prop-
erties, and so on) of inhomogeneous media. However,
their interpretation, especially for randomly inhomogene-
ous media, meets with great mathematical difficulties
as regards the theoretical investigation of such systems,
Nevertheless, for two-component media, exact relations
have been derived®s® which express the effective electrical
conductivity, thermoelectric power, and thermal conduc-
tivity of the medium in terms of the properties and concen-
trations of the components, These relations can be used,
in particular, to examine transport phenomena in systems
consisting of two components with very different conduc-
tivities, near a metal —insulator phase transition. This
problem is one that is considered in percolation theory.

In the present investigation, the relations®»® men-

tioned were tested experimentally for the first time with

a system having a metal —semiconductor phase transition
as the temperature varies, The experiments used vana-
dium dioxide films ~ 100 nm thick on pyroceramic glass

substrates 8 x 6 x 0.6 mm,

The temperature dependences were measured for the
dec layer resistance and the thermoelectric power of the
same samples,

The film resistance R was found by the standard
four -probe method in the range 170-370 K. The error of

1002 Sov. Phys. Solid State 27(6), June 1985
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Translated by D. Mathon

measurement for R did not exceed 5%. The sample tem-
perature was varied in heating at ~3.5 K/min, and in coo
ing at ~2 K/min.

To determine the thermoelectric power « in the rang
280-370 K, the temperature difference T; — T, was 8-
10 K in the plane of the sample between electrodes used
to measure the thermo-emf U, The dependence «(T) was
calculated from «(T) = «[(Ty + Ty)/2] = U/(Ty ~Ty). The
error of measurement for ¢ did not exceed 5%. The sam
ple temperature was varied in heating at ~3 K/min, and
in cooling at ~10 K/min,

Figure 1 shows the observed dependences R(T) and
a(T) for a VO, film in the phase transition region. In the
low-temperature semiconductor phase, R and « have an
activation dependence, as is usual for n-type semicon-
ductors, In the range 310-350 K, R and « decrease con-
siderably as a result of the phase transition. In the high-
temperature metal phase, o stabilized at =30 KV /K,
while R continues to decrease as T rises; that is, it shows
"semiconductor™ behavior, which has been explained’ as
being due to the localization of conduction electrons in
the metal phase because of structural disorder.

At first sight, the observed dependences R(t) and
«(T) are in conflict with each other, since the corre-
sponding branches of the hysteresis loop for R(T) are at
temperatures averaging 4-7 K higher than those for «(T).
This conclusion would be incorrect, however, To see
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