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Friedel formula and Krein’s theorem in complex potential scattering theory
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In this work, the generalization of the Friedel formula and Krein’s theorem in complex potential scattering
theory is presented. The consequences of various symmetry constraints on dynamical systems are discussed. In
addition, the Muskhelishvili-Omnès representation of Krein’s theorem is also given and discussed.
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I. INTRODUCTION

A remarkable relation that connects the integrated density
of states of a system and the energy derivative of scattering
phase shifts was given by Friedel in Refs. [1,2], which is
referred to as the Friedel formula and finds wide applications
in solid states, multiple-scattering theory, etc. A similar rela-
tion was also derived and found uses in statistical mechanics
[3,4]. The Friedel formula was originally used to describe the
change of density of states due to the perturbation of impu-
rity placed in the metal. Integrating both sides of the Friedel
formula over the energy up to the Fermi energy, it leads to
the well-known Friedel sum rule [2], which relates the total
charge of screening conduction electrons around a charged
impurity to the scattering phase shifts. The generalization
of the Friedel formula into multiple-scattering theory in the
calculation of electronic band structure results in another
well-known relation: the Lloyd formula [5]. Other important
modern applications of the Friedel formula include the devel-
opment of the concept of time delay in collision theory; see
Refs. [6–8], where the integrated density of states is inter-
preted as the lifetime of scattering states tunneling through
potential barriers and usually referred as the Wigner time
delay. Later on, it was recognized by Faulkner in Ref. [9] that
the Friedel formula can be derived from Krein’s theorem [10]
in spectral theory.

The aim of the present work is to explore the possibility
of generalization of the Friedel formula and Krein’s theorem
when the interaction potential is complex, and also to study
what other new features the complex potential scattering the-
ory may bring in. All the discussions are currently confined
only in one-dimensional space. We will show later on that
even with complex potentials in general, relations similar to
the Friedel formula and Krein’s theorem in real potential
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theory can be obtained; see Eq. (39) and Eqs. (48)–(50).
However, the physical interpretation of such relations in com-
plex potential scattering theory may be drastically different
from that in real potential scattering theory. In real poten-
tial scattering theory, the conservation of the norm of states
plays the central role in interpreting the absorptive part of
the Green’s function as density of states of the system. On
the contrary, in complex potential scattering theory, because
of the absorbing or emissive nature of the complex potential,
the norm of states is no longer conserved. However, for dual
systems with two subsystems, one absorbing with loss and
another emissive with gain, when the gain and loss of dual
systems are balanced in dynamic equilibrium, the biorthog-
onal relation between the eigenstates of dual systems can be
established. Due to the resemblance of the biorthogonal basis
in non-Hermitian theory and the orthogonal basis in Hermitian
theory, the Friedel formula and Krein’s theorem type of rela-
tions in complex potential scattering theory maintain similar
mathematical forms, but the absorptive part of the Green’s
function is no longer related to the density of states, and it
is a complex function in general. Similar mathematical forms
of Friedel formula and Krein’s theorem types of relations in
complex potential scattering theory are the consequence of
the balanced gain and loss in dual systems. Only in special
cases, such as PT -symmetric systems, the absorptive part of
the Green’s function may still be real, though the positive-
definite norm is not guaranteed. Therefore, in collision theory,
the absorptive part of the PT -symmetric Green’s function
may be interpreted as the generalized time delay of particle
scattering off PT -symmetric complex barriers. The positivity
and negativity of generalized time delay simply reflect the
nature of potential barriers that either tend to keep a particle
in or force it out.

Such a study is primarily motivated by recent advances in
both experimental and theoretical developments in the study
of PT -symmetric systems; see Refs. [11–18]. Especially the
experimental realization of PT -symmetric systems in op-
tics [16–18], atomic gases [19,20], plasmonic waveguides
[21,22], acoustics [23], etc., may make it feasible for the
study of some interesting subjects, such as the tunneling time
of a particle through complex barriers, multiple-scattering
theory in PT -symmetric systems, etc. Many intriguing
processes take place in photonic systems with unbroken

2643-1564/2022/4(2)/023083(16) 023083-1 Published by the American Physical Society

https://orcid.org/0000-0002-6566-0881
https://orcid.org/0000-0002-2886-6215
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023083&domain=pdf&date_stamp=2022-05-02
https://doi.org/10.1103/PhysRevResearch.4.023083
https://creativecommons.org/licenses/by/4.0/


PENG GUO AND VLADIMIR GASPARIAN PHYSICAL REVIEW RESEARCH 4, 023083 (2022)

PT symmetry or in the PT -symmetry-breaking phase. For
instance, in PT -symmetric crystals, the violation of the nor-
mal conservation of the photon flux leads to anisotropic
transmission resonances [24]. In the PT -symmetry-breaking
phase, the optical reciprocity yields the unity of the prod-
uct of the two eigenvalues of the scattering matrix [25];
consequently double refraction and unidirectional invisibility
become possible. This may have a significant impact on the
dwell time of a particle tunneling through barriers, which is
conventionally defined as a weighted average between both
transmission and reflection times.

The paper is organized as follows. A brief summary of the
Friedel formula and Krein’s theorem in real potential scatter-
ing theory is provided in Sec. II. The derivations of the Friedel
formula and Krein’s theorem in complex potential scattering
theory are presented in Sec. III and Sec. IV, respectively,
followed by our discussion and summary in Sec. V. A short
introduction of complex potential scattering theory and a dis-
cussion of symmetry constraints are provided in Appendix A
and Appendix B, respectively, for readers who may not be
familiar with complex potential scattering theory.

II. SUMMARY OF FRIEDEL FORMULA AND KREIN’S
THEOREM IN A REAL POTENTIAL SCATTERING

THEORY

In the real potential scattering theory, the local density of
states of a system, nE (x), is related to the imaginary part of
the Green’s function by

nE (x) = − 1

π
Im[〈x|Ĝ(E + i0)|x〉], (1)

where

Ĝ(E ) = 1

E − Ĥ

refers to the full Green’s function operator of an interacting
system, and Ĥ stands for the Hamiltonian operator of the
system. The spectral representation of the Green’s function
has the form of

Ĝ(E ) =
∑

ε

|�ε〉〈�ε |
E − ε

, (2)

where |�ε〉 are eigenstates of Hamiltonian Ĥ , Ĥ |�ε〉 =
ε|�ε〉, and the spectrum sum in Eq. (2) includes the sum of
both discrete bound states and continuous scattering states.
The normalization and completeness of eigenstates,∑

ε

|�ε〉〈�ε | = I,

warrants the interpretation of the imaginary part of the Green’s
function as the density of state

nE (x) = |〈x|�E+i0〉|2. (3)

In Refs. [1,2], Friedel showed that the difference between
the integrated density of states of the interacting system and
free-particle system, n(0)

E (x), is related to the scattering phase
shifts by ∫ ∞

−∞
dx

[
nE (x) − n(0)

E (x)
] = 1

π

d

dE
Tr[δ(k)], (4)

where δ(k) stands for the diagonal matrix of scattering phase
shifts, and k is related to the mass and energy of the scattering
particle, m and E , respectively, by

k2 = 2mE .

We remark that both k and E are used to label the en-
ergy dependence of a physical quantity throughout the entire
presentation; the purpose is solely for the convenience of pre-
sentation. The relation given in Eq. (4) sometime is referred
as the Friedel formula, and it is usually also given in terms of
the S matrix,

S(k) = e2iδ(k),

by

− i

2π

d

dE
ln det [S(k)]

= Im

[∫ ∞

−∞
dx〈x|Ĝ(E + i0) − Ĝ0(E + i0)|x〉

]
, (5)

where

Ĝ0(E ) = 1

E − Ĥ0

denotes the free particle’s Green’s function operator.
Given the fact that the Green’s function has a physical

branch cut along the positive real axis in the complex E
plane, E ∈ [0,∞], the physical observables, such as density
of states, phase shifts, the S matrix, etc., are all defined right
above the physical branch cut. In addition, the Green’s func-
tion may also have an unphysical branch cut sitting along the
negative real axis: E ∈ [−∞,−EL], where −EL represents
the branch point of the unphysical cut. In the unphysical
region, though Eq. (5) is still formally valid, the S matrix
and scattering amplitudes are usually not well constrained
and largely model dependent. The imaginary part (absorptive
part) of the Green’s function is identical to the discontinuity
of the Green’s function across the physical and unphysical
branch cuts, which is given in Eq. (5). The real part (principal
part) of the Green’s function can be constructed through the
imaginary part by Cauchy’s integral theorem (also referred as
the dispersion integral relation in nuclear/particle physics);
hence,∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉

= d

dE

i

2π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

ln det[S(
√

2mε)]

ε − E
. (6)

The equivalence of relation given in Eq. (6) and Krein’s theo-
rem [10,26] in spectral theory is recognized by Faulkner [9],
where i

2π
ln det[S(k)] is exactly the Krein’s spectral shift func-

tion; see Ref. [10]. In the collision theory, −i d
dE ln det[S(k)]

is also used to describe the time delay of a scattered particle
off potential barriers.

In Sec. III and Sec. IV, we will show that even in complex
potential scattering, the Friedel formula and Krein’s theorem
remain forms similar to those in Eq. (5) and Eq. (6) in real
potential scattering theory. However, the imaginary part of the
Green’s function must be replaced by the absorptive part of
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the Green’s function. In complex potential scattering theory,
the spectral representation of the Green’s function is given
in terms of the biorthogonal basis of dual systems with bal-
anced gain and loss: one is absorbing with loss and another is
emissive with gain. Hence the absorptive part of the Green’s
function in complex potential scattering is no longer related to
the density of states of a single system.

III. FRIEDEL FORMULA IN COMPLEX POTENTIAL
SCATTERING THEORY

In this section, we show in great detail the derivation of
generalizing the Friedel formula in Eq. (5) in the complex
potential scattering theory. The derivation can be made in a
rather more general but intuitive way following the discussion
and approach presented in Ref. [3].

First of all, considering that a nonrelativistic spinless parti-
cle of mass m is scattered off a complex absorbing potential,
the dynamics is thus described by the Schrödinger equation,

Ĥ |�E 〉 = E |�E 〉, Ĥ = Ĥ0 + V̂ , (7)

where Ĥ0 = − 1
2m

d2

dx2 and V̂ stand for the free Hamiltonian
and complex absorbing potential operators of the system,
respectively. Its dual system with an adjoint Hamiltonian Ĥ†

thus describes a particle that scatters off an emissive complex
potential of V̂ †; thus the dynamics of the emissive system is
given by the Schrödinger equation,

Ĥ†|�̃E 〉 = E |�̃E 〉. (8)

The emissive system with gain can be considered as the
time-reversed version of the absorbing system with equal but
opposite loss, and vice versa. Hence dual systems have no net
gain or loss. The wave function of an absorbing system and
its dual are defined in Hilbert space H and its dual space H∗,
respectively, and they are related by

|�E 〉 ↔ 〈�̃E∗ |. (9)

The eigenstates of neither an absorbing nor an emissive sys-
tem alone form an orthogonal basis; however, the eigenstates
of dual systems together are biorthogonal and normalized as,
see Refs. [27–29], ∑

E

|�E 〉〈�̃E | = I. (10)

The expectation value of an observable Ô is defined by

〈Ô〉 = 〈�̃E |Ô|�E 〉. (11)

A. S matrix and Møller operators in complex potential
scattering theory

The S-matrix operators for dual systems are defined by, see
Refs. [27,28],

Ŝ(E ) = ˆ̃�†
E−i0�̂E+i0,

ˆ̃S(E ) = �̂
†
E−i0

ˆ̃�E+i0, (12)

where Møller operators are defined through wave functions by

|�E 〉 = �̂E |� (0)
E 〉 (13)

for an absorbing system with loss, and

〈�̃E | = 〈� (0)
E | ˆ̃�†

E (14)

for an emissive system with gain, respectively. |� (0)
E 〉 stands

for the eigenstate of free Hamiltonian,

Ĥ0|� (0)
E 〉 = E |� (0)

E 〉. (15)

Møller operators, �̂E+i0 and ˆ̃�E−i0, hence describe systems
that evolve forward in time with Ĥ and backward in time with
Ĥ†, respectively. As the consequence of balanced gain and
loss in dual systems, biorthogonal eigenstates of dual systems
are normalized according to

〈�̃E |�E 〉 = I; (16)

hence it yields

ˆ̃�†
E �̂E = I. (17)

The unitarity relation of the S-matrix operator is also war-
ranted:

ˆ̃S†(E )Ŝ(E ) = ˆ̃�†
E+i0�̂E−i0

ˆ̃�†
E−i0�̂E+i0 = I. (18)

Using Eq. (12), we also find

Tr

[
ˆ̃S†(E )

d

dE
Ŝ(E ) − Ŝ(E )

d

dE
ˆ̃S†(E )

]
= Tr

[
�̂E−i0

d

dE
ˆ̃�†

E−i0 − ˆ̃�†
E−i0

d

dE
�̂E−i0

]
+ Tr

[
ˆ̃�†

E+i0

d

dE
�̂E+i0 − �̂E+i0

d

dE
ˆ̃�†

E+i0

]
. (19)

Next, before we start simplifying Eq. (19), let us make a list
of some useful equations for complex scattering systems. The
Lippmann-Schwinger (LS) equation for an absorbing system

|�E 〉 = |� (0)
E 〉 + Ĝ0(E )V̂ |�E 〉 (20)

yields

�̂E = I − Ĝ0(E )T̂ (E ), (21)

where T̂ (E ) stands for the scattering amplitude operator and
is defined by

T̂ (E ) = −V̂ �̂E . (22)

Also using the relation between the wave function and full
Green’s function of an absorbing system,

|�E 〉 = |� (0)
E 〉 + Ĝ(E )V̂ |� (0)

E 〉, (23)

the Møller operator �̂E is hence also given by

�̂E = I + Ĝ(E )V̂ . (24)

The scattering amplitude operator, T̂ (E ), is related to the
Green’s function by

T̂ (E ) = −V̂ − V̂ Ĝ(E )V̂ . (25)

The normalization of Møller operators in dual systems in
Eq. (17) and the Dyson equation,

Ĝ(E ) = Ĝ0(E ) + Ĝ0(E )V̂ Ĝ(E ), (26)

suggest that

ˆ̃�†
E = �̂−1

E = I − Ĝ0(E )V̂ . (27)
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Now we are ready to simplify Eq. (19) and derive the
Friedel formula for complex potential scattering systems. Us-
ing Eq. (22) and Eq. (27), we first find

Tr

[
�̂E

d

dE
ˆ̃�†

E − ˆ̃�†
E

d

dE
�̂E

]
= Tr

[
−�̂E

d

dE
Ĝ0(E )V̂ − d

dE
�̂E + Ĝ0(E )V̂

d

dE
�̂E

]
= Tr

[
T̂ (E )

d

dE
Ĝ0(E ) − d

dE
�̂E − Ĝ0(E )

d

dE
T̂ (E )

]
.

(28)

Next using Eq. (21), we can write it again to

Tr

[
�̂E

d

dE
ˆ̃�†

E − ˆ̃�†
E

d

dE
�̂E

]
= 2 Tr

[
T̂ (E )

d

dE
Ĝ0(E )

]
= −2 Tr[Ĝ0(E )T̂ (E )Ĝ0(E )].

(29)

Finally Eq. (25) and the Dyson equation yield

−Ĝ0(E )T̂ (E )Ĝ0(E ) = Ĝ(E )V̂ Ĝ0(E ); (30)

hence Eq. (29) can be rewritten further to

Tr

[
�̂E

d

dE
ˆ̃�†

E − ˆ̃�†
E

d

dE
�̂E

]
= 2Tr[Ĝ(E )V̂ Ĝ0(E )]. (31)

In the end, Eq. (19) and Eq. (31) together lead to

− 1

2
Tr

[
ˆ̃S†(E )

d

dE
Ŝ(E ) − Ŝ(E )

d

dE
ˆ̃S†(E )

]
= Tr[Ĝ(E + i0)V̂ Ĝ0(E + i0) − Ĝ(E − i0)V̂ Ĝ0(E − i0)].

(32)

Equation (32) holds in general for an arbitrary complex poten-
tial without any symmetry consideration. However, in general

Ĝ(E )V̂ Ĝ0(E ) 	= Ĝ0(E )V̂ Ĝ(E ) = Ĝ(E ) − Ĝ0(E );

the Dyson equation in Eq. (26) for an arbitrary complex poten-
tial is in fact direction dependent. The transpose of the Dyson
equation

Ĝ(E )V̂ Ĝ0(E ) = Ĝ(E ) − Ĝ0(E )

is valid only if

ĜT (E ) = Ĝ(E ).

This is indeed the case when reciprocity symmetry is satisfied
under the condition V̂ T = V̂ ; see Refs. [30–32].

B. Friedel formula under symmetry constraints

For the local complex potentials, the reciprocity symmetry
is automatically satisfied:

V̂ T = V̂ .

It can be easily shown [30–32] that the Green’s function is
reciprocal symmetric under the exchange of variables,

〈x|Ĝ(E )|x′〉 = 〈x′|Ĝ(E )|x〉. (33)

Therefore, the Dyson equation is now also reciprocal symmet-
ric:

Ĝ(E ) − Ĝ0(E ) = Ĝ(E )V̂ Ĝ0(E ) = Ĝ0(E )V̂ Ĝ(E ). (34)

Hence, under reciprocity, Eq. (31) is given by

Tr

[
�̂E

d

dE
ˆ̃�†

E − ˆ̃�†
E

d

dE
�̂E

]
= 2 Tr

[
Ĝ(E ) − Ĝ0(E )

]
, (35)

where the trace on the right-hand side of Eq. (35) in coordinate
space is defined by

Tr
[
Ĝ(E ) − Ĝ0(E )

] =
∫ ∞

−∞
dx〈x|G(E ) − Ĝ0(E )|x〉. (36)

In the end, Eq. (32) results in a Friedel formula for complex
local potential scattering systems:

1

4i
Tr

[
S̃†(k)

d

dE
S(k) − S(k)

d

dE
S̃†(k)

]
= −DiscE

[∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉

]
, (37)

where the hat on the S-matrix operator in Eq. (32) has
been dropped, and now S(k)/S̃(k) in Eq. (37) represents the
reduced on-energy-shell S matrix. Hence the trace on the
left-hand side of Eq. (37) is defined as the regular trace of
a matrix. The discontinuity of the Green’s function crossing
branch cut in the complex E plane is defined by

DiscE Ĝ(E ) = 1

2i
[Ĝ(E + i0) − Ĝ(E − i0)]. (38)

We also remark that for a complex potential, the discontinuity
of the Green’s function is not equivalent to the imaginary part
of the Green’s function. This statement can be illustrated by
considering the spectral representation of the Green’s function
in Appendix C.

Using the unitarity relation of dual systems

S̃†(k) = S−1(k)

and identity

Tr[ln S(k)] = ln det [S(k)],

the Friedel formula is thus also given in a more compact form:

1

2i

d

dE
ln {det [S(k)]}

= −DiscE

[∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉

]
. (39)

Therefore, the Friedel formula is invariant under unitary trans-
form of the S matrix, and does not depend on a specific basis
of eigensolutions.

In a real potential scattering, the left-hand side of the
Friedel formula in Eq. (39) is real and positive, which is
related to the scattering phase shift matrix by

1

2i

d

dE
ln {det [S(k)]} = d

dE
Tr[δ(k)]. (40)

However, for a complex potential in general, it is a com-
plex matrix. As presented in Appendix A and Appendix B,
the S matrix of complex potential dual systems cannot be
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parametrized by phase shifts without additional symmetry
constraints.

1. Spatial inversion symmetry

For a local and spatial inversion (P) symmetric potential,

V (x) = V (−x),

as presented in Appendix B 1 b, the S matrix can be
parametrized by two real phase shifts, δ±(k), and two real
inelasticities, η±(k), see Eq. (B12),

S(+/−)(k) =
[

e2i�+(k) 0
0 e2i�−(k)

]
, (41)

where

e2i�±(k) = η±(k)e2iδ±(k). (42)

Hence, the Friedel formula under the P symmetry constraint
is determined by the sum of two complex functions, �±(k),
that play the role of complex phase shifts,

1

2i

d

dE
ln {det [S(k)]} = d

dE
[�+(k) + �−(k)]. (43)

2. PT symmetry

For a local and PT -symmetric potential,

V ∗(x) = V (−x),

the S matrix in the parity basis can be parametrized by two
real phase shifts and one real inelasticity; see Eq. (B28) and
Eq. (B30). In the parity basis, the S matrix is no longer diago-
nal; however, because of

det[S(+/−)(k)] = e2i[δ+(k)+δ−(k)], (44)

the Friedel formula with PT symmetry constraints does not
depend on inelasticity, and is given by the sum of two real
phase shifts,

1

2i

d

dE
ln {det [S(k)]} = d

dE
[δ+(k) + δ−(k)]. (45)

Using the expression of discontinuity of the Green’s function
in Eq. (C12), the Friedel formula under PT symmetry thus
yields a real equation,

d

dk
[δ+(k) + δ−(k)]

=
∑
p=±k

Re

[∫ ∞

−∞
dx�k (x, p)�∗

k (−x,−p)

]
. (46)

IV. KREIN’S THEOREM IN COMPLEX POTENTIAL
SCATTERING THEORY

A. Krein’s theorem in complex potential scattering theory and
symmetry constraints

For a complex potential, using the Friedel formula in
Eq. (39), assuming both the Green’s function and S matrix
having the branch cuts along the real axis in the complex E
plane, the Green’s function is thus constructed by Cauchy’s
integral through the discontinuity of the Green’s function
across both physical and unphysical cuts. Hence even with a

complex potential, the expression of Krein’s theorem given
in Eq. (6) is still valid and remains the same. We would
also point out that the integration of the Green’s function
over x may bring down an extra singularity factor, such as
1/k. Hence in addition to the branch cut that is inherited
from the unintegrated Green’s function itself, the integrated
Green’s function may have extra singularities, such as a pole
contribution at the physical threshold because of the extra 1/k
factor brought down by integration. A simple example of the
singularity structure of the integrated Green’s function for the
scattering with a complex contact interaction can be found
in Sec. V A. Therefore, when extra singularity factors show
up in the integrated Green’s function, though the unintegrated
Green’s function still satisfies Cauchy’s integral relation

〈x|Ĝ(E )|x〉 = 1

π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

Discε〈x|Ĝ(ε)|x〉
ε − E

, (47)

Cauchy’s integral of the integrated Green’s function in terms
of the discontinuity of the integrated Green’s function must be
modified and pick up the contribution of extra singularities.
The extra singularity contribution in the integrated Green’s
function can also be understood by Krein’s theorem in Eq. (6).
Let us rewrite the right-hand side of Eq. (6) by integration by
parts, and also using the Friedel formula in Eq. (39), we thus
find∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉 = − i

2π

ln {det [S(0)]}
E

+ 1

π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

Discε

[∫ ∞
−∞ dx〈x|Ĝ(ε)−Ĝ0(ε)|x〉]

ε − E
,

(48)

where the surface term on the right-hand side of the above
equation reflects the extra pole contribution of the integrated
Green’s function; other surface terms are assumed vanishing
and have been dropped. The nontrivial value of ln{det[S(0)]}
at physical threshold thus determines the presence of an extra
pole singularity of the integrated Green’s function.

Using Eq. (43) and Eq. (45) for P- and PT -symmetric sys-
tems, respectively, the integrated Green’s functions are related
to phase shifts explicitly by∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉

= − 1

π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

�+(
√

2mε) + �−(
√

2mε)

(ε − E )2
,

(49)

for P-symmetric systems, and∫ ∞

−∞
dx〈x|Ĝ(E ) − Ĝ0(E )|x〉

= − 1

π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

δ+(
√

2mε) + δ−(
√

2mε)

(ε − E )2
, (50)

for PT -symmetric systems.
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B. Muskhelishvili-Omnès representation of Krein’s theorem

1. Muskhelishvili-Omnès function

In the nuclear/particle physics community, the dispersion
theoretical approach by considering the analytical proper-
ties of reaction amplitude has been widely used in solving
particle-scattering, decaying, and production problems; see,
e.g., Refs. [33–37]. The Muskhelishvili-Omnès (MO) repre-
sentation [38,39] that is sometimes also referred to as the N/D
method [40,41] provides an elegant way of expressing the
reaction amplitude as the product of two analytic functions:
(1) an MO function that possesses only a right-hand branch
cut running along the positive real E axis, and the logarithm
of the MO function is given by the Cauchy integral of the
phase shift, and (2) an analytic function that may possess other
singularities but a right-hand branch cut, such as a left-hand
branch cut, etc. The MO function is constrained by a unitarity
relation that warrants the conservation of the total probability
of reactions.

Even in the complex potential scattering theory, the MO
dispersive approach still applies. However, we need to be
aware that in general, especially with a complex potential, the
discontinuity of a reaction amplitude is no longer the same as
the imaginary part of the reaction amplitude, and the phase
shift function may become a complex function, etc.

Next, we will give a brief and concise introduction to the
MO dispersive approach, so later on we can apply and cite
the main result directly. Let us consider a reaction amplitude,
F (E ), which is analytic in the complex E plane and the prop-
erty of F (E ) along the right-hand branch cut is constrained by
the unitarity relation,

e2i	(E+i0)F (E − i0) = F (E + i0), E � 0, (51)

where the functions 	(E ± i0) that are defined above/below
the right-hand branch cut are related by

	(E − i0) = −	(E + i0). (52)

Equation (51) defines the discontinuity of F (E ) across the
right-hand branch cut,

DiscE F (E ) =
[

e2i	∗(E+i0) − 1

2i

]∗
F (E + i0), E � 0. (53)

In the real potential scattering theory, the 	(E ) function is real
and related directly to the elastic scattering phase shift; see,
e.g., Refs. [38,39]. Later on we will show that in P- and PT -
symmetric systems, 	(E ) is given by the sum of �±(k) and
δ±(k), respectively, where the condition of the 	(E ) function
in Eq. (52) is indeed satisfied. Equation (51) suggests that the
solution of F (E ) has the form of

F (E ) = N (E )eλ(E ), (54)

where N (E ) has no right-hand branch cut singularity,

N (E + i0) = N (E − i0), E � 0. (55)

The eλ(E ) is usually referred to as the MO function or D−1(E )
function. The λ(E ) has only the right-hand branch cut singu-
larity, and using Eq. (51), we find

DiscEλ(E ) = 	(E + i0), E � 0; (56)

hence the Cauchy integral theorem yields

λ(E ) = 1

π

∫ ∞

0
dε

	(ε)

ε − E
, (57)

and

F (E ) = N (E )e
1
π

∫ ∞
0 dε

	(ε)
ε−E . (58)

The N (E ) usually describes the virtual physical processes,
such as contributions from t- and u-channel virtual particle
exchange processes in a relativistic theory that produce a
left-hand cut contribution below the elastic threshold; see,
e.g., Ref. [42]. The elastic scattering phase shift is a physi-
cal observable; hence the unitarity relation imposes a strong
constraint on reaction amplitudes along the right-hand branch
cut. Unlike the unitarity relation above the elastic threshold,
the discontinuity of reaction amplitude across the left-hand
cut below the elastic threshold in the unphysical region is nor-
mally less constrained and heavily model dependent. When
the left-hand cut is far away from the physical region, the
N (E ) may be parametrized by approximate methods, such
as conformal expansion [43], or simply treated as a constant
[36,37]. In nonrelativistic potential scattering theory, for some
short-range local potentials in 1D, such as contact interaction
or nonsingular potential, it can be shown that N (E ) is indeed
an energy-independent constant; see the example in Sec. V A.

The argument of the right-hand cut solution can be ex-
tended into a left-hand singularity as well. Assume that
the 	(E ) function is defined in both the physical region,
E ∈ [0,∞], and unphysical region, E ∈ [−∞,−EL], so that
Eq. (51) is now valid for both right-hand and left-hand sin-
gularities. Both physical and unphysical branch cuts are now
described by the 	(E ) function. In the unphysical region, E ∈
[−∞,−EL], the discontinuity of the MO function vanishes,

eλ(E+i0) = eλ(E−i0),

and the solution of N (E ) also has the form of

N (E ) = N0eχ (E ), (59)

where N0 is a normalization constant, and

DiscEχ (E ) = 	(E + i0), E ∈ [−∞,−EL]. (60)

Therefore the Cauchy integral theorem yields

χ (E ) = 1

π

∫ −EL

−∞
dε

	(ε)

ε − E
. (61)

With both left-hand and right-hand singularities described by
the 	(E ) function, thus, we finally get

F (E ) = N0e
1
π [

∫ −EL
−∞ + ∫ ∞

0 ]dε
	(ε)
ε−E . (62)

2. Muskhelishvili-Omnès representation of Krein’s theorem in
P-symmetric systems

For a P-symmetric system, using the unitary transform re-
lation in Eq. (A22), the transmission amplitude t (k) is related
to �±(k) by

t (k) = e2i�+(k) + e2i�−(k)

2
. (63)

023083-6



FRIEDEL FORMULA AND KREIN’S THEOREM IN … PHYSICAL REVIEW RESEARCH 4, 023083 (2022)

The unitarity relation constraint in Eq. (B13) yields

�±(−k) = −�±(k); (64)

hence we find

e2i[�+(k)+�−(k)]t (−k) = t (k). (65)

Equations (65) and (64) are the exact MO representation type
in Eq. (51) and Eq. (52):

t (±k) = F (E ± i0), �+(±k) + �−(±k) = 	(E ± i0).
(66)

Therefore, the MO representation of transmission amplitude,
t (k), is given by

ln

[
t (k)

N0

]
= 1

π

[∫ −EL

−∞
+

∫ ∞

0

]
dε

�+(
√

2mε) + �−(
√

2mε)

ε − E − i0
,

(67)
and Krein’s theorem can also be written as

− d

dE
ln t (k) =

∫ ∞

−∞
dx〈x|Ĝ(E + i0) − Ĝ0(E + i0)|x〉.

(68)

3. Muskhelishvili-Omnès representation of Krein’s theorem in
PT -symmetric systems

Similarly, in a PT -symmetric system, using the expression
of the transmission amplitude t (k) in Eq. (B32) and unitarity
constraint in Eq. (B33), t (−k) = t∗(k), we find

η(−k) = η(k), δ±(−k) = −δ±(k), (69)

and

e2i[δ+(k)+δ−(k)]t (−k) = t (k). (70)

Hence, in the PT -symmetric system,

t (±k) = F (E ± i0), δ+(±k) + δ−(±k) = 	(E ± i0),
(71)

and the MO representation of Krein’s theorem has the same
form as in Eq. (68).

V. DISCUSSION AND SUMMARY

Before we summarize the results of our finding, a simple
and exactly solvable example of a particle scattering with a
contact interaction is presented below, which is sufficient to
demonstrate a number of unique features of complex scatter-
ing theory, such as spectral singularities, etc.

A. A simple example of particle scattering with a complex
contact potential

1. Scattering solutions

Let us consider a simple but intuitive example of scattering
solutions with a complex contact potential,

V (x) = V δ(x), V = |V |eiθ . (72)

The scattering solutions can be obtained rather straightfor-
wardly by considering Eq. (A2) and Eq. (A9); hence for an
absorbing system, we find

�k (x, p) = eipx + i fkeik|x|, (73)

where the on-shell amplitude depends only on k as the result
of contact interaction,

fk = − mV

k + imV
. (74)

For an emissive system, we thus have

�̃k (x, p) = eipx + i f̃keik|x|, (75)

where

f̃k = − mV ∗

k + imV ∗ = − f ∗
−k . (76)

As a symmetric potential, only one transmission and one
reflection amplitude are needed,

t (k) = 1 + i fk, r(k) = i fk; (77)

the S matrix in the parity basis is thus given by

S(+/−)(k) =
[

1 + 2i fk 0
0 1

]
=

[
k−imV
k+imV 0

0 1

]
. (78)

For a contact interaction, only the positive parity solution
survives. Similarly for an emissive system, we obtain

S̃(+/−)(k) =
[

1 + 2i f̃k 0
0 1

]
=

[
k−imV ∗
k+imV ∗ 0

0 1

]
. (79)

Hence, the unitarity is indeed given by

S̃(+/−)†(k)S(+/−)(k) =
[

k+imV
k−imV 0

0 1

][
k−imV
k+imV 0

0 1

]
= I. (80)

The complex functions, �±(k), are given by

�+(k) = − cot−1

(
k

mV

)
, �−(k) = 0, (81)

and

d

dE
�+(k) = m

k

mV

k2 + (mV )2
. (82)

2. Green’s function solution

The Dyson equation for a contact potential is given by an
algebra equation,

G(x, x′; E ) = G0(x − x′; E ) + G0(x; E )V G(0, x′; E ), (83)

where G0(x; E ) is defined in Eq. (A3). The solution of the
Green’s function is thus given analytically by

G(x, x′; E + i0) = − im

k

[
eik|x−x′| − imV

k + imV
eik(|x|+|x′|)

]
.

(84)

3. Friedel formula check

The Green’s functions that are defined below the real E
axis, E − i0, are simply obtained by replacing k by −k in the
above expressions. Thus we find

−DiscE

∫ ∞

−∞
dx[G(x, x; E ) − G0(0; E )] = m

k

mV

k2 + (mV )2
.

(85)
The discontinuity of the integrated Green’s function differ-
ence is hence a complex function as well and indeed equal
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to d
dE �+(k). The left-hand branch cut is absent for a contact

interaction. The Friedel formula is satisfied.

4. Krein’s theorem check

Using the analytic expression given in Eq. (84) and
Eq. (81), thus we can show easily that Krein’s theorem is
indeed also satisfied for a contact interaction,∫ ∞

−∞
dx[G(x, x; E + i0) − G0(0; E + i0)]

= − 1

π

∫ ∞

0
dε

�+(
√

2mε)

(ε − E − i0)2
= − m

k2

imV

k + imV
. (86)

From the above expression, we can see clearly the presence
of a pole contribution 1/k2 in addition to the branch cut sin-
gularity, and �+(0) = −π

2 is indeed nonzero. For θ ∈ [0, π
2 ],

the interaction is repulsive-like; we find

1

π

∫ ∞

0
dε

Discε

∫ ∞
−∞ dx[G(x, x; ε) − G0(0; ε)]

ε − E − i0

= m

k

1

k + imV
; (87)

hence we can verify that the Cauchy integral equation for the
integrated Green’s function is indeed Eq. (48) type,

− m

k2
+ 1

π

∫ ∞

0
dε

Discε

∫ ∞
−∞ dx[G(x, x; ε) − G0(0; ε)]

ε − E − i0

=
∫ ∞

−∞
dx[G(x, x; E + i0) − G0(0; E + i0)]. (88)

For the contact interaction, the MO representation of
transmission amplitude, t (k), only has a physical branch cut
singularity,

t (k) = k

k + imV
= N0e

1
π

∫ ∞
0 dε

�+ (
√

2mε)
ε−E−i0 , (89)

where N0 is a constant and simply plays the role of integral
subtraction to ensure the fast convergence of the dispersive
integral,

N0 = t (iκ0)e
− 1

π

∫ ∞
0 dε

�+ (
√

2mε)

ε+ κ2
0

2m , (90)

and κ0 can be chosen arbitrarily. Hence, the MO representa-
tion of Krein’s theorem is indeed given by Eq. (68).

5. Spectral singularity and bound state above physical threshold

It has been well known that in non-Hermitian complex
potential scattering theory, the bound state may appear above
a physical threshold, which is usually referred to spectral
singularities [44–46]. It was shown in Ref. [44] that spectral
singularities of a non-Hermitian Hamiltonian yield diver-
gences of reflection and transmission coefficients of scattered
states, and are interpreted as resonance states with vanishing
spectral width. The origin of zero-width resonances and bound
states are nevertheless the same; both are the results of pole
solutions in dynamical related amplitudes and quantities, such
as scattering amplitudes and Green’s functions, etc. Conven-
tionally the pole solutions below the physical threshold are

FIG. 1. The plot of motion of pole singularity on the first Rie-
mann sheet of the complex E plane; the pole position is given by
Epole = −(m|V |)2e2iθ as θ increases from 0 up to the [ π

2 , π ] region.
The trajectory of motion of the pole is represented by the solid blue
curve.

referred to as bound states, in contrast to the spectral singular-
ity related zero-width resonances in non-Hermitian scattering
theory that appear in the physical continuous spectrum. This
can be easily understood by the simple example of contact
interaction scattering: the pole singularity of the dynamical
system is proportional to 1

k+imV ; hence for the real potential
scattering, the pole solution, kpole = −imV , corresponds to a
bound state for attractive potential (V < 0) or a virtual bound
state if the potential is repulsive (V > 0). On the complex E
plane, the bound state solution is located on the first Riemann
sheet below the physical threshold, 2mEB = −(mV )2, and the
virtual bound state however is on the second Riemann sheet
(unphysical sheet). In the complex potential scattering, V =
|V |eiθ has access to the entire complex plane; hence when θ

is rotated from 0 to π , now the pole solution can move from
below the physical threshold on the first Riemann sheet into
the second Riemann sheet by crossing the positive real E axis
from below. Therefore the spectral singularity of zero-width
resonance occurs, 2mEpole = (m|V |)2, at θ = π

2 .
The motion of pole singularities in the complex plane

also affects the Cauchy integral representation of the Green’s
function. Equation (47) is valid only when θ ∈ [0, π

2 ], and the
pole is located right below the contour of integration over the
positive real E axis on the physical sheet. When the value of
θ is further increased into the [ π

2 , π ] region, the pole starts
moving across the integral contour into the second Riemann
sheet. The motion of the pole hence drags the contour of
integration moving with it to keep the Cauchy integral well
defined on the physical sheet; see Fig. 1. In the end, the extra
term as the residue of the deformed contour of integration
must be added into the Cauchy integral representation of the
Green’s function. The same is true for the Cauchy integral
representation of the integrated Green’s function in Eq. (87)
and Eq. (88); it is sufficient to demonstrate spectral singularity
by considering the expression in Eq. (87),

1

π

∫ ∞

0
dε

Discε

∫ ∞
−∞ dx[G(x, x; ε) − G0(0; ε)]

ε − E

= − 1

π

∫ ∞

0
dε

1

ε − E

m√
2mε

mV

2mε + (mV )2
. (91)
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For θ ∈ [0, π
2 ], we already know the result of integration is

− 1

π

∫ ∞

0
dε

1

ε − E − i0

m√
2mε

mV

2mε + (mV )2
= m

k

1

k + imV
.

(92)
The pole singularity that is determined by the condition

2mε + (mV )2 = 0

is now well illustrated on the left-hand side of the above
equation. When the θ value is increased from θ ∈ [0, π

2 ] into
θ ∈ [π

2 , π ], the pole moves from below the contour of the
integral to above; hence the contour of the integral must be
deformed to follow the motion of the pole, see Fig. 1, so
that the residue contribution due to the deformation of the
integration contour must be added. We find

1

π

∫ ∞

0
dε

Discε

∫ ∞
−∞ dx[G(x, x; ε) − G0(0; ε)]

ε − E − i0

+ 2m

k2 + (mV )2
= m

k

1

k + imV
, θ ∈

[π

2
, π

]
. (93)

B. Summary and outlook

In summary, as the consequence of the balanced gain and
loss dual systems, the biorthogonal relation can be established
between eigenstates of dual systems. Hence the Friedel for-
mula in complex potential scattering theory is still given in
the same form,

1

2i

d

dE
ln {det [S(k)]} = −DiscE {Tr

[
Ĝ(E ) − Ĝ0(E )

]};
the same is true for Krein’s theorem given in Eq. (6). The
same mathematical forms of the Friedel formula and Krein’s
theorem in both real and complex potential scattering theories
suggest that the Friedel formula and Krein’s theorem for real
and complex potentials can be simply connected by analytical
continuation. This argument may be also supported by the
Muskhelishvili-Omnès representation of Krein’s theorem in
Eq. (68). Therefore, numbers of useful relations in real poten-
tial scattering theory may still apply to complex systems, such
as PT -symmetric systems.

One of these useful relations that is closely related to
Eq. (68) is the formula given in Refs. [47,48],

− d ln t (k)

dE
− r (L)(k) + r (R)(k)

4E
e2ikL

=
∫ L

−L
dx〈x|Ĝ(E + i0) − Ĝ0(E + i0)|x〉. (94)

Equation (94) shows the relation between the partially inte-
grated Green’s function up to a range L and both transmission
t (k) and reflection r (R/L)(k) amplitudes for a finite-range
potential scattering system. The potential regardless of the
specific shape may be approximated by the sum of multiple
layers of the square well potential. After some lengthy deriva-
tions, see Refs. [47,48], Eq. (94) can be obtained remarkably.
As pointed out in Ref. [48], a calculation of the density of
states without taking into account the extra oscillation term in
Eq. (94) yields a wrong result. Such oscillations in density of
states and the partial density of states influence the conduc-
tion properties of sufficiently small conductors [49]. At the

limit of L � 1/k, or in cases such as the resonant scattering
where reflection is negligible, the second oscillation term in
Eq. (94) can be neglected, and Eq. (68) is recovered. The
relations given in Eq. (94) and Eq. (68) may also be valid
in describing the dynamics of other waves, such as acoustic
or electromagnetic waves, as far as its propagation in the
medium is a second-order Schrödinger-equation-like differ-
ential equation [50]. For an example, in Ref. [51], a similar
result to relation in Eq. (94) is obtained for an electromag-
netic wave propagating in a finite system with an arbitrary
position-dependent refractive index that plays the role of the
interaction potential. The partially integrated Green’s func-
tion over the finite range of the scattering region naturally
appears in the theory of calculating the expectation value of
the spin components along or perpendicular to the direction
of the external magnetic field. In addition, it also arises in the
general analysis of the so-called Büttiker-Landauer tunneling
time through a real potential. The question of how the aver-
age value of the spin or tunneling time components behave
explicitly in the case of PT -symmetric systems has not been
properly studied. On top of the above-mentioned cases, a sim-
ilar expression also arises for the “Cooperon” in the theory of
weak localization and weak antilocalization in semiconductor
films.

One of the important features of the Friedel formula in
complex potential scattering theory is that the absorptive part
of the Green’s function is in general a complex function and
no longer related to the conventional definition of density
of states of Hermitian quantum theory. In the case of PT -
symmetric systems, the absorptive part of the Green’s function
is real; hence, the integrated absorptive part of the Green’s
function may still be interpreted as a time delay function for
dual systems with balanced gain and loss. The imaginary part
of the Green’s function in PT -symmetric systems may be
considered as a generalized density of states; it is still a con-
served quantity but no longer positive-definite. Hence it is also
referred to as a pseudonorm in Refs. [52,53]. An alternative
view of the physical interpretation of biorthogonal quantum
theory is given in Ref. [29]: the dual Hilbert spaces where
the dual systems are defined are replaced by a single Hilbert
space with a nontrivial metric that connects eigenstates of dual
systems, and hence the physical observable is thus evaluated
as the expectation value in the Hilbert space endowed with a
nontrivial metric. Similarly, the absorptive part of the Green’s
function in complex potential scattering theory now may be
interpreted as the density of states in the Hilbert space with a
nontrivial metric that describes the absorbing/emissive nature
of the complex system.

There are a number of problems in PT -symmetric systems
that are worth studying in detail—for instance, finite-size
effects and related Tamm states. These Tamm states arising
at the boundary of any finite semiconductor are practically
independent of the distribution of defects and external pertur-
bations. Another problem that is less discussed in the literature
for a PT system is the field dependence of the anomalous
magnetoresistance for a sample with a thickness at the order of
the external magnetic length. In such a case, the interference
effects associated with the boundary become very important,
affect the charge’s quantum transport, and may lead to inter-
esting oscillations of the magnetoresistance.

023083-9



PENG GUO AND VLADIMIR GASPARIAN PHYSICAL REVIEW RESEARCH 4, 023083 (2022)

ACKNOWLEDGMENTS

We acknowledge support from the Department of Physics
and Engineering, California State University, Bakersfield,
California. We also thanks Christopher Wisehart for improv-
ing the use of the English language in the manuscript.

APPENDIX A: SCATTERING THEORY FOR
A COMPLEX POTENTIAL

In this Appendix, we give a brief description of scattering
theory for a complex potential in general in one-dimensional
space; good references can be found in Refs. [27–29].

1. Scattering solutions of an absorbing system

In terms of the Lippmann-Schwinger (LS) equation, the
wave function of an absorbing system that is defined above
the real axis in a complex E plane,

�k (x) = 〈x|�E+i0〉, k =
√

2m(E + i0), (A1)

satisfies the integral equation

�k (x, p) = eipx +
∫ ∞

−∞
dx′G0(x − x′; E + i0)V (x′)�k (x′, p),

(A2)

where the symbol

p = ±k

is used to label two independent boundary conditions: the
right (eikx) and left (e−ikx) propagating incoming plane waves,
respectively. The Green’s function of a free propagating parti-
cle is given by

G0(x; E + i0) =
∫ ∞

−∞

d p

2π

eipx

E − p2

2m + i0
= − im

k
eik|x|. (A3)

The on-shell scattering amplitudes for an absorbing system
are thus defined through the asymptotic behavior of the wave
function,

�k (x, p)
|x|�L→ eipx + i fk (p′, p)eik|x|, p′ = k

x

|x| , (A4)

where L stands for the range of potential: V (x)
|x|�L→ 0. The on-

shell scattering amplitudes with right/left propagating waves
are given by

fk (p′, p) = −m

k

∫ ∞

−∞
dx′e−ip′x′

V (x′)�k (x′, p), (A5)

where

(p′, p) ∈ ±k.

After removing the δ functions that preserve the energy
conservation between initial and final scattering states, the
reduced S matrix for an absorbing system in the right/left
propagating plane wave basis is thus defined by

S(R/L)(k) =
[

t (R)(k) r (L)(k)

r (R)(k) t (L)(k)

]
, (A6)

where t (R/L) and r (R/L) denote the transmission and reflec-
tion amplitudes; the superscripts (R/L) are adopted to label
amplitudes with boundary condition of right/left propagating
waves, respectively. The transmission and reflection ampli-
tudes are related to scattering amplitudes by[

t (R)(k) r (L)(k)

r (R)(k) t (L)(k)

]
=

[
1 + i fk (k, k) i fk (k,−k)

i fk (−k, k) 1 + i fk (−k,−k)

]
.

(A7)

2. Scattering solutions of an emissive system

Similarly, for an emissive system with a complex potential
V ∗(x), the wave function solution that is defined above the real
axis in a complex E plane,

�̃k (x) = 〈x|�̃E+i0〉, (A8)

is also given by the LS equation,

�̃k (x, p)=eipx+
∫ ∞

−∞
dx′G0(x − x′; E + i0)V ∗(x′)�̃k (x′, p).

(A9)

Hence the on-shell scattering amplitudes for an emissive sys-
tem are defined by

f̃k (p′, p) = −m

k

∫ ∞

−∞
dx′e−ip′x′

V ∗(x′)�̃k (x′, p), (A10)

and

�̃k (x, p)
|x|�b→ eipx + i f̃k (p′, p)eik|x|, p′ = k

x

|x| . (A11)

The S matrix for an emissive system in the right/left propa-
gating plane wave basis is thus given by

S̃(R/L)(k) =
[

t̃ (R)(k) r̃ (L)(k)

r̃ (R)(k) t̃ (L)(k)

]
, (A12)

where t̃ (R/L) and r̃ (R/L) are the transmission and reflection
amplitudes for an emissive system, and they are related to
f̃k (p′, p) in a way similar to that in Eq. (A7).

3. The relations of wave functions and scattering
amplitudes in dual systems

First of all, the complex conjugate of Eq. (A9) for an
emissive system yields

�̃∗
k (x, p) = ei(−p)x − im

(−k)

∫ ∞

−∞

× dx′ei(−k)|x−x′ |V (x′)�̃∗
k (x′, p), (A13)

where

k =
√

2m(E + i0)

and �̃∗
k (x, p) is defined above the real axis in the complex

E plane. Compared with the LS equation of an absorbing
system that is defined below the real axis in the complex E
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plane,

�−k (x,−p)

= ei(−p)x − im

(−k)

∫ ∞

−∞
dx′ei(−k)|x−x′ |V (x′)�−k (x′,−p),

(A14)

where

−k =
√

2m(E − i0),

we conclude that the wave functions of dual systems are
related by

�̃∗
k (x, p) = �−k (x,−p), p = ±k. (A15)

This relation in fact is the explicit expression of Eq. (9) after
the projection of the state operator into position space and also
taking into account the boundary conditions.

Next, using the definition of scattering amplitudes of dual
systems in Eq. (A5) and Eq. (A10), combined with the relation
of wave functions in Eq. (A15), we find that the on-shell
scattering amplitudes of dual systems are related by

f̃ ∗
k (p′, p) = − f−k (−p′,−p), (p′, p) ∈ ±k. (A16)

4. Unitarity relation of S matrix of dual systems

a. Unitarity relation of dual systems

The unitarity relation of dual systems is given by

S̃(R/L)†(k)S(R/L)(k) = I. (A17)

As shown in Eq. (A6) and Eq. (A12), in general the S matrix
for both an absorbing system and an emissive system depends
on four independent complex functions. Superficially eight
complex functions are required to describe the dynamics of
dual systems; the unitarity relation provides four complex
constraint equations on eight dynamical functions. Hence, the
S matrix of an emissive system is determined completely by
the S matrix of the absorbing system,

S̃(R/L)†(k) = [S(R/L)(k)]−1. (A18)

In the end, for a general nonsymmetric complex potential, four
independent complex dynamical functions are required. Using
Eq. (A16), we also find

S̃(R/L)†(k) = [S(R/L)(−k)]T . (A19)

We remark that though in the present work, the terminology
“unitarity relation” is constantly used to describe the relation
in Eq. (A17), we must be aware that in complex potential the-
ory, Eq. (A17) only refers to balanced gain and loss between
dual systems instead of probability preserving unitary time
evolution in Hermitian scattering theory.

b. S matrix in parity basis

For many occasions, especially in the cases that the
potential displays spatial reflection symmetries, it is more
convenient to use the scattering solutions with boundary con-
ditions of positive parity (cos kx) and negative parity (i sin kx)
propagating incoming waves. The wave function and scatter-
ing amplitude solutions with different boundary conditions are

related simply by the linear superposition:

�
(+/−)
k (x) = �k (x, k) ± �k (x,−k)

2
, (A20)

and

f (+/−)
k (p′) = fk (p′, k) ± fk (p′,−k)

2
, p′ = ±k, (A21)

where the superscripts (+/−) are used to label solutions that
correspond respectively to positive/negative parity propagat-
ing incoming waves: cos kx/i sin kx. The symbol p = ±k that
is used to label solutions that correspond to right/left prop-
agating incoming waves is hence dropped and replaced by
labels: (+/−).

The S matrices in different bases are related by a unitary
transformation,

S(+/−)(k) = U †S(R/L)(k)U, (A22)

where S(+/−)(k) stands for the S matrix in the parity basis, and
the U matrix is given by

U =
[ 1√

2
1√
2

1√
2

− 1√
2

]
. (A23)

APPENDIX B: SYMMETRY CONSTRAINTS IN COMPLEX
POTENTIAL SCATTERING THEORY

1. Reciprocity and spatial inversion symmetry

In addition to the unitarity constraints, the symmetries
of potential also impose extra constraints on dynamical sys-
tems and further reduce the number of independent complex
functions in describing dynamical systems. Most commonly
considered symmetries are time reversal (T ), spatial inversion
(P ), reciprocity (R), and combined PT symmetry. The time
reversal symmetry holds when V̂ = V̂ ∗ is satisfied; hence
for systems with complex potentials, time reversal symmetry
alone is broken. The spatial inversion symmetry is related to
potentials that display relations such as V (x) = V (−x). The
spatial inversion symmetry of systems yields the constraints
on both transmission and reflection amplitudes: t (R)(k) =
t (L)(k) and r (R)(k) = r (L)(k), which hold regardless of whether
the potential is real or complex. The concept of reciprocity is
distinct from time reversal symmetry; usually it refers to the
equality in the signal received when the source and detector
are reversed; see Refs. [30–32]. In terms of potential operator,
the reciprocity holds if

V̂ = V̂ T (B1)

is satisfied. For a local potential

〈x′|V̂ |x〉 = δ(x − x′)V (x)

regardless real or complex, Eq. (B1) is guaranteed. The reci-
procity symmetry leads to the constraint only on transmission
amplitudes: t (R)(k) = t (L)(k). In this subsection, we will give
a brief discussion on the reciprocity and spatial inversion
symmetry for local complex potentials. The discussion on
combined PT symmetry will be given separately in Sec. B 2.
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a. Reciprocity

For a local complex potential, reciprocity symmetry is au-
tomatically satisfied:

〈x′|V̂ |x〉 = 〈x|V̂ |x′〉 = δ(x − x′)V (x). (B2)

One of the important consequences of reciprocity is that the
transmission amplitudes for the right/left incident particles
are identical, see Refs. [30,54,55],

t (R)(k) = t (L)(k). (B3)

Equality of right/left transmission amplitudes can be illus-
trated in a rather straightforward way. Using the Schrödinger
equation, Eq. (7), we obtain

d

dx
W (�k (x, k), �k (x,−k)) = 0, (B4)

where W ( f , g) = f g′ − gf ′ refers to the Wronskian of two
functions. Hence, we first conclude that the Wronskian of
right/left propagating solutions of the Schrödinger equation,
�k (x,±k), does not depend on position x. Next using asymp-
totic behavior of wave functions in Eq. (A4), we also find

W (�k (x, k), �k (x,−k)) =
{−2ikt (R)(k), x → +∞,

−2ikt (L)(k), x → −∞.

(B5)
Together with the fact that the Wronskian of right/left propa-
gating solutions of the Schrödinger equation, �k (x,±k), does
not depend on position x, this therefore yields the equality of
right/left transmission amplitudes in Eq. (B3).

b. Spatial inversion

Next, let us consider a local complex potential that displays
the spatial inversion symmetry,

V (x) = V (−x). (B6)

For an absorbing system, using LS Eq. (A2) and symmetry of
potential, we find

�k (−x,−p)

= eipx − im

k

∫ ∞

−∞
dx′eik|x−x′ |V (x′)�k (−x′,−p), (B7)

compared with Eq. (A2); hence we get

�k (−x,−p) = �k (x, p). (B8)

Next, using the definition of scattering amplitude in Eq. (A5)
combined with the symmetry relation of wave function given
in Eq. (B8), we also find

fk (−p′,−p) = fk (p′, p). (B9)

Similar relations also hold for an emissive system as well.
Therefore, the spatial inversion symmetric potential yields

t (R)(k) = t (L)(k) = t (k), r (R)(k) = r (L)(k) = r(k), (B10)

and the S matrix in the parity basis becomes diagonal and
requires only two independent complex functions,

S(+/−)(k) =
[

t (k) + r(k) 0
0 t (k) − r(k)

]
. (B11)

Hence it is now possible to use two real inelasticities and two
real phase shifts to parametrize the S matrix,

S(+/−)(k) =
[
η+(k)e2iδ+(k) 0

0 η−(k)e2iδ−(k)

]
. (B12)

The unitarity relation

[S(+/−)(−k)]T = [S(+/−)(k)]−1

adds extra constraints for the elements of the S matrix defined
below and above the real E axis,

η±(−k)e2iδ±(−k) = η−1
± (k)e−2iδ±(k). (B13)

As ImV̂ → 0, dual systems become elastic and

η±
ImV̂ →0→ 1;

extra constraints in Eq. (B13) yield

δ±(−k)
ImV̂ →0→ −δ±(k), (B14)

and

S̃(+/−)†(k)
ImV̂ →0→ S(+/−)†(k) =

[
e−2iδ+(k) 0

0 e−2iδ−(k)

]
.

(B15)

The unitarity relation is hence reduced to familiar form,

S(+/−)†(k)S(+/−)(k) = I. (B16)

2. PT symmetry

For a local complex potential that displays the combined
PT symmetry,

V ∗(x) = V (−x), (B17)

the most intriguing part is that the PT -symmetric potential
imposes the symmetry constraints between both an absorbing
system and its dual system, which is different from the sym-
metry relations imposed by symmetric potentials such as one
in Eq. (B6). In the case of symmetric potential in Eq. (B6), the
symmetry constraints are only imposed on an absorbing and
its dual system separately; see, e.g., Eq. (B8) and Eq. (B9).
In addition to PT symmetry, since only local potential is
considered in present work, the reciprocity symmetry is also
satisfied automatically for dual systems; hence, for an absorb-
ing system, we find

fk (k, k) = fk (−k,−k), t (R)(k) = t (L)(k) = t (k). (B18)

Similar relations hold for an emissive system as well.

a. PT symmetry constraints on wave functions and scattering
amplitudes of dual systems

Using LS equation Eq. (A9) combined with the PT -
symmetric potential, for an emissive system, we thus get

�̃k (−x,−p)

= eipx − im

k

∫ ∞

−∞
dx′eik|x−x′ |V (x′)�̃k (−x′,−p); (B19)
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compared with LS equation of the absorbing system in
Eq. (A2), we find

�̃k (x, p) = �k (−x,−p), p = ±k. (B20)

Equation (B20) displays the explicit symmetry relation be-
tween an absorbing system and its dual system imposed by
PT symmetry. Next, using the definition of scattering ampli-
tudes of dual systems in Eq. (A5) and Eq. (A10) combined
with Eq. (B20), we also find

f̃k (p′, p) = fk (−p′,−p), (p′, p) ∈ ±k. (B21)

Putting all together, for PT -symmetric dual systems, the
plane wave basis wave functions in dual systems are related
by

�̃∗
k (x, p) = �∗

k (−x,−p) = �−k (x,−p), (B22)

and the scattering amplitudes are related by

f̃ ∗
k (p′, p) = f ∗

k (−p′,−p) = − f−k (−p′,−p). (B23)

In the parity basis, the relations are given by

�̃
(+/−)∗
k (x) = ±�

(+/−)∗
k (−x) = �

(+/−)
−k (x), (B24)

and

f̃ (+/−)∗
k (p′) = ± f (+/−)∗

k (−p′) = − f (+/−)
−k (−p′), p′ = ±k.

(B25)

b. Parametrization of PT -symmetric S matrix

With the constraints of R symmetry for a local potential,
now the S matrix for an absorbing system only depends on
three complex functions: t (k) and r (R/L)(k). The PT symme-
try puts further constraints on its dual; using Eq. (B21), we
find

S̃(R/L)(k) = [
S(R/L)(k)

]T =
[

t (k) r (R)(k)
r (L)(k) t (k)

]
. (B26)

Hence the unitarity relation for PT -symmetric dual systems
now is given by

S̃(R/L)†(k)S(R/L)(k) = S(R/L)∗(k)S(R/L)(k) = I. (B27)

Next, let us illustrate the consequence of PT symmetry on
the S matrix. Working in the parity basis, the S matrix has the
form of

S(+/−)(k) =
[

A+(k) B(k)
−B(k) A−(k)

]
, (B28)

where

A±(k) = t (k) ± r (R)(k) + r (L)(k)

2
,

B(k) = r (R)(k) − r (L)(k)

2
. (B29)

The unitarity relation yields three independent equations

|A±(k)|2 − |B(k)|2 = 1,

A+(k)∗B(k) + B∗(k)A−(k) = 0. (B30)

With three constraints in Eq. (B30), the independent functions
in the S matrix are now reduced to three real functions. Hence
the PT -symmetric S matrix can be parametrized by two

phase shifts, δ±(k), and one inelasticity, η(k). The solutions
of Eq. (B30) are

A±(k) = η(k)e2iδ±(k),

B(k) = i
√

η2(k) − 1ei(δ(+) (k)+δ(−) (k)), η(k) � 1. (B31)

In terms of phase shifts and inelasticity, the transmission and
reflection amplitudes are given by

t (k) = η(k)
e2iδ+(k) + e2iδ−(k)

2
,

r (R/L)(k) = η(k)
e2iδ+(k) − e2iδ−(k)

2

± i
√

η2(k) − 1ei(δ(+) (k)+δ(−) (k)). (B32)

The unitarity relation

[S(R/L)(−k)]T = S(R/L)∗(k)

adds extra constraints for the elements of the S matrix defined
below and above the real E axis,

t (−k) = t∗(k), r (L)(−k) = r (R)∗(k). (B33)

The parametrization of the PT -symmetric S matrix in
Eq. (B28) and Eq. (B31) resembles the parametrization of
the S matrix for a coupled-channel system of real potential
scattering; see, e.g., Refs. [56,57]. However, in real potential
scattering theory, the S matrix of a two-channel system for a
single partial wave, e.g., an S wave, has the symmetric form
of

S =
[

A1 B
B A2

]
= [S]T . (B34)

The constraints along the diagonal direction of a symmetric S
matrix become

|A1/2|2 + |B|2 = 1. (B35)

Hence in terms of phase shifts and inelasticity, the S matrix
of a two-channel system for a real potential scattering is
parametrized by

S =
[

ηe2iδ1 i
√

1 − η2ei(δ1+δ2 )

i
√

1 − η2ei(δ1+δ2 ) ηe2iδ2

]
, (B36)

where the constraint equation in Eq. (B35) results that the
value of inelasticity is in the range of η ∈ [0, 1]. On the
contrary, in PT -symmetric systems, the antisymmetric form
of the S matrix along the off-diagonal direction ultimately
leads to η � 1. Since spatial inversion alone is not a good
symmetry in PT -symmetric systems, the mixing effect be-
tween parity basis solutions also contributes. The inelasticity
in PT -symmetric systems hence describes the transition be-
tween parity basis solutions, which resembles the inelasticity
in two-coupled real potential scattering systems that is used to
describe the transition between two channels.
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APPENDIX C: SPECTRAL REPRESENTATION OF
GREEN’S FUNCTION IN COMPLEX POTENTIAL

SCATTERING THEORY

1. Spectral representation of Green’s function

The biorthogonality of eigenstates of dual systems in
Eq. (10) suggests that the spectral representation of the
Green’s function for an absorbing system is defined by

Ĝ(E ) =
∑

ε

|�ε〉〈�̃ε |
E − ε

, (C1)

and Ĝ(E ) satisfies differential equation

(E − Ĥ )Ĝ(E ) = I. (C2)

Similarly for an emissive system, we have

ˆ̃G(E ) =
∑

ε

|�̃ε〉〈�ε |
E − ε

, (C3)

and ˆ̃G(E ) satisfies the differential equation

(E − Ĥ†) ˆ̃G(E ) = I, (C4)

and also the Dyson equation

ˆ̃G(E ) = Ĝ0(E ) + Ĝ0(E )V̂ † ˆ̃G(E ). (C5)

In general, the Dyson equations for both absorbing and
emissive systems in Eq. (26) and Eq. (C5) respectively are
direction dependent and nonreciprocal: the transpose of the
Green’s function is not identical to the Green’s function itself.
However, for the local potentials, reciprocity symmetry is
guaranteed:

ĤT = Ĥ ,

and using Eq. (C2) and Eq. (C4), we can easily show that
Green’s functions are indeed reciprocity symmetric:

Ĝ(E ) = ĜT (E ), ˆ̃G(E ) = ˆ̃GT (E ). (C6)

Therefore taking into consideration reciprocity symmetry,
now Ĝ(E ) and ˆ̃G(E ) are related by

Ĝ(E ) = ˆ̃G∗(E∗). (C7)

From spectral representation of Ĝ(E ) in Eq. (C1), we find

〈x|Ĝ(E )|x〉 =
∑

ε

〈x|�ε〉〈�̃ε |x〉
E − ε

; (C8)

hence the absorptive part of the Green’s function is given by
discontinuity of the Green’s function across the branch cut in
the complex E plane,

−DiscE 〈x|Ĝ(E )|x〉 = π
∑

ε

δ(E − ε)〈x|�ε〉〈�̃ε |x〉. (C9)

Therefore we can conclude that in complex potential scat-
tering theory, the following hold: (1) The imaginary part of
the Green’s function is not the same as the absorptive part
of the Green’s function; the absorptive part of the Green’s
function in general could be a complex function. However,
with constraints under PT symmetry, the absorptive part of
the Green’s function is indeed real; this will be demonstrated
below in Sec. C 2. (2) The absorptive part of the Green’s
function can no longer be interpreted as density of states in
complex potential scattering theory.

2. Absorptive part of Green’s function under PT symmetry

The spectral representation of the Green’s function is ex-
plicitly given by

〈x|Ĝ(E )|x′〉 =
∫ ∞

−∞

dq

2π

∑
p=±q �q(x, p)�̃∗

q (x′, p)

E − q2

2m

, (C10)

where the wave functions are eigensolutions of LS equa-
tions in Eq. (A2) and Eq. (A9). The discontinuity of diagonal
elements of the Green’s function is thus

DiscE 〈x|Ĝ(E )|x〉
= − m

2k

∑
p=±k

[�k (x, p)�̃∗
k (x, p) + �−k (x, p)�̃∗

−k (x, p)].

(C11)

Using PT -symmetric relations on wave functions in
Eq. (B22), we thus find

DiscE 〈x|Ĝ(E )|x〉 = −m

k

∑
p=±k

Re[�k (x, p)�∗
k (−x,−p)].

(C12)
Therefore, under the constraints of PT symmetry, the absorp-
tive part of the diagonal elements of the Green’s function is a
real function; however, the positivity is not guaranteed.
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