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A formalism for describing charged particles interaction in both a finite volume and a uniform magnetic
field is presented. In the case of short-range interaction between charged particles, we show that the
factorization between short-range physics and finite volume long-range correlation effect is possible; a
Liischer formulalike quantization condition is thus obtained.
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I. INTRODUCTION

In recent years, a great effort in the nuclear and hadron
physics community has been put into constructing the
scattering dynamics of few-particle interactions from the
discrete bound state energy spectrum that is computed in
various types of traps, such as the commonly used periodic
finite box in lattice QCD (LQCD) and the harmonic
oscillator trap in nuclear physics computation. The ultimate
goal is of course to study and explore the nature of particle
interactions that plays an essential role in many fields of
physical science, such as nuclear physics and astrophysics.
However, the current state-of-art ab initio computations in
nuclear and hadron physics are normally performed in a
harmonic oscillator trap and in a finite volume respectively.
Instead of computing few-body scattering amplitudes, the
discrete bound state energy levels are usually directly
measured and extracted from these ab initio computations.
Therefore, finding a relation that converts a discrete bound
state energy spectrum into a continuum scattering state is a
key step.

In fact, relating the energy shift caused by particle
interactions to the on-shell scattering parameters such as
phase shift has a long history across many fields in physics.
In general cases, the dynamics of particles interaction in
traps is associated with the infinite volume off-shell
reaction amplitudes in a highly nontrivial way.
Fortunately, when the separation of two physics scales,
the size of trap and the range of particles interaction, is
clearly established, a simple asymptotic form can be found,
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which provides a relation between energy levels in a trap
and the infinite volume scattering phase shift. In finite
volume in LQCD computation, such a relation in the elastic
two-body sector is known as the Liischer formula [1],
which shows a clear factorization of short-range dynamics
and long-range correlation effects because of the periodic
boundary condition. The short-range dynamics and long-
range correlations are described by the physical scattering
phase shift and Liischer’s zeta function respectively.
Liischer’s formula has been proving very successful
in the LQCD community, and it has been quickly extended
into both coupled-channel and few-body sectors,
see [2—41]. In nuclear physics where a harmonic oscillator
trap is commonly used, such a relation is given by the
Busch-Englert-Rzazewski-Wilkens (BERW) formula [42—
53]. In addition to the periodic boundary condition and
harmonic trap, other types of traps or boundary conditions
are also commonly used in different physics fields, such as
the hard wall trap [54,55]. Regardless of the difference
among various traps, the same strategy is shared: as the two
physical scales are clearly separated, a closed asymptotic
form can be found, in which short-range dynamics is
described by a scattering phase shift and the long-range
effect is given by an analytic form that describes how the
propagation of particles is affected by the trap, e.g.,
Liischer’s zeta function in a periodic boundary condition.

In the present work, we aim to establish a similar relation
to Liischer’s and the BERW formula for the charged
particles interacting in both a uniform magnetic field and
a periodic box. We remark that only a short-range inter-
action which represents nuclear force or hadron interactions
1s considered in this work; the Coulomb interaction has not
been incorporated in the current framework yet. We also
emphasize that the Coulomb repulsion may be important
near threshold [56-67], especially since the long-range
nature of the Coulomb interaction may complicate the
factorization of physics at different scales and distort the
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asymptotic wave functions, the Coulomb interaction must
be included in future work. We will show that with only a
short-range potential, the factorization of short-range phys-
ics and the long-range correlation effect is possible. Hence
a relation in a compact form that relates the discrete energy
spectrum to scattering phase shifts can be found. Such a
relation may be useful for the study of a charged hadron
system such as the zt system in LQCD computation. In
finite volume, in order to preserve translation symmetry of
a system in a magnetic field, the magnetic flux through a
perpendicular surface of a cubic box to a uniform magnetic
field must be 27 multiplied by a rational number n,/n,,
where n,, and n, are integers and relatively prime to each
other. Therefore, the original energy level without a
magnetic field is split into n, sublevels due to the
application of the magnetic field. We also remark that
the ultimate goal of the current work is to set up a
foundation for exploring the possibility of the topological
edge type states [68—70] in lattice QCD in future work.
However, by using background-field methods in lattice
QCD [71-74], the finite volume energy levels of particles
interacting in a magnetic field background may also be
used to determine the coefficient of the leading local four-
nucleon operator contributing to the neutral- and charged-
current breakup of the deuteron.

The paper is organized as follows. The general formal-
ism of charged bosons interaction in both a finite volume
and a uniform magnetic field is presented in details in
Sec. II. The S-wave contribution and regularization of
ultraviolet divergence are discussed in Sec. III. A summary
is given in Sec. IV.

II. FINITE VOLUME DYNAMICS OF CHARGED
BOSONS IN A UNIFORM MAGNETIC FIELD

In this section, we briefly summarize the dynamics of
charged bosons interacting in both a finite periodic box and
a uniform magnetic field. The uniform magnetic field is
chosen along the z axis, B = Be,, and the Landau gauge
for the vector potential is adopted in this work,

A(x) = B(0,x,0). (1)

The complete presentation and more rigorous discussion
are given in the Appendixes A and B.

The dynamics of the relative motion of two charged
identical nonrelativistic spinless particles in a uniform
magnetic field is described by the Schrodinger equation,

A

(Hy + V(1) (r) = ep.(r), (2)

where y,(r) and ¢ are the wave function and energy for the
relative motion of a two charged boson system. The

Hamiltonian operator H, is defined by

v (Ve tigA(r))?
He=="my = (3)

where u and ¢g denote the reduced mass and charge of two
charged particles respectively.

A. Magnetic periodic boundary condition

In a periodic finite box, the discrete translation invari-
ance is broken by a coordinate dependent vector potential,

Ay(r+nL)=A(r) +BnL -e,.

In order to maintain the discrete translation symmetry in a
uniform magnetic field, the conventional translation oper-
ator must be generalized to the magnetic translation
operator,

To(nL) = ¢i(-1VetgA()—gBxr)nL, @
Hence
Tr(nL)l//6<r) — eiqBr"ex.nLllle(l' + nL) (5)

In addition, to warrant a state remain translational
invariant through a closed path, the magnetic flux through
an enlarged closed path in an x-y plane that is defined by
magnetic unit vectors

nqLeX X Ley x Le,,
must be quantized, see Refs. [75,76],
qBn,L* =2zn,, (6)

where n, and n, are two relatively prime integers.
Therefore, the discrete translation in a enlarged magnetic
unit box leaves the Hamiltonian invariant, and 7',(nyL)
forms a magnetic translation group, where
ng =nn,e, +n.e, +ne, ne,,€Z. (7)
According to Bloch’s theorem, in a periodic box,
periodicity of a system requires that 7.(ngL)w,(r) can
only differ from w,(r) by a phase factor, which can be
chosen as

Pp
i—=-nglL
e 2 ,

2w (n
Py =" <n—x e, +n.e, + nzez>, ne,,€Z. (8)
q

Hence the magnetic periodic boundary condition is
given by
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ve(r +mpL) = edmlemiubnemly, (r).  (9)

The magnetic periodic boundary condition can also be
obtained by considering a separable form of a total wave
function, see Appendix A 2.

B. Finite volume Lippmann-Schwinger equation and
quantization condition

1. Finite volume Lippmann-Schwinger equation
The Schrodinger equation and magnetic periodic boun-
dary condition in Eq. (2) and Eq. (9) together can be
replaced by the finite volume homogeneous Lippmann-
Schwinger (LS) equation,

wele) = [ a6V ). (10)

where the volume integration over the magnetic unit cell is
defined by

, es (5, [F
/= [ " dr, [ dry, [ " dr. (11)
Ly - -5 %

The finite volume magnetic Green’s function GE;L)

the dynamical equation

satisfies

(e — )G\ (r,v;e)
= Ze‘iPTB'“BLe"qB’vve*‘“BLé(r -1 +nglL). (12)

np

The solution of a finite volume magnetic Green’s
function G%L) can be constructed from its infinite volume

counterpart G,(;") by
GgL) (r,r';e)

Z iP5 —igBrle.-
_ G](;o) (I‘, r + IIBL; ,g)elT nBLe igBrie, mpL
ng

= Ze‘iPTB'“BLeiqBrﬂ‘e*"“BLGgm)(l‘ +npL,ve). (13)
np

Details of the construction can be found in Appendix A 4.

The analytic expression of an infinite volume magnetic
(e0)

Green’s function G * is given by
G (r.1's6) =~ 298 k)00 -0

2w

Ly (G lp —p' el V2Bt

n=0 24/2ue—2qB(n+3)

X

(14)

where L, (x) is the Laguerre polynomial, and

p=r.e, +re, p =re, +re,

are relative coordinates defined in the x-y plane.

2. Quantization condition with short-range interaction

The discrete bound state energy spectrum can be found
as the eigen-energy solutions of the homogeneous LS
equation in Eq. (10). The partial wave expansion in an
angular momentum basis is commonly used in describing
an infinite volume scattering state. However in a magnetic
field, due to the asymmetry of the magnetic Hamiltonian in
x-y plane and along the z axis, the angular momentum basis
in spherical coordinates is in fact not the most convenient
basis in describing dynamics of charged particles in a
uniform magnetic field. Nevertheless, it can be done in
principle. For the sake of the consistency of presentation in
both finite volume and infinite volume dynamics, let us
consider the partial wave expansion of Eq. (10), which
yields

wgrﬁ)(r) = Z/Lz r’zdr’ngiﬁzn,(r, r’;e)Vlr(r’)y/E,an,(r’).

I'm’'

(15)

The purpose of this work is to find a Liischer formulalike
simple relation that connects short-range physics associated
with particles interaction V(r) and the long-range effect
generated by the finite volume and magnetic field. Also
consider the fact that such a relation is the result of clear
separation of two physical scales: (1) the range of potential
V(r) and (2) the size of a trap or finite volume. When the
two scales are clearly separated, the short- and long-range
physics can be factorized, and a compact relation as the
leading order contribution can be found by studying the
asymptotic behavior of the wave function [8,24]. Therefore,
for our purpose, it is sufficient to consider the zero-range
potential,

8(r) 22T (143
Vi(r) > V[%W’ (16)
see Appendix B for a more rigorous discussion.
Equation (15) is thus turned into an algebraic equation,

L 4
wﬁm)(r) _ ZV,ZZ[HFZ(Z/ +%)
rl ' (2n)?
(B.L) . L
% Glnl,l/m/ (}", rl’ 8) w;’ng’(r/) (17)
rl r/l’ r/l’ /o0

Hence the quantization condition of the discrete energy
spectrum is given by
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B.L
det 5l'n,l’m’ _ e (ll +%) Ggm.l’))n’ (I", r/;8> =0 (18)
220+1 Vv, (2”)3 P o0 ’

Under the same assumption of the zero-range approxi-
mation given in Eq. (16), the potential strength V/ is related
to the infinite volume two-body scattering phase shift

5l(ks) by

4 2
(42
2'MVZ

221+ 3)T(L +3)

_ 21+1
7[},21+1 - _ks *leot 5l(ks)7

r—0

(19)

see detailed discussions in Appendix B. The relative
momentum k, in infinite volume is related to the relative
finite volume energy e by

0B 1\ P2+P
AEg ==— ~] - :
R (n—|—2> M

k2
L e f AE
2u et Sbr M

(20)

where AE} is the result of quantization of center-of-mass
(CM) motion in a uniform magnetic field.

Eliminating V,;, Egs. (18) and (19) together yield a
Liischer formulalike simple relation,

det [,y cot 8 (k) = MEE (e =0,  (21)

Im,lI'm’

where
MOD (o = 2T ) Gl (1:5¢)
m.l'm 2uk? +1(2ﬂ.) ! o
5 2HTI+hri+3) 1
= ClmI'm’ . (kgr)zlﬂ —
(22)

The second term in Mgﬁf,zn plays the role of the regulator

of ultraviolet (UV) divergence and will cancel out the UV
divergence in the finite volume magnetic Green’s function,
so that MEZ?')”, is ultimately free of UV divergence. In
general, the regularization and isolation of UV divergence
in higher partial waves of a finite volume magnetic Green’s
function is a highly nontrivial task. Fortunately, it can be
accomplished rather neatly for S-wave, hence, only the
S-wave contribution will be considered in Sec. III. The
regularization of UV divergence will be worked out
explicitly.

III. S-WAVE CONTRIBUTION AND CONTACT
INTERACTION

As was already mentioned in the previous section, the
angular momentum basis in general is not a convenient
basis for the dynamics of charged particles in a uniform
magnetic field. The partial wave expansion of the finite
volume magnetic Green’s function and ultraviolet regu-
larization can be tedious in general. Fortunately, if only the
S-wave contribution is dominant, the formalism can be
worked out nicely. In this section, only a contact interaction
potential

V() =3 06) (23)
4z
is used, which may be considered as the leading order
contribution of chiral effective field theory and may be
suitable for the few-body system, such as z™ interactions in
finite volume.
With a contact interaction, the finite volume quantization

condition is simply given by

4
= GP0,0;e). (24)
Vo

In infinite volume, V|, is related to the S-wave scattering
amplitude by

4 2k, 1
G0k, = — e

V() a 4z to(kg)’

(25)

where

1

to(k,) = ———F—,
olke) cotSy(k,) — i

and infinite volume Green’s function G(®)(0;k,) is
given by

dp 1 2uk,  2u
G (0;k,) = =it 26
(0:k,) /(2ﬂ)3k_§_P_2 “an " anr 0 (26)
2u  2u
Thus, the quantization condition is simply given by
dr (L) 1
too(k,) = — Gz (0,0;¢) —— 27

The magnetic Green’s function G%L) (0,0;¢) is a real

function of €. The UV divergent term

plays the role of the UV counterterm that cancels out the

UV divergent term in G%L) (0,0; ¢), so the ultimate result is

finite and real as a function of e.

094520-4



CHARGED PARTICLES INTERACTION IN BOTH A FINITE ...

PHYS. REV. D 103, 094520 (2021)

A. Regularization of UV divergence

In this sectlon we show explicitly how the UV diver-
gence in G (0 0;¢) is regularized and isolated out
explicitly. The UV divergence only appears when

r=(p,0) -0,

hence, a small r = p is used as UV regulator. In the end, a
final expression is obtained by taking the limit of
r = p — 0. Starting with an explicit expression of magnetic
Green’s function in CM frame (P; = 0),

0 0 8 E e—Tn ngLny,L
ne,n,€Z
n,€Z
X e—%\ernanLeXJrnyLey\z ﬁl E
2r L 4
k=20

L

B 2
y 2"": L,(%|p+nen,Le, + n,Le,|*)

2 .
=0 8_373(n+%)_§_; p—0
(28)
The UV divergence is associated to the term
1 n,€Z 1 /A_lr dk% |
L & —5 X A - — ,
Lk;;g_%(n_’_%)_% k2 7o
(29)

hence G,(BL) is linearly divergent.

The linear divergence can be regularized simply by
subtraction. Therefore, we first split the finite volume
magnetic Green’s function into a regularized term by
subtraction and a term that is UV divergent,

G (0,0:6) = AG (e) + GIF(0,0,0),  (30)
where
AGE (e) = G\ (0,0:e) - GIF(0,0,0).  (31)

The subtracted term AG;L)
Using the identity

(e) is free of UV divergence.

n,ez

— co ,
. E - "i 2V2uE 2

(32)

AGY) (¢) is thus given explicitly by

Zﬂqu Z ¢ Ianxn‘nqL

n=0n,,n,€Z

AGY(e)

_45 2
x e~ inagLetnLe |’ 1 < | n, Le,+n LeV| >
th\/2qB n+

\/2/48 2gB(n+3) \/2qB n+3)

2ue—2qB(n+i)L
cot Y2 g( 3)

(33)

Next, the UV divergence in G (0 0;0) can be isolated
out by further splitting Gg (0,0;0) into

Gy (0.0:0) = G + Giee". (34)
(BLL) . . .
where Gy 7 is UV divergent and is given by
n.€Z oo qB
(1) _4qB1 L,(5 lo[")
Gyy =27 L szzg—ﬁ(n—l-l e (35)
== u 2 2p P

The G%BC’L) is a regulated constant term, and is defined by

n,€Z
(B,L) qunxn‘n,’L qu
Ge'= 3 TS
n,,n, 70 4 _ 2ang
o1y F k=2
o 2y n Le +n,Le,|? qB 2
Xze TinngLetnyLe,| L,(%5|nn,Le,+n,Le|*)
qB 1 _k ’
n=0 —T(H—Fi)—z

(36)

(1) The regulated constant term G;BC’L)

simplified by using the identity

can be further

k2
T o

poo(1, K 1k g¢B,
—-Ar(: = 1220), (37
4B (2 2q8)°\2 28 2 " (37)

where U(a, b, z) stands for the Kummer function, hence,
we find
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IR 1R
G(B-L) — 1—* _ Z
ke 471'L Z 2 24B
x D e
ny,n,#0
1k
x Ul = s
2 2qgB
Asymptotically, the Kummer function decays exponentially,

2 2
wo (1 R\ (1 K gB,
M(-+—2)U(= 1,22
“ <2+2qB> <2+2qB 2"

uBanrL
1”" \nnLeJrnLe)\

B
1, % In.n,Le, + nyLey|2>.

(38)

k,—0o0
2K (1) K2x2), (39)
hence GgeBC'L) is indeed a well-defined regulated constant.

(2) The explicit expression of the UV divergence in

GEJB\’,L) can be worked out. First of all, the infinite sum of
integer n € [0, 0] in Eq. (35) is split into n € [0, n,] and
n € [ny, ], where n, serves as a cutoff integer and
ny > 1. For large n,, the summation is replaced by
integration, hence one can rewrite Eq. (35) to

n,€Z ny L (qB

Tlel?)

(B.L) gB1 | n
Gy ' =5-7 — 2
z
qB 15 e : ( |P| )
+ - ' 1 k2 (40)
2/m —) - 2— p—»O
Let us rewrite it further to
Gn _ 9B 1R EZ [ o / ] |p| )
uv Py 2
2” 21m %) 2” p—>0
LB 1R EZ / |ﬂ| )
27[ L Zml 2) -5 p—>0
(41)

The first term in Eq. (41) is finite, so p can be set to zero
safely. In the second term in Eq. (41), let us rescale the
integral dummy variable dn to

2

aBpRdn — &z, aBpn—%.  (42)

thus, the Eq. (35) is then turned into

n,€Z n
G(B’L> _ qB 1 € A 1
uv 2” L 2”" qB( + ) kZ

2u

n.€Z L £ (q'%)

(43)

Using the asymptotic form of the Laguerre polynomial,

B
Lo ()
ZqBr 2

and identity in Eq. (32) again, we find

Jo(V&), (44)

B.L BL
GEJV )= AGEJV :

j / 2+qBL
coth

J 2
G

r—0
(45)
where
SroB (it
(B.L) 2ugB [ g COthM
G = LB~ " g 2
T L= Jo 24/2gB(n+1)
(46)
As r—0and ! - oo,
4:2
7200 2 + qBL
cothz"~°1 + 222 4 2¢7% .. | Z:f,
(47)

and also using identity

o0 JO(\/?) 2 _ B
de—0NVE ) 2T —/qBr 48
A : df2\/cf2+qBr2 o )

we finally obtain a explicit expression of UV divergence,

(B (B.L) 2peVaBr
G = AGH" T amr |,
2,u\/ 2,u
= AGED . 49
uv dr 47tr 50 ( )
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Putting all the pieces together, we thus find
G (0,0;¢)

L B.L B.L 2u\/qB  2p
ZAGE;)(E)—FG%C)—FAGEJV)—F 47[ —4—m_

b
r—0

(50)
where AG%L) (e), GJ(QBC’L), and AG{?\}L) are all free of UV
divergence and given by Eq. (33), Eq. (38), and Eq. (46)
respectively.

B. Regulated S-wave quantization condition

With explicitly isolated UV divergence in the finite
volume magnetic Green’s function in Eq. (50), the UV
divergent terms in quantization condition given by Eq. (27)
cancel out, thus we find a regulated quantization condition

cot 8y (k,) = MED (e), (51)
where
Mg ()
4r ) , \VqB
=30 865 (&) + G + 8607 | - L. (52)

The expression of AGE;L) (e), GEQBCZL), and AGE?{,L) are given

by Eq. (33), Eq. (38), and Eq. (46) respectively.

C. Liischer formula at the limit of gB — 0

Using the identity given in Eq. (37), Eq. (28) can be
rewritten as

VIZGZ 2
(L) (0 0 — _ 2H 1 1 ki=2ue
O (""”8)—‘4;%2 F<2+ 2B

:2””2

; 2
IanXnynqL qB 2
XE e—fe—T\nanLex+nyLey\

Ty,

1 k2—2ue  gB )
xU<2_|_ quB ,I,T\nanLex—l—nyLeﬂ .

(53)

(L) 47 e A A
k.) = g -
MO,O( s) k2 _ p2 + ks

n#0 2 ) 0 n
) / " gge e ) _ @ (60)
Nz 1 f=n!(2n—1)]

where A is an arbitrary UV regulator.
The comparison of the finite volume magnetic zeta

function Mé%m (e) and regular finite volume zeta function

Mé% (k) are shown in Fig. 1. The splitting of energy levels

At the limit of ¢gB — 0, using the asymptotic form of

1 k2 —2ue 1 kX—2ue . gB
o+ Ay 45 0
<2+ 2¢B ) <2+ 2¢B 2r>
B iﬂHél)( 2ue — k*r) + O(gB), (54)

and also taking n, = 1, thus one finds

( ) B0 2/4 n,eZ
L . 4B~
g (0.0:¢) = ‘szm.

i
X ZZHE))< 2ue — k?|n.Le, +nyLey|> + O(¢B).
Ty

(55)
Next, using the identity
- ZEH(I)( 2ue — kK2|n,Le, + n,Le |>
4 0 zI1Mx X y y
1 1
N Z Que— K2 —K2— k2 (56)

X,y
= 5

oy =T €Z

one thus can easily show that

G0.0:¢) "5 G (0.k,) + O(gB).  (57)

where

p=%nnez’

Hence, the finite volume magnetic zeta function Mé%” (¢)
at the limit of ¢B — 0 is given by

BLL 9B—-0 (L
Mg (€) "= MGG (k) + O(qB).  (59)
which is consistent with the perturbation result given in

Ref. [71]. The /\/l(()LO> (k.) denotes the regular finite volume
zeta function, see [1,2,8], and is defined by

nez’

is illustrated in the comparison of the curves of /\/l(()%”(e)
in the upper and lower panels with n, =1 and n, =2
respectively; the number of ME)%L) (&) curves double as the
value of n, is doubled.
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T

T

€ (GeV)

keMoo(€)

1

00 05 ' 1.0
€ (GeV)

FIG. 1.
ké../\/l((fo'w (€) (black solid) and regular finite volume zeta function
kM) (k) (red solid) in Eqs. (52) and (60) respectively. The
parameters are chosen as ¢ = 0.2 GeV, L = 10 GeV~1, n, = 1,
and n, = 1, 2 in the upper and lower panels respectively.

Comparison of the finite volume magnetic zeta function

IV. SUMMARY

A formalism for describing charged spinless bosons
interaction in both a finite volume and a magnetic field
is presented in this work. We show that for a short-range
potential, a Liischer formulalike relation that relates dis-
crete energy spectrum to scattering phase shifts can be
obtained. The regularization of UV divergence is worked
out explicitly for S-wave contribution; the regulated S-wave
quantization condition may be useful for the LQCD study
of charged boson system, such as a ™ or Kt system. In
finite volume and in a magnetic field, translation symmetry
of a system is only preserved when the magnetic flux,
@ = gBL?, is given by 27 multiplied by a rational number
n,/n, where n, and n, are relatively prime integers. The
presence of a magnetic field thus results in the splitting of
the energy level into n, subenergy levels.
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APPENDIX A: TWO CHARGED BOSONS IN A
UNIFORM MAGNETIC FIELD

The dynamics of two charged nonrelativistic identical
bosons in a uniform magnetic field is described by THE
Schrodinger equation,

2 ,
{E + ZW = V(X1 = %) | WE(x1. %) =0,

2m

(A1)

where m is the mass of identical bosons. x; denotes the
position of the ith particle, and the short-range interaction
between two particles is represented by V(x; — X,). A(X;)
stands for the vector potential of a uniform magnetic field.
Throughout the entire work, the uniform magnetic field
is assumed along the z axis, B = Be_, and the vector
potential in Landau gauge is used,
A(x;) = B(0, x;,0). (A2)
The solutions of the Schrodinger equation in other gauges
are obtained by a gauge transformation through a scalar
field, y(x;),

A(x;) = A(x;) = Vx(x)), (A3)

and

Wi(x), %)) » €2 WL (x x,). (A4)

1. Separation of center of mass and relative motions

The center-of-mass motion (CM) and relative motion of
two particles can be separated by introducing CM and
relative coordinates respectively

_X1+X2

R )
2

r=X; —X. (AS)
Therefore, the Hamiltonian has a separable form and the
total two particles wave function is given by the product of
CM and relative wave functions,
Ye(X),X;y) = @p_(R)w,(r), (A6)
where the CM wave function, ®;_.(R), and relative wave
function, y,.(r), satisfy Schrodinger equations respectively,

094520-8



CHARGED PARTICLES INTERACTION IN BOTH A FINITE ...

PHYS. REV. D 103, 094520 (2021)

(Ve +iQA(R))?
[(E—e)—i— R M

]@E_8<R> —0. (A7)
and

[8 L (Ve +igA(r))* (A8)

A vm}wg(r) —0,

The total and reduced mass of two particles are
M=2m and u= m
2
respectively, and similarly

e
=2 d g=-
0 e and ¢ 5

are total and reduced charges respectively.

2. Magnetic translation group and magnetic periodic
boundary condition

Now, let us consider putting charged particles in a
periodic cubic box with size L, and interaction between
two particles is also periodic,

V(r+nL) = V(r), n ez (A9)
Without a magnetic field, the discrete translation symmetry
of a system in finite volume yields the conserved total
momentum of a system with discrete values:

p_2m.

n e 73
L

In a magnetic field, though the potential V is periodic,
the I:Ir is not discrete translation invariant

It]r—%—nL 5& I:Ir

due to the fact that the vector potential is coordinate
dependent and breaks discrete translation symmetry

A(r+nLe,) = A(r) + BnLe,, neZ. (Al0)
The momentum operator, p = —iV,, does not commute
with H,:

B, He] # 0.

Hence canonical momentum is no longer a conserved
quantity as the consequence of breaking down of discrete
translation symmetry in a uniform magnetic field. It has
been shown in Refs. [75-77] that a pseudomomentum
operator

K, = —iV, 4+ gA(r) —gB xr = —iV, + qB(ry,0,0)
(A11)

in fact commutes with H,:
K., H,]=0.

Therefore, K, can be used as generator of a magnetic
translation operator,

'j*r(nL) _ eiKr-nL _ ei(—inJrqA(r)—qur)»nL’ (A]Z)

where e/(=?Vs)nL s the pure translation operator, and
Ty () =y (et nL). (AI)
So that
Te(nL)y,(r) = e4AEOB0nly, (ry L), (Al4)

and T, commutes with the Hamiltonian,
[T..H] =0,

which leaves the Hamiltonian invariant. However, the
magnetic translation operators do not commute with each
other in general,

To(n.Le,)Te(n,Le,) = e BT (n,Le )T, (n,Le,),
(A15)

where (n,,n,) € Z.
As shown in Refs. [75,76], when the values of gB are

taken as
1 2z n,

B=-.eB="2"¢
1 2¢ L?n,

, (A16)
where n, and n, are integers that are relatively prime. The
magnetic translation operators with an enlarged unit cell
formed by the increased size of n,L in the e, direction thus
commute with each other,

[Tr(”x(nql‘)ex)’ Tr(”yLey” =0. (A17)
Therefore magnetic translation operators with an enlarged
magnetic unit box that is defined by

n,Le,x Le, x Le,

form a discrete group that are commonly referred to as a
magnetic translation group.

094520-9



PENG GUO and VLADIMIR GASPARIAN

PHYS. REV. D 103, 094520 (2021)

The translation operator for two charged particles can be
introduced by

A

Tx].xz(nlBLvHZBL) = Tx](nlBL)sz(n2BL)» (A18)

where
T (nL) _ ei(—iin+eA(Xi)—eB><xi)-nL
X; - N

(A19)

Both n 3L and n,zL are defined in an enlarged magnetic
unit box,

niBL = nix(nqL)ex + niyLey + nizLeZ’ Mix,iy,iz €.

(A20)

We may rewrite two particles translation operator in terms
of CM and relative motion quantities,

o A A (Mp+N
Tx,,xz(nlBL’HZBL) =T, (npL—nypL)Tx <¥L> )
(A21)
where T, is defined in Eq. (A12), and
5 (Bl i(~iVg+OA (R)—QBxR)"EE
TR T = €l LVR 2, (AZZ)
Note that
2T n
OB =2eB = ="
(5) nq

and the translation operation of the CM motion may be
considered as a motion of a composite charge particle with
total charges of Q = 2e in a periodic box with size L/2.

The magnetic translation invariance of a system yields

Txl,xz (mygL,mypL)PE(Xy,Xy) = Pe(x,X,).  (A23)

Using Eq. (A19), the boundary conditions for two particles
in both finite volume and a uniform magnetic field is
given by

Wi (x) +ny5L, X, +nypL)

2

= g7l 2 A-Bxxi by (v x0) (A24)

In terms of CM and relative wave functions, we have

eiQ(A(R)—BxR)-qu)E_E(R +“13J2r“23 L)
q)E—s(R)
w.(r)

=— . (A25
eMI(A(r)_er)‘(nlB_HZB)Ll//s(I'+ (1113 _HZB)L) ( )

The separable form of the CM motion and relative
motion in Eq. (A25) suggests that both sides must be
equal to a phase factor that is independent of both CM and
relative coordinates. It allows us to introduce an arbitrary
parameter Py that is associated with a pure translation
operator; the phase factor may be chosen having the form of

- n +n
P2

Hence the CM wave function satisfies Bloch type magnetic
periodic boundary condition,

L : ng
s, (R y nL) = P08t oy (R). (A20)

2

The boundary condition for a relative wave function is
given by

W (r+ngl) = e Emslemiabrecnsly, (r) (A7)
where we have also assumed
ePrmsl — 1, (A28)
thus
n, n n
PB—2ﬂ<n—LeX+fye)7+ZZez>, nx.y,ZGZ.
q

Although Py resembles the total momentum of a system in
absence of a magnetic field, Py is not a conserved quantity
in the magnetic field. In fact, the conserved quantity can be
identified as a pseudomomentum, see e.g., Ref. [77],

Kp =P, + Q(A(R)~BxR),  (A29)
which is associated with the generator of a magnetic
translation operator for CM motion,

~ (ngL & on
ru(7g) = e

[Kr.H] =0. (A30)

3. CM motion solutions

The CM motion of two charged bosons in a uniform
magnetic field is described by
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HR(I)ER(R> = ERq)ER (R), (A31)

where

ﬁl R — [8R

2M (A32)

(Og, +iOBR,)* + 9% ],
and @y must satisty the boundary condition
L
(R 2 ) — o iPOBRE) M, (R).  (A33)

The solution that satisfies the magnetic periodic boundary
condition can be found in [75],

N~

(S} k ik (R4 Bx .
¢ER~” (R) = Z ¢n Rx +Q_yB el y( -"+ﬁ)e_lPBsz’

drnynp
ky= 7Py

(A34)

where ¢, is the eigen-solution of a 1D harmonic oscillator

potential,
1 B 1
- 531 0~ (QBPRIBR) = 0% (w4 L) (ko).

(A35)
The eigen-energy of CM motion is given by
_0B( 1\ PR
Eg, = iy <n+2>—|—2M, n=0,1,2,..., (A36)
and the analytic expression of ¢, is
1 OB\x o2
(R TRH, BR,) A37
hi#) = () e, (VQBR). (a3

4. Relative motion and finite volume
Lippmann-Schwinger equation

The relative motion of two charged particles in a uniform
magnetic field is described by

A

(Hy + V(r))y.(r) = ey, (r), (A38)

where

A

i, = —zi (02 + (9, +iqBr? + 2], (A39)
y | :

and yw, must satisfy the magnetic periodic boundary
condition

We(r + L) = e Fmeleiabrecnsly, (r) (A40)

The integral representation of Schrodinger Eq. (A38) and
magnetic periodic boundary condition in Eq. (A40)
together is given by the finite volume Lippmann-Schwinger
equation,

welr) = [ arG eV ). (ad)

where L3 stands for the volume of the magnetic unit box
defined by unit vectors

nqLeX X Ley x Le,,

and

(A42)

e 5 5
dr' = dr, [ "dry [ dr.
L3 _1gk L L
B 2 2 2
(L)

The finite volume magnetic Green’s function G~ also
must satisfy the magnetic periodic boundary condition,

L
G% )(r, r';e)
_iFB. i . L
— e ngL qur}.eX nBLGl(B )(P+HBL,P/;8)

— ¢yl g=igBr, e*“BLGE;L)(r, r' +ngL;e). (A43)

The magnetic periodic boundary conditions and Eq. (A41)

(L)

suggest that G~ is the solution of the differential equation,

(e = H)Gy (x,v'se)
_ Ze—i"TBMLeiqBrye),-nBL(s(r — ¥ +ngL).

ng

(A44)

Now, one of the key steps therefore is to find an analytlc
solution of finite volume magnetic Green’s function GB .

The G1(9> can be constructed from an infinite volume
(c0)

magnetic Green’s function G, where
(o0) JooN = oodky dkz
GB (r,r,e)—Z/_ 2—71.%
¢n<" +qB)¢”l( . ) iky(ry=r}) pik:(r.=r%)
e—12 (n +1) - ’
(A45)
and GY satisfies the equation,
(e—H)G (r.rie) =5(r—v).  (A46)
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The LS equation (A41) is equivalently given in terms of
G5 b
B DY

velr) = [ deG v (r). (a9

The integration over infinite volume in Eq. (A47)
can be folded up to an infinite sum of integration in a
magnetic cell,

(c0) / .
w,(r) = / dr'Gy(r,¥ +nzL; e
(r) Eng L 5 ( gL;€)
x V(r' +ngL)y,(r' +ngL). (A48)

Using the magnetic periodic boundary condition given in

Eq. (A40), Gg‘) is thus identified as

ZG

— E e—iTnBLeiqBryeX-nBLGgOO)(r 4 IIBL, l'/; 8).

np

gL, —igBrie,mzL

rr’e rr+nBLe)ez

(A49)

Hence, explicitly we find

rr£ Ze—l —qBr nnL
n.€z
1 n, €2
X — eik).(ry—r;)eikz(rz—r;)
2
L 27; PBy.B:
L A
ky
2. ¢n(rx +nyn L+q3)¢n(r;c +q_B)
% Z —9B (4 1y - 15
n=0 € u nT3 2u
(A50)
The other representation of Gg”) is given in

Refs. [78,79] by

GS;O) (r9 r/;g) = e 2 (U-‘rr )(ry—r;)e_%lp_p/lz
o dk. Ln(ﬁ|ﬂ—p/|2) ik.(r.—r.)
2” —00 277 =0 e— (n_'_ ) k2 ’
(ASI)

where

P =Tre;+ ry€y, P/ = r;ex + r;ey.

Therefore, Gg‘) is also given by

Gg“) (r,r';e)

— E e—i(%—qBr ”anLe lTyn L= ”’28(}" +ritngng L) (ry=ry+nyL)

ny,n,€Z

n.ezZ
B B1 N
Xe—%\p—p’+nanLex+n}.Le).|2q - E
27rL —,
Ulird Bz
Tt 2

-1z

Xi 2 (5 Blp— p'+nmn,Le +n,Le,|*)e* (r:
n=0 5_7(’14'5)—5
(A52)

APPENDIX B: CONNECTING BOUND STATES
IN A TRAP TO INFINITE VOLUME
SCATTERING STATE

In this Appendix, we present a general formalism and
discussion on the topic of building connections between a
discrete energy spectrum of bound state in a trap and
infinite volume scattering dynamics. The type of trap is not
specified in what follows; the typical and commonly used
traps are periodic finite box in LQCD, harmonic potential
in nuclear physics, etc.

The relative motion of two interacting particles in a trap
is described by the Schrodinger equation

B0+ [ a Vel ) = )
trap

(B1)

where H,,, p» stands for the trap Hamiltonian operator, and
the interaction between particles is described by a nonlocal
short-range interaction V(r,r’) in general. The effect of a
trap is usually reflected by both the trap Hamiltonian and
boundary condition of the wave function in a trap. In the
case of charged particles trapped in both a periodic box and
a uniform magnetic field, H,, » and the boundary condition
are thus given by A, in Eq. (A39) and magnetic periodic
boundary condition in Eq. (A40) respectively. The energy
spectrum hence becomes discrete.

In infinite volume, the dynamics of two interacting
particles through the same short-range interaction V(r,r’)
is given by

A @)+ [T Ve e) = el o),

where
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The energy spectrum of the scattering solution in infinite
volume is continuous. With an incoming plane wave,
€T where g = \/2ue,

the asymptotic wave function of scattering states is thus
described by on-shell scattering amplitudes,

i (1) 23214 VPG )il (gr) +in(g)hy Y (),
1
(B3)

where 7,(¢) denotes the elastic on-shell partial wave
scattering amplitude and can be parametrized by a phase
shift function &,(g),

1
ilg) = cotd;(q) —i’

(B4)
We also remark that in a general case, depending on the
trap, the infinite volume relative energy ¢, is related to
finite volume relative energy € by the shared total energy.
For instance, in the case of charged particles trapped in both
a periodic box and a uniform magnetic field,

2

€m+2M—€+ER,n =E, (B5)
where CM energy Ey, is given by Eq. (A36).

The dynamics of particles in a trap and in infinite volume
are associated by the short-range interaction potential
between two particles. As far as the range of potential is
far smaller than the size of the trap, a compact expression
between phase shift of scattering states and a function,
M. (€), that reflect geometric and dynamical proper-
ties of the trap can be found,

det[Sy, 1 €0 81(q) — My (€)] = 0. (B6)
In the case of finite volume in LQCD, this relation is a well-
known Liischer formula [1], the matrix function
M (€) is thus a zeta function. In finite volume, the
angular momentum is no longer a good quantum number
due to the breaking rotation symmetry in finite volume. In
the case of harmonic trap in nuclear physics, the relation is
known as the BERW formula [42-51], where the function
M,y becomes diagonal in angular momentum basis.
The simple form of the quantization condition in Eq. (B6) is
the result of the presence of two distinguishable scales:
(1) short-range interaction between two particles and
(2) size of trap. Hence the short-range dynamics that is
described by phase shift or scattering amplitude and long-

range physics due to the presence of a trap can be
factorized.

The derivation of tje Liischer formula or BERW formula
can be illustrated by considering momentum space
Lippmann-Schwinger equation under the assumption of
separable potential, see e.g., [28-30], and an example of
derivation of BERW formula in momentum space is given
in Appendix C. Here the result is only summarized briefly
symbolically; the reaction amplitudes in both trap and
infinite volume may be introduced respectively by

,itrap =-Vy and ,ioo =-Vi,

They satisfy integral LS equations,

Trap(€) = VGirap(€)1rap (£), (B7)
and
I(q) = =V + VG (q)ix(q). (B8)
where
Gtrap(g) = 7 (B9)
&€= trap
and
- 1
Goo (Q) = pe ~ (BIO)
2~ Ho
H

are Green’s function in a trap and in infinite volume
respectively. Under the assumption of a separable potential
that is equivalent to the zero-range interaction,

V(k’ k/) = Z(kk/)lVlYln1(R>Y7m(ﬁ/)v

Im

(B11)

Eq. (B7) and Eq. (B8) are turned into algebraic equations,
and can be solved analytically [30]. Eliminating V' from
two equations, the quantization condition is thus obtained

A

det {L —Golq) + Gmp(g)} =0, (BI2)

too(q)
which is equivalent to Eq. (B6).

Though the plane wave basis in momentum space may
be a very convenient basis in finite volume and other types
of traps, for the charged particles in a uniform magnetic
field, the momentum is no longer the conserved quantity
due to the breaking translation symmetry by magnetic field.
Introducing a reaction amplitude in momentum space
becomes a tricky business. Therefore, in what follows,
instead of working in momentum space, we will present the
general discussion of derivation of a quantization condition
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in coordinate space under the assumption of a separable
short-range potential again. The Fourier transform of a
separable potential given in Eq. (B11) is

k dk' . - .
V(I’, I‘/) /(j ) (j )3 _lk'rV(k, k/)ezk T
T

_3(n8() 222 (14 3)
T 2 (rr)

Yl ( )Y}km(A)

(B13)

1. Dynamical equation in a trap

In the trap, the integral representation of Eq. (Bl) is
given by the Lippmann-Schwinger equation

l//‘(Etrap)(l.) _ / dl.//G(zrap)(l.7 s ¢)
trap

x / aev(e Oyl (), (Bl4)
trap

where

GUrar) (v, v ¢) = (r| ———|1") (B15)

trap

stands for the Green’s function in a trap. The partial wave
expansions

p" () =S win (0¥, (F)

Im

(B16)

and

GUrar)(r, v e) = Z Yo (B)G0) (7, re)Ys, . (F)

lm,l”m”
lm‘l//m//
(B17)
yield
v =3 [ PG
I'm Jtrap '
x / P2dr V(7 PP (7). (B18)
trap

Under the assumption of a separable potential with the form
of Eq. (B13), Eq. (B18) is turned into an algebraic equation,

EZ“P)(’,) B v 22[’+IF2(I/ +%)
] - r 1)
r I'm’ ( ”)
Gtmp (r, 7€) (”‘”’)( )
l/ / l//l/ /
l //l’ r/l’ Y50 (B19)

hence the discrete energy spectrum is determined by

tor [Bmw T2+ Gy (7 75e) —0
et 221,+IV - (272_)3 rlrll, ) = U.
l r, ' =0
(B20)

2. Infinite volume dynamical equation

In infinite volume, with an incoming plane wave
of /T, the scattering solution of two particles interaction
is described by inhomogeneous integral Lippmann-
Schwinger equation,

y (r.q)

:eiq'r+/Oodr”G(°°>(r—r”;q)/ v Yyl (r.q).

(B21)

Green’s function is

where ¢ = /2ue,, and the
given by

G(°°>(r -1 q)

- =R ). (B2
Considering partial wave expansion,
v = S0, @ Y@, 623)
and
G (r-1";q) ZYI'" (r.r";q)Y7, (F),

G~ (r.r":q) = —zmqj,<qr<>h§ (gr.). (B24)
we thus obtain
wﬁm)(r,q):4n'ilj,(qr)—|—Amr”2dﬂ’G§°°)(r,r”;q)

xAoor’zdr’Vl(r”,r’)yf}m)(r’,q). (B25)
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The separable potential given in Eq. (B13) yields an
algebraic equation

(c0) :
¥ (lr, qa) _ 4ﬂi,Jz(c§r)
r r
Ly 2R G0 ) v g)
! (271')3 (rr”)l r’l 7 =0
(B26)
The wave function solution is thus given by
(c0) (+)
T, h r

where the partial wave two-body scattering amplitude 7,(q)
is given by

| 22”11“2(l+%) G\ )(r :q) (B28)

viT () ()

3. Quantization condition in a trap

Combining Eqgs. (B20) and (B28), and eliminating V/,,
one thus find

2ﬂq2l+1

ti(q)
222(1+ 3) G§°°) (r,7;q)
(27) (rr')!

221 4 3) G%,’Z, (r,r;e)

(27) 't

det | 8,y

- 5lm.l’m’

r.’ =0

r,r’—>0:|

(B29)

Using the asymptotic form of

22I+3F2 (l + )
2u(2x)

*)(r,7"; q)
(rr)

22+ Hri+3) 1
r2l+1

r.r’ =0

— —ig?t —

. ., (B30)

and also the parameterization of
t7'(q) = cotd(q) — i,

thus the quantization condition in a trap is indeed given by a
Liischer formulalike relation,

det [5lm.l’m’ cot 51(Q) - Mlm.l’m’ (8)] =0, (B31)

where
2232 4 +3) GIZ‘;,” (r, 7€)
My (€) = = 2uqg? 1 (2x) Pl =0
I (R IN(s
m.l'm ” (gr)?1|
(B32)

The second term in Eq. (B32) is an ultraviolet counterterm
that would cancel out the ultraviolet divergent term in
G(trap

Im.lm' and ultimate result is finite and well defined.

APPENDIX C: MOMENTUM SPACE LS
EQUATION AND PARTICLES INTERACTION
IN A HARMONIC TRAP

In this section, we present some technical details of
nonrelativistic spinless particles interaction in a harmonic
trap. The dynamics of nonrelativistic bosonic particles
interaction in a harmonic trap is described by

(A1) 4+ V)W (x1,%7) = B (x1,%5), (C1)
where
2 1 22
SRl e

1

and x; again stands for the ith particle’s position, the V
represents the interaction between two particles. @ is the
angular frequency of the oscillator. The separation of CM
and relative motions

A = HR” + 71,
where
2
£y(ho) Vi 1 22
HY” = -—R 4 _Me’R
R M2
and
N VZ o1
Hrho) _ _2_/; + 5/w)zrz

yield again
ho ho ho
P (x1, %) = O (Rl (r).

The CM wave function <I>fg )(R) is the solution of the
3D harmonic oscillator potentlal
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VO (R) = Er, @) (R),(C3)
where eigen-energy is given by
3
ER.Ilzw(n+§)y n:0,1,2,.... (C4)

The relative wave function 1,1/‘E
Lippmann-Schwinger equation,

(r) satisfies the

ngh")(r)z/dr’G“'”)(r, r’;e)/dr”V(r’,r”)wgh”)(r”),
(C5)

where Green’s function satisfies the equation

(e — H"NGh) (r,¥; ) = 5(r —1').

The analytic expression of Green’s function in a harmonic
trap is given by [80]

(Co)

G (r,r; e) ZY,m(r (r.7;e)Y;, V),
Im
ho 1 F(l+§_%)
GE >(r,r/;8)=— 3 = 32
o(rr)y: T(l+53)

X My uor )W o word). (CT)

where M, ,(x) and W, ,(x) are Whittaker functions [81].

1. Momentum space LS equation and reaction
amplitude in a harmonic oscillator trap

The reaction amplitude in a harmonic trap can be
defined by

1) = = [ ave e [aevil @), (e

and T\ (k) satisfies the momentum space LS equation,

(ho) dk’ dk” ,

T (k —V(k.k
= [ G

where V and G"°) are the Fourier transform of the
interaction potential V and Green’s function G"*) respec-
tively. In a harmonic oscillator trap, rotation symmetry is
intact, hence the angular momentum is still a good quantum
number; the partial wave expansion of

ZT ho Y[m R

(©9)

)G(lm) (K’ k";é) Tghﬂ) (k"),

and

G (kK e

ZYlm(k

(k. K3e)Y}, (k) (C10)

thus yields

7\ (k)

.
(Cl11)
The separable potential
Vi(k, k') = (kk')'V
suggests that
TE”")( k) = k! tgho)’ c12)

hence the quantization condition under the assumption of a
separable potential is given by

i
Vi 0

k/2 d k/ k//2 d k//
(27)° (27)*

(KK G (K K'se).  (C13)

2. Momentum space LS equation and scattering
amplitude in infinite volume

In infinite volume, the scattering amplitude is defined by

Tﬁ::)(k,q) = —/dre‘ik'r/dr/V(r, r/)q/gf)(r’,q),

(C14)
and it satisfies the momentum space LS equation
o - Ak’ V(k,K') (e
T = <Pk + [ ST )
2w
(C15)

The partial wave expansion
=27

(k. @)Y 1 (K)Y},, (@)

yields
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(o) T mklzdk/Vl(k,k/) () /1
g =Wk + [ T W)
uo 2u
(C16)

The assumption of the separable potential again yields an
analytic solution of scattering amplitude,

(4'9)"
Tgoo)(ql,Q) =TT e Rk @ (C17)
VT Jo Cae g
ETET
The on-shell partial wave scattering amplitudes T§°°) (g.9).

where g = \/2u¢,, are usually parametrized by phase shift,

(4r)? 1

(c0)
T .
24q cotsi(q) — i

1 (g.q) =

(C18)

Therefore, a simple relation between V; and phase shift is
obtained,

i_/oo kde k21 _ _2;46121H
Vl 0 (2%)3%_% (471')2

[cots;(q) —i]. (C19)

3. Quantization condition in a harmonic oscillator trap
Combining Egs. (C19) and (C13), we find

w© K2dk K2dK o) w K2dk K
L Gy s WS k) - | e <
u o 2u
2ﬂq21+1 )
e [cots;(q) — i]. (C20)

Using an asymptotic form of the spherical Bessel
function,

v (kr)'

) r—0
200(1+3)”

Ji(kr) — (C21)

one can easily prove that

(kKY'G) (kK &)

(27)* (2m)?

/00 K>dk K*dk’
0

I 2043 G () (C22)
a (4ﬂ)2 n (rr/)l r.r/—>0’
and
/oo kK2dk k21 N 1 221+21‘*2(l+%) G§°°)(r’ i"/;q)
0 (2”)3](—;—(1—2 (471‘-)2 n (rr/)l r,r’—»O’
(C23)

where the analytic expression of GEhU)

(r,r;e) and
G§°°> (r,r'; q) are given in Egs. (C7) and (B24) respectively.
Also using the asymptotic form of the harmonic oscillator
trap Green’s function,

22’“1“2(1 + %) Ggho)(r, v 8)

T rr)!
( ) r.’' =0
3 3 £

__ (ua)* 2242 (1)1 FG+3- %)

z rg-4-2)
224+ DTl +3) 2

- 2041 ’ (C24)
T r r—0

and asymptotic form of G§°°)(r, r'; q) given in Eq. (B30),

the UV divergence cancels out explicitly in Eq. (C20), and
the quantization condition is thus reduced to the BERW
formula,

duw\HTE+L-£)
cotd) - (-1 (42) T o (29
) TG-3-%)
where ¢ and e are associated by
2 2
q |
—t—= = C26
2/4+2M s+a)<n+ > (C206)
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