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Abstract: In the present work, we study the rotations of the
polarization of light propagating in right and left-handed
films and layered structures. Through the use of complex
values representing the rotations we analyze the transmis-
sion (Faraday effect) and reflections (Kerr effect) of light.
It is shown that the real and imaginary parts of the com-
plex angle of Faraday and Kerr rotations are odd and even
functions for the refractive index n, respectively. In the
thin film case with left-handed materials there are large
resonant enhancements of the reflected Kerr angle that
could be obtained experimentally. In the magnetic clock
approach, used in the tunneling time problem, two charac-
teristic time components are related to the real and imag-
inary portions of the complex Faraday rotation angle θ.
The complex angle at the different propagation regimes
through a finite stack of alternating right and left-handed
materials is analyzed in detail. We found that, in spite of
the fact that Re(θ) in the forbidden gap is almost zero, the
Im(θ) changes drastically in both value and sign.

Keywords: left-handed materials, metamaterials, Faraday
rotation angle, Kerr effect, polarization of light

1 Introduction
Negative refractive index magneto-optical metamaterials,
also called left-handed materials (LHM), are a new type of
artificial material characterized by having a permittivity ϵ
and permeability µ both negative [1–3]. The double nega-
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tive nature of the parameters ϵ and µ at first sight should
not affect the refractive index n = √ϵµ, as it appears that n
should remain positive. However, if complex parameters ϵ
and µ have negative non-zero real parts and positive non-
zero imaginary parts (where the positive imaginary por-
tion is required for passive materials) the real portion of
n will also be negative. Indeed, the permittivity ϵ and the
permeability µ, as complex quantities, can be written in
the form ϵ = rϵeiθ and µ = rµeiϕ . Accordingly, the re-
fractive index n has the form n = √rϵrµei(θ+ϕ)/2. The re-
quirement that the imaginary part of the refractive index
n must be positive for a non-absorbing medium leads to
double inequalities: 0 ≤ (θ + ϕ)/2 < π. Taking into ac-
count the mentioned double inequalities and using the
fact that the real parts of ϵ and µ must be both negative
(i.e. cos θ < 0 and cosϕ < 0) we get another inequalities:
π/2 ≤ (θ + ϕ)/2 < π. The latter indicates, that the double
negative nature of the parameters ϵ and µ affects the refrac-
tive index n in the way that the real part of n of a metama-
terial, that is Ren ≡ √ϵµ cos(θ+ϕ)/2, is negative (see, e.g.
Ref. [4] for more details). LHM have multiple uses that in-
clude: the ability to resolve images beyond the diffraction
limit [5, 6], act as electromagnetic cloaks for particular fre-
quencies of light [7–9], enhance quantum interference [10]
or yield to slow light propagation [11]. LHM used also for
digital applications possess various exotic functionalities,
such as anomalous reflections, broadband diffusion, po-
larisation conversion [12] and encoding information [13].

The presence of negative indices of refraction in one-
dimensional (1D) disordered metamaterials strongly sup-
presses Anderson localization due to the lack of phase ac-
cumulation during wave propagation, which thus weak-
ens interference effects necessary for localization [14]. As
a consequence, an unusual behaviour of the localization
length ξ at long-wavelengths λ has been observed [14–
16]. This is unlike the well-known quadratic asymptotic
behaviour ξ ∼ λ2 for standard isotropic layers (see, e.g.
[17]). It can be seen that the metamaterial configurations
have an effect on themagneto-optical transport properties
of the electromagnetic waves. Particularly, the sign of the
plane polarization rotation angle in a left-handedmedium
(LHM) is opposite to the sign of the rotation angle in a
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right-handed medium (RHM). The Faraday and Kerr rota-
tions (FR and KR) are non-reciprocal polarization rotation
effects in which the sign of the rotation is always related
to the direction of the magnetic field. This is different in
optically active media where the rotation of the polariza-
tion is related to the direction of the wave vector. Thus, the
non-reciprocity of the Faraday and Kerr effects allow light
to accumulate rotations of the same sign and magnitude
for both forward and backward propagation and can be
enhanced even further by additional round-trip reflections
through the medium.

If we assume no absorption and neglect the influence
of the boundaries of the system, then in bulk materials for
a given ϵ, µ, Verdet constant V and length ofmedium L, for
a constant linearmagnetic field B, the Faraday rotation an-
gle is given by θ = LVBω

2c

√︁
µ
ϵ . When the reflections within

the boundaries are relevant the outgoing reflected wave
is generally elliptically polarized, with or without absorp-
tion. The major axis of the ellipse is rotated with respect
to the original direction of polarization and the maximum
FR (KR) angle does not necessarily coincide with angular
frequencies ω of light at which zero ellipticity can be mea-
sured (we will come back to this question in section 2).

We represent the linear and elliptical polarizations as
the real and imaginary portions of a complex quantity. The
real value of the rotation angle describes the change of po-
larization in linearly polarized light. The imaginary value
describes the ellipticity of transmitted or reflected light.
Once we know the scattering matrix elements r and t on a
one-dimensional light propagation problem, then the two
characteristic parameters of Faraday/Kerr rotation (Real)
and Faraday/Kerr ellipticity (Imaginary) of the magneto-
optical transmission/reflectionmeasurements can bewrit-
ten in complex form as the real and imaginary parts of a
well-defined complex angle of θT and θR (see Eqs.(6) and
(19)).

In the present paper, we theoretically consider the
Faraday rotation of light passing through a RHM/LHMfilm
of thickness L taking into account multiple reflections in
the boundaries without absorption. This exactly solvable
simplemodel is chosen to present different aspects of RHM
and LHM. It will be shown that the real part of the com-
plex angle of Faraday rotation is an odd function with re-
spect to the refractive index n, while the imaginary part of
the angle is an even function of n. We have obtained the
rotation angle of backscattered light (Kerr effect) from the
RHM/LHM film as well. In the limit of ultra thin LHM film
under specific circumstances we will see a large resonant
enhancement of the reflected KR angle.

The work is organized as follows. In section 2 we for-
mulate the problem with appropriate analytical expres-
sions for the complex Faraday angle of transmitted light.
In section 3 we analyze the Kerr effect and calculate the
real and imaginary angles of reflection. In section 4 we
study the real and imaginary portions of the complex
Faraday rotation angle at different propagation regimes
through a finite stack of alternating right and left-handed
materials which is analyzed in detail.

2 Right-handed and left-handed
dielectric slab

Let us consider a slab confined to the segment 0 ≤ x ≤ L,
with a positive impedance Z =

√︀
µ/ϵ for either RHM or

LHM, and characterized by a permittivity ϵ = n/Z and a
permeability µ = nZ. Both n and Z, and therefore ϵ and
µ, are frequency dependent complex functions that satisfy
certain requirements based on causality. For passive mate-
rials, Re(Z) and Im(n) must be greater than zero.

The two semi-infinite media outside the slab are equal
and are characterized by the dielectric constant ϵ1 or by
the impedance Z1 =

√︀
µ/ϵ1. A linearly polarized electro-

magnetic plane wave with angular frequency ω enters the
slab from the left with normal incidence. We take the di-
rection of propagation as the x axis, and the direction of
the electric field E⃗0 of the incident wave as the z axis. A
weak magnetic field B⃗, that does not violate the linearity
of Maxwell’s equations, is applied in the positive x direc-
tion and is confined to the slab. This magnetic field causes
the direction of linear polarization to rotate while light
propagates through the medium. As a consequence, the
dielectric tensor develops non-zero off-diagonal elements.
Magneto-optic effects are related to the off-diagonal com-
ponents ϵij (i, j ∈ {1, 2}) , whereas optical properties are
related to the diagonal components ϵii . The magnitude of
the off-diagonal components ϵij is twoorders ofmagnitude
smaller than that of the diagonal components ϵii. The gen-
eralized principle of symmetry of kinetic coefficients im-
plies that ϵij(B⃗) = ϵij(−B⃗). The condition that absorption is
absent requires that the tensor should be Hermitian ϵij =
ϵ*ji. The latter implies that the real and imaginary parts of
ϵij must be symmetrical and antisymmetrical, respectively.
That is: Re(ϵij)=Re(ϵji) and Im(ϵij)=-Im(ϵji). By combining
these conditions with the relation ϵij(B⃗) = ϵij(−B⃗), one can
show that the diagonal components of the dielectric tensor
are even functions of an applied magnetic field, and the
off-diagonal components are odd functions and have first-
order magnetic field dependence. The dielectric tensor of
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the slab is given by [18]:

ϵij =
(︃
ϵ +ig
−ig ϵ

)︃
, (1)

where g⃗ is the gyration vector in the magnetic-field direc-
tion. We include the external magnetic field B⃗ into the gy-
rotropic vector g⃗ for our ϵij. This way our calculations are
valid for the cases of a dielectric in an external magnetic
field and for magneto-optical materials.

The components Ez and Ey, Hz and Hy in the film are
not constant and depend only on the coordinate x. As well,
when a magnetic field is applied in the x direction, the off-
diagonal elements ϵij cause coupling between the electric
field (Ez and Ey) and the magnetic field (Hz and Hy) com-
ponents. The linearly polarized incident electromagnetic
wave can be presented now as the sum of circularly po-
larized waves with opposite directions of rotation, which
propagate through the slab with a different wave vector
k± = ωn±/c.

For circularly polarized waves E± = Ey ± iEz, the
Maxwell equations have the form (time variation of optical
field is in the form e−iωt) [18]:

∂2E±
∂x2 + ω

2ϵ±
c2 E± = 0, (2)

where ϵ± = ϵ ± g.
The reflectance and transmittance amplitudes can be

obtained using the continuity of the tangential compo-
nents of the electric (magnetic) fields at the two interfaces,
x = 0 and x = L. Solving the equations with the appropri-
ate boundary conditions at x = 0 and x = L we obtain for
the transmitted waves E′+ and E′−

E′± = E0t±,

where t± is the transmission amplitude for right and left
circularly polarized light and can be presented in the form
[18]:

t± = T1/2± eiψ± . (3)

The coefficient of transmission T± and the phase ψ±
are given by the following expressions, respectively:

T± =
[︂
1 + 1

4

(︂
Zrel± − 1

Zrel±

)︂2
sin2(ωLn±/c)

]︂−1
, (4)

tanψ± =
1
2

(︂
Zrel± + 1

Zrel±

)︂
tan(ωLn±/c). (5)

Here Zrel± = Z±
Z1 ≡

√︁
ϵ1
ϵ±g is the "relative" impedance of

a planar dielectric slab of thickness L, characterized by
Z± =

√︁
µ
ϵ±g , surrounded by two semi-infinite media with

positive Z1 =
√︁

µ
ϵ1 .

As it has been proven, there is a linear relation be-
tween the real and imaginary parts of t± and between ln t±
and ψ±. These are the known linear Kramers-Kronig rela-
tions, that can be rewritten in terms of localization length
and density of states [19]. The complex FR angle with the
imaginary and real parts is introduced as (see, e.g., [20]):

θT = − i2 ln t+t−
= ψ+ − ψ−

2 − i2 ln T
1/2
+

T1/2−
≡ θT1 + iθT2 . (6)

As we can see from Eq. (6), if T+ = T−, then θT ≡ θT1
and would only have real component; this signifies that
the wave remains linearly polarized with vector E⃗ rotated
an angle θT to the initial direction. In the Faraday geom-
etry (a magnetic field is applied parallel to the direction
of light propagation) and in the absence of material losses
within a thin film, (R + T = 1, where R is the reflection
coefficient), we have that T+ = T− if: (i) the sample is infi-
nite (no boundaries), (ii) for certain thicknesses where to-
tal transmission occurs (T = 1) or (iii) n ∂T

1/2

∂n = Z ∂T
1/2

∂Z .
This third condition implies that at certain thicknesses the
imaginary portion θT2 becomes zero (the solutions follow-
ing from the transcendental equation, x0 = Z2+1

Z2−1 tan x0). At
these points the transmission coefficient T is not one, and
its value decreases with increasing x0, having a saturated
value of 4Z2/(Z2 + 1)2 when x0 tends ∞, in contrast to the
two previous cases. This saturated value corresponds ex-
actly to one-quarter wavelength.

If T+ ≠ T−, the light is not simply linearly polarized. It
has an elliptical polarization, being the ratio of the ellipse
semi-axis determined by the relation (b < a):

b
a = | tan θT2 | =

⃒⃒⃒⃒
T1/2+ − T1/2−

⃒⃒⃒⃒
⃒⃒⃒⃒
T1/2+ + T1/2−

⃒⃒⃒⃒ , (7)

where the angle between the large axis of the ellipse and
the y axis is:

θT1 = ψ+ − ψ−
2 . (8)

For bulk (isotropic) samples or optical devices, where one-
way light propagation is important,ψ± = ωLn±/c (see Eq. 5
when Zrel± → 1). Then, for Zrel± ≈ 1 the angle θT1 reads:

θT1 ≈
Lω√µ
2c

(︂
√ϵ + g −√ϵ − g

)︂
. (9)

It can be increased the rotation angle of the linear polar-
ization of θT1 on a small length scale in some ways: (i) by
taking into account themultiple reflections in a finite layer
or resonant structures that can lead to an enhancement of
the FR angle (for example Fabry-Perot cavities filled with
a magneto-optic material [21]), (ii) tuning the optical prop-
erties of ϵ, µ and g by the modification of the structure,
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size and shape of the material; varying the composition of
alloyed and intermetallic nanostructures, (iii) using meta-
materials to tailor the optical properties of the host system
[22] (iv) and changing the dielectric permittivity tensor of
a medium with time, etc. The time dependence case may
concern both the diagonal and non-diagonal permittivity
terms of ϵij (see Ref. [23]).

In Ref. [22] the permittivity tensor of amagneto-optical
metamaterial is tailored by embedded wire meshes. These
wires can only tune the diagonal element of the permit-
tivity tensor in terms of topological parameters and mate-
rial properties. This reduces ϵ to the value of g, creating
a near zero epsilon (NZE) metamaterial [24]. For such fre-
quencies the second termof Eq. (9) becomes zero and θT1 in
the magneto-optical metamaterial can be enhanced by al-
most an order of magnitude [22]. As well, when Faraday ro-
tation has a time dependent dielectric permittivity tensor,
where g = go cos(Ωt), (being Ω the angular frequency of
the gyrotropic vector), it can be shown that the time depen-
dent Faraday rotational angle contains an extra term (pro-
portional to time t and to the frequency ratio ω

Ω ) which in-
creases faster than the stationary term and becomes dom-
inant in short time spans, provided that ωt > 1 [23]).

2.1 Real part of FR in RHM/LHM:
Transmission

Let us consider the FR for transmission from a slab. Since
the Faraday effect is typically very small the effective in-
dices of refraction and impedance for the two circular po-
larizations of the first order in g can be presented in the
form

n± =
√ϵ±µ ≈ n ±

1
2
gn
|ϵ| ,

Z± =
√︀
µ/ϵ± ≈ Z ∓ 1

2
gZ
|ϵ| ,

where n (refractive index of a homogeneous material) and
Z (impedance of a homogeneous material) are calculated
when gyration vector g⃗ is zero. Note that by replacing n →
−n we can use the above expressions for LHM.

One can simplify the analysis of θT1 and θT2 by expand-
ing ψ± around n and Z of the slab in the absence of the
magnetic field B⃗. Then the Taylor series of T1/2± and ψ± in
the neighborhood of n and Z becomes:

T1/2± = T1/2(n, Z) ± 12
gn
ϵ
∂T1/2
∂n ∓ 1

2
gZ
ϵ
∂T1/2
∂Z , (10)

ψ± = ψ(n, Z) ±
1
2
gn
|ϵ|
∂ψ
∂n ∓ 1

2
gZ
|ϵ|

∂ψ
∂Z . (11)
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Figure 1: Faraday Rotation angle θT1 as a function of x = ωnL/c for
Z = 0.3 and Z = 0.8 (colour online).

Hence,

θT1 = ψ+ − ψ−
2 = 1

2
gn
|ϵ|
∂ψ
∂n −

1
2
gZ
|ϵ|

∂ψ
∂Z (12)

= 1
2
g
|ϵ|

(︂
n ∂ψ∂n − Z

∂ψ
∂Z

)︂
.

Evaluating the derivatives ∂ψ
∂n and ∂ψ

∂Z at B⃗ = 0 from Eq. 5,
substituting these expressions into Eq. 12 and introducing
the new parameter x = ωnL/c, we get

θT1 = g
4|ϵ|Z

x(Z2 + 1) + (1 − Z2) sin x cos x

1 + 1
4

(︂
Z − 1

Z

)︂2
sin2 x

. (13)

Eq. (13) is a general expression and is valid for any con-
tinuous material with arbitrary parameters L, n and Z. As
expected, θT1 is odd in n and there is a change of the sign
of n in LHM. Below we analyze a few of the limits for these
parameters.

When L tends to zero (kL ≪ 1) , the above equation
reduces to

θT1 ≈
g

2ϵZ x ≡ gωL
2c

ϵ
|ϵ| , (14)

which coincides with the thin-film result of Ref. [25] for
RHM (ϵ > 0).

If Z = 1, i.e.when light propagates in an homogenous
medium, we get

θT1 = g
2|ϵ| x ≡ gωL

2c|ϵ|
√µϵ, (15)

which coincides with the result of Refs. [18, 25] in the thick
film limitwhere kL ≫ 1, for µ = 1 inRHMand for the range
of all optical frequencies. At the points x0 = Z2+1

Z2−1 tan x0,
where the ellipticity is zero (θT2 = 0), as was mentioned
previously, we get for the real part of FR:

θT1 = gZ
|ϵ|(Z2 + 1) x0 (16)
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In Figure 1 we show the FR angle of transmission vs x =
ωnL/c for RHM, using Eq. (13) for three different values of
surface impedance: Z = 0.3, Z = 0.8, and bulk material
with no reflections where Z = 1 (dashed line). The angle
steadily increases and oscillates around the line θT1 = 2x
(in units g

4|ϵ| with certain periodicity of π or on the scale
L ∼ k−1). The oscillations in θT1 are due to interference ef-
fects in the plane-parallel slab and the amplitude of the os-
cillating part depends on x. At xl = π(l + 1/2) (l = 1, 2 . . . )
we have for FR angle θT1 = gZ

|ϵ|
xl

Z2+1 , and for xl = πl we
have θT1 = g

4|ϵ|
Z2+1
Z xl. We were not able to find an analyt-

ically closed-form solution for the maximum of θT1 , and
Eq. (13) could not calculate the maximum increase of FR
angle. However, for the estimated increase we used points
xl = πl, because the maximum value of θT1 for each period
of oscillation is located very close to that points (see Fig. 1
where the vertical grid line appears). Then the ratio of θT1
at xl = πl to the θT1 in homogeneous media, Eq. (15), reads
(Z2 + 1)/2Z ≥ 1. For materials with relative impedance
∼ 0.3, such as semiconductors with zero extinction coef-
ficients in the near or mid infrared range (like tellurium
or aluminum gallium arsenide), the ratio can be almost
2. That is, an impedance z < 1 causes multiple reflec-
tions that increase the overall time the light spends within
the system, showing an increase in Faraday rotation [20].
A similar increase of Faraday rotation was also found in
[22, 26]. However, for a composite system (dielectric with
metamaterials or super lattice systems) the effective ϵ can
be reduced up to 10−2 and the ratio can thus be increased
by an order of magnitude or greater.

2.2 Imaginary part of FR in RHM/LHM:
Transmission

Expanding T1/2± around n and Z of the slab in the absence
of the magnetic field B⃗ (see Eq. (10) by using the Taylor
series for ln(1 + x) centered at 0, we can similarly derive
the expression for θT2 = 1

2 ln
T1/2+
T1/2−

for the imaginary portion
of Faraday rotation as:

θT2 = g
8|ϵ|Z2

(1−Z2) sin x[(Z2+1) sin x+x(1−Z2) cos x]
1+ 1

4 (Z− 1
Z )2 sin2 x

. (17)

This is again a general expression valid for the arbi-
trary parameters L, n and Z. As expected, θT2 is even in n,
and θT2 → 0when L tends to zero. As itwaspreviouslymen-
tioned, θT2 becomes 0 at Z = 1 (no boundaries), at x = πl
(complete transmission) andat x0 = Z2+1

Z2−1 tan x0. In the two
former cases the coefficient of transmission T becomes 1
when an external magnetic field B⃗ is zero. The third case

is very different: The transmission coefficient is not 1 and
instead T approaches 4Z2/(Z2 + 1)2 as x0 tends ∞. This
saturated value corresponds exactly to one-quarter wave-
length.

Note that in the limit of a small magnetic field B⃗ the
expression for b

a , Eq. (7), coincides with θT2 defiend by
Eq. (17).

Figure 2 shows the imaginary angle of the FR in Eq. (17)
for a RHM (n > 0) versus x, for materials with Z = 0.3
(solid) and Z = 0.8 (dashed). θT2 in the interval [0, π] in-
creases with x, reaches a peak value and then drops to
a minimum. This pattern repeats as x increases. Let us fi-
nally remark that from Figure 1 and Figure 2 it follows that
themaximums of the real portions of the Faraday effect do
not coincide with the simultaneously zero imaginary por-
tions.
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Figure 2: Faraday Rotation angle θT2 as a function of x = ωnL/c for
Z=0.3 and Z=0.8. Transmission is multiplied by 5 to highlight the re-
lationship between the Faraday ellipticity angle and corresponding
transmission value, where T = 1 is the norm (colour online).

3 Real and Imaginary parts of KR in
RHM/LHM: Reflection

When linearly polarized light is reflected from the sur-
face of amagnetizedmaterial, the direction of polarization
changes and the light can be elliptically polarized. This is
the Kerr effect, very similar to the Faraday effect with the
exception that the Kerr effect refers to the reflection of light
and the Faraday effect refers to its transmission.

Before analizing the complexKerr effect inmore detail,
let us note that if we ignore the losses there are some use-
ful results which relate the θT and θR which follow from
the general expressions of the scattering matrix elements
in terms of the transmission and reflection probabilities
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and the scattering phases ψ and ψ ± ψa. Here ψ is the to-
tal phase accumulated in a transmission event and ψ ±ψa
are the phases accumulated by a particle which is incident
from either face of the material when it is reflected. The
scattering-matrix elements can be written in the form:

S =
(︃
r t
t r′

)︃
=
(︃
−i
√
Rei(ψ+ψa)

√
Tei(ψ)√

Tei(ψ) −i
√
Rei(ψ−ψa)

)︃
.

For a spatially symmetric barrier the phase asymmetry
ψa vanishes and r = r′. It is clear that for any symmetric
structurewith nomaterial losses, including the slabwe are
discussing,

θR1 = θT1 .

Whereas t± describes the transmission amplitude of
the wave, we now describe r± as the reflection amplitude.
It can be shown for the slab that the reflection amplitude
is given by [18]:

r± = −i
t±
2 (Z± −

1
Z±

) sin(n±ωL/c), (18)

where t±wasdefined inEq. (3). Using anexpression similar
to that of FR to describe the Kerr effect complex rotation
angle we find that,

θR = −i ln r+r−
= θR1 + iθR2 , (19)

and,

θR2 = θT2 −
g
2ϵ

(︂
(nkL) cos(nkL)

sin(nkL) + Z
2 + 1

1 − Z2

)︂
, (20)

where θT2 is defined by Eq. (17).
When L tends to zero (the thin film approximation),

the above expression reduces to

θR2 ≈
ϵ
|ϵ|

g
ϵ − µ ,

where epsilon has a sign change from RHM to LHM.
As it can be seen in the above expression, θT2 is pro-

portional to the extremely small parameter g and in RHM,
where µ ≪ ϵ, it is too difficult tomeasure θR. However, the
situation is very different for LHM, where µ and ϵ can be of
the sameorder ofmagnitude for some frequency ranges (as
for NZEmetamaterials). For these frequencies it can be ver-
ified experimentally that a narrow resonantly enhanced re-
flection angle can be found for the Kerr effect.

Figure 3 shows the imaginary angle of the KR, Eq. (20),
for two different RHMof different surface impedance Z ver-
sus x . θR2 at xl = πl shows a discontinuity. We also note
that zeroes for both θT2 and θR2 coincide and are the solu-
tions to the transcendental equation x0 = Z2+1

Z2−1 tan x0. At
these points there is linearly polarized light for both the
reflected and transmitted light.
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Figure 3: Kerr Rotation angle θR2 as a function of x = ωnL/c for
Z = 0.3 and Z = 0.8 (colour online).

4 Alternating right and left-handed
materials: layered structures

In this section we shall analyze in detail the real and imag-
inary portions of the complex Faraday rotation angle at
the different propagation regimes through a finite stack of
alternating right and left-handed materials (n1 > 0 and
n2 < 0, respectively). In such systems, the total Faraday
rotation is defined as the rotation of the resultant super-
position of the transmitted electric fields E± that experi-
encemultiple reflections, as discussed previously for a sin-
gle film. The mentioned multiple reflections along differ-
ent trajectories, corresponding to different traversal times,
can lead to evanescent modes of so-called "superluminal
velocities" on microwave transmission through an under-
sized waveguide [27, 28] or periodic dielectric heterostru-
cures [29, 30]. It is widely believed that the evanescent
modes take almost zero time to cross the forbidden region
and for an opaque barrier, where there is a strong expo-
nential decay of the wave function, the tunneling time be-
comes independent of the barrier’s length (known as the
Hartman effect [31]). However, a very fast tunneling, or a
zero tunneling time holds a serious consequence: the tun-
neling velocity or the average velocity may become higher
than the velocity of light c. Indeed, following the standard
definition of the phase time, t = ~ dφdE (where time elapses
between the peak of the wavepacket entering the barrier
and leaving it), it is easy to be convinced that for evanes-
cent modes one will get a very fast tunneling time.

Without pretending to give an exhaustive review on
the theory of the traversal timeproblemof electromagnetic
waves, we just mention that two characteristic times have
arisen in many approaches (see for example, Refs. [32, 33]
and references therein). These times are related as a conse-
quenceof the analytical properties of the complexquantity
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whose real and imaginary components are the two charac-
teristic times. However, as we know, any experiment must
measure a real quantity, and so the outcome of any mea-
surement of the interaction time must be a real quantity,
possibly involving the two characteristic times. It depends
on the experimente which of the two components of this
interaction time is the most relevant.

We can see in the experiment performed in Ref. [34]
an example of a two components interaction time. There
it was experimentally investigated the tunneling times as-
sociated with frustrated total internal reflection of light. It
was shown that the two characteristic times correspond,
respectively, to the spatial and angular shifts of the beam.

As a second example, we can mention the magnetic
clock approach [20] (Faraday rotation), where the time
that characterizes the interaction of a classical electromag-
netic wave with a barrier must always be described by two-
components of a complex time: τ = τ1 − iτ2.

The real portion of complex Faraday angle θ is pro-
portional to the traversal time τ1 of light through the mag-
netic materials or dielectric structures in an external weak
magnetic field [20]. At the same time the imaginary compo-
nent of complex θ is proportional to the degree of elliptic-
ity, τ2. Remarkably, the two times τ1 and τ2 are related via
Kramers-Kronig integral dispersion relation [35] that pre-
vents a violation of the principle of causality. Indeed, the
validity of the Kramers-Kronig relations for the complex
interaction time has a rather deep significance because it
may be demonstrated that these conditions are a direct re-
sult of the causal nature of physical systems by which the
response to a stimulus never precedes the stimulus [35].
Based on this remark, note that the experiments with, e.g.,
undersized waveguides [27, 28] or periodic dielectric het-
erostrucures [29, 30], where the so called "superluminal"
have been observed for the barrier tunneling time need to
be interpreted very carefully.

To shed some light on the obstacles which have per-
sisted in the tunneling time problem, we analyze the real
and imaginary portions of the complex Faraday rotation
angle in the forbidden bands of a finite stack of alternating
right and left-handed materials. This type of alternating
structure, assuming that the optical paths of two slabs are
equal to each other (n1L1 = |n2|L2), exhibits a broad for-
bidden bands spectrum (see Figure 4a below). This serves
as a good candidate and a basis for a qualitative under-
standing of the peculiarities of complex Faraday rotation,
as well as the two-components of the interaction time in a
barrier.

For our numerical simulations we have chosen a finite
stack of alternating right (refractive index n1 = 1.58 and
length L1 = 52.92 nm) and left-handed (refractive index

n2 = −2.12 and length L2 = 39.38 nm) materials. The
wave-numbers in the layers of both types are ki = ωni/c,
where ω is the frequency and c the vacuum speed of light.
Due to the high contrast between the two dielectrics n1
and |n2|, 10 primitive cells are already enough to formu-
late allowed and forbidden band structures. In Figure 4a
we present the transmission coefficient T as a function of
the frequencyω for single, five, ten and fifty primitive cells.

Figure 4: (a)The transmission coeflcient and (b) real and imaginary
parts of the Faraday Rotation angle θ as a function of ω for an alter-
nating structure described in the text. The parameters are: number
of primitive cells M = 50, n1 = 1.58, n2 = −2.12, L1 = 52.92 nm,
L2 = 39.38 nm and n1L1 = |n2|L2 (colour online).

The transmission coefficient was calculated by using
the characteristic determinantmethod [36, 37], that allows
one to express the transmission coefficient of a wave prop-
agating in a one-dimensional structure through the deter-
minant T = |D|−2. The latter depends on the amplitudes of
reflection of a single scatterer only. This characteristic de-
terminant approach is compatible with the transfer matrix
method and has been widely used to calculate the average
density of states over a sample, the energy spectrum of el-
ementary excitations, or the characteristic barrier tunnel-
ing time, among others (Ref. [38]).

Having a close look into forbidden and allowed band
regions in Figure 4a, one observes that practically the
entire transmission spectrum, starting from M = 10, is
formed by forbidden gaps. Further increase of cells will be
narrowing the allowed bands, and in the limit of an ideal
infinite crystal one gets a set of periodically distributed
Lorentzian resonances. The centers of the m − th allowed
band, ωc can be easily determined via the dispersion rela-
tion obtained from the Bloch-Floquet theorem for an ideal
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infinite crystal (see, for example, Ref. [15])

ωc =
cπm
n1L1

≡ m1.13 × 1016rad/s

In Figure 4b we present the real and imaginary por-
tions of Faraday complex angle θ for M = 50 primitive
cells. The maximums of Re(θ) are centered in the allowed
bands and coincidewithωc ≡ m1.13×1016rad/s. At these
resonance peaks T− = T+ and we deal with the pure Fara-
day rotation of linearly polarized wave, i.e. with no wave
ellipticity. Within any forbidden bands, Re(θ) is an almost
flat function with a very small value. This is what we ex-
pect according to the above discussion on "superluminal
velocities" and taking into account the existing deep con-
nection between the Re(θ) and the tunneling time τ1. How-
ever, the situation is completely different for Im(θ) (propor-
tional to the degree of ellipticity) or for τ2. First, the lat-
ter is zero at any allowed band at ωc where the condition
T− = T+ is satisfied, and jumps from zero to some positive
value at the end of the allowed band. Second, in the for-
bidden gap Im(θ) starts to decreasemonotonically with in-
creasing frequency ω changing the sign from positive to
negative, and sharply becomes zero in the next allowed
band. In forbidden gaps, at the frequencies where Im(θ)
becomes zero, T− is exactly equal to T+. At these frequen-
cies the electromagnetic waves remain linearly polarized.
At the rest of frequencies in the forbidden gap the wave
is elliptically polarized and its axis is rotated either in the
right or left direction. The dependence of Im(θ) onω is sim-
ilar to a sawtooth function with increasing amplitude. By
comparingwith the stable behaviour of Re(θ) in the forbid-
den gap, where the latter’s value is almost zero, one notes
that the Im(θ) changes drastically in both value and sign.
The fast rotation of the ellipse semi-axis from a positive to
a negative sign in the forbidden gap is connected to the
anomalously small value of Re(θ) in the same frequencies
range. As a consequence, in the time domain the contribu-
tion of τ2 for evanescent modes is dominant compared to
τ1 in the whole range of a forbidden gap.

5 Conclusion
We have studied in this work the Faraday and Kerr rota-
tions of light with angular frequency ω passing through
a RHM/LHM filmwith thickness L, taking into account the
multiple reflections from the boundaries. The descriptions
of the real portions as the linear angle of rotation and imag-
inary portions as the ellipticity of the rotation allow us to
separate the two distinct phenomena and visualize their
maximums and effects within different kinds of mediums.

We found that the rotation and ellipticity of the transmit-
ted or reflected light of the Faraday andKerr effects are odd
and even functions with respect to the refractive index n.
These odd and even functions are not just the properties
of a thin film, but apply just as well to the case of any sys-
tem of arbitrary length.

For a spatially symmetric film with no material losses
the real portion of Faraday and Kerr rotations are equal for
RHM and LHM. However, the imaginary portion of Kerr ro-
tation for LHMhas a peculiar behaviour when the symmet-
ric film’s length tends to zero. In the limit of an ultra thin
LHM film, where ϵ and µ can be of the same order of mag-
nitude for some frequency ranges, it was experimentally
detected a large resonant enhancement of the reflected KR
angle. It has been shown that the maximums of the real
portions of the Faraday effect do not coincide with the si-
multaneously zero imaginary portions, in contrast to the
case of bulk materials.

To shed some light on the obstacles which have per-
sisted in the tunneling timeproblem,wehave analyzed the
real and imaginary portions of the complex Faraday rota-
tion angle in the forbidden bands of a finite stack of alter-
nating right and left-handed materials. It has been shown
that in spite of the fact that Re(θ) in the forbidden gap is al-
most zero, the Im(θ) changes drastically in both value and
sign.
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