CALIFORNIA STATE UNIVERSITY, BAKERSFIELD MATHEMATICS FIELD DAY 2025

Individual Medley, Varsity Level

There are 25 problems. You will have 50 minutes. You will only have to turn in the answer sheet – you may keep the test. Each correct answer is worth four points. Each incorrect answer will receive a one point penalty. If you believe there is an error of some sort in a particular problem, please quietly discuss it with one of the proctors. For each of the questions, fill in the appropriate circle on the answer sheet. When the exam is over, give your answer sheet to the proctor.

Calculators of any kind are not allowed.

GOOD LUCK!

1. How many integers from 1 to 2025 are divisible by 20 or 25, but not both?

(C) 157

(C) 43

(D) 162

(D) 49

(E) 182

(E) 51

(A) 101

(A) 1

(B) 142

(B) 7

2. What is the remainder when 7^{2025} is divided by 100?

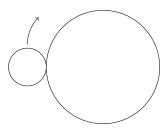
3.	If $f(x) = x^3$ roots of f ?	$-6x^2 + 11x - 6$	S, what is the s	sum of the recip	procals of the
	(A) 1	(B) $\frac{11}{6}$	(C) $-\frac{11}{6}$	(D) 6	(E) -6
4.	A farmer want fencing materia that can be en-	al. What is the		e using exactly ssible area (in se	
	(A) 400	(B) 500	(C) 625	(D) 1000	(E) None of these

5.	Which of the fe	ollowing are equ	uivalent to $\sqrt{5}$	$+\sqrt{24}$?	
	(A) $\sqrt{2} + \sqrt{3}$	(B) $\sqrt{8} + \sqrt{5}$	(C) $1 + \sqrt{5}$	(D) $\sqrt{10}$	(E) None of these
6.	The parabola $(2,-1)$. What	$f(x) = 2x^2 + a$ is $f(-1)$?	ax + 7 for some	e unknown a ha	as a vertex at
	(A) 1	(B) 8	(C) 13	(D) 17	(E) 23
7.	Find the produ	act of the zeros	of $p(x) = 2x^5$	$-4x^4 + x^3 - 2x$	$e^2 + 15x - 7.$
	(A) 2	(B) $\frac{7}{2}$	(C) $\frac{15}{4}$	(D) $-\sqrt{7}$	(E) -2
8.	A sphere is ins sphere. What smaller sphere	is the ratio bety		is then inscribe ne of the larger	
	(A) $\frac{\pi}{8}$	(B) $\frac{\sqrt{6}}{2}$	(C) 2	(D) $2\sqrt{2}$	(E) $3\sqrt{3}$
9.		, each term in t	the sequence is	13,, where the sum of the numbers are e	previous two
	(A) 365	(B) 405	(C) 555	(D) 625	(E) None of these
10.	The real values of integer values of	I function $f(n)$ of n ?	$= \log_2(5n - n^2)$	-6) is defined to	for how many
	(A) 0	(B) 1	(C) 2	(D) 3	(E) ∞
11.			er of the large	smaller equilate triangle is 48,	
	(A) 3	(B) 6	(C) 8	(D) 9	(E) 12

13.	How many 3 di in strictly incre		ve the property	that their digi	ts are written
	(A) 80	(B) 81	(C) 82	(D) 83	(E) 84
14.	How many dis have?	tinct real solut	ions does x^4 –	$8x^3 + 24x^2 -$	32x + 16 = 0
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4
15.	Let a sequence	a_n be defined	by		
		a	$a_1 = 2$ $2n = 2a_n$ $+1 = 2a_n - 4a_n$	+1	
	What is the va	lue of $a_1 + a_2$	$+\cdots+a_{63}$?		
	(A) -54	(B) -128	(C) -246	(D) -1216	(E) -2025
16.	Simplify cos(36	$6^{\circ})\cos(72^{\circ}).$			
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{\sqrt{3}}{2}$	(D) $\frac{\sqrt{2}}{4}$	(E) None of these
17.	How many way that no two vo		-	in the word "A	LGEBRA" so
	(A) 144	(B) 576	(C) 720	(D) 1440	(E) None of these
18.	A standard 6-sexactly one nu	sided die is rol mber appears e		Vhat is the pro	bability that
	(A) $\frac{25}{324}$	(B) $\frac{5}{54}$	(C) $\frac{5}{1944}$	(D) $\frac{25}{108}$	(E) None of these

12. Two concentric circles have radii 5 and 13. A chord of the larger circle is tangent to the smaller circle. What is the length of the chord?

(C) 18


(D) 24

(E) None of these

(A) 12

(B) 15

19. A small circle of radius 2 is rotating around a larger circle of radius 6, as in the figure. The larger circle remains static. At the end of how many revolutions will the smaller circle return to its starting point?

- (A) 1.5
- (B) 3
- (C) 3.5
- (D) 4
- (E) 6
- 20. Suppose that x, y, and z are real numbers satisfying

$$x + y + z = 6$$
, $x^2 + y^2 + z^2 = 14$.

What is the value of xy + yz + zx?

- (A) 2
- (B) 5
- (C) 8
- (D) 11
- (E) None of these

21. A polynomial p satisfies

$$p\bigg(p\big(p(x)\big)\bigg) = 8x + 49$$

for all real x. What is p(3)?

- (A) 9
- (B) 11
- (C) 13
- (D) 15
- (E) 17
- 22. Suppose f(1) = 1 and $f(n) = f(n-1) + \frac{1}{n}$ for any positive integer n. For how many n is f(n) an integer?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) ∞

23.	Let S be the set of integers $\{1, 2, 3, \dots, 100\}$. A subset T of S is chosen at
	random, with each number having an equal chance of being included or
	not being included. What is the probability that T contains exactly one
	multiple of 10?

(A) $\frac{99}{512}$

(B) $\frac{25}{256}$

(C) $\frac{10}{99}$ (D) $\frac{10}{11}$ (E) $\frac{5}{512}$

24. Suppose that x and y satisfy the equation

$$x^2 + y^2 = 10x + 6y + 20.$$

What is the minimum possible value of x + y?

(B) $3 + 2\sqrt{2}$ (C) $6 - 4\sqrt{3}$ (D) $8 - 6\sqrt{3}$ (E) None of

these

25. For how many positive integers n is $n^2 + 7n - 1$ a perfect square?

(A) 0

(B) 1

(C) 3 (D) ∞

(E) None of $\quad \text{these} \quad$